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We show that the analysis of the optical solitons in a resonant, lifetime-broadened A-type atomic system with
two-folded lower levels, given recently by D. Han et al. [J. Opt. Soc. Am. B 24, 2244 (2007)], is incorrect. Al-
though in the anomalous dispersion regime near resonance one may obtain a superluminal optical soliton, such
a soliton suffers serious absorption and hence cannot propagate a significant distance. However, by choosing
appropriate system parameters to work in the normal dispersion regime and hence inside the transparency
windows of double dark resonance, an ultraslow optical soliton with very low light intensity can form and
propagate stably for a fairly long distance. © 2008 Optical Society of America

OCIS codes: 270.0270, 190.3270.

In a recent work, Han et al. [1] considered nonlinear wave
propagation in a A-type atomic system with two-folded
lower levels driven by a coupling field. The authors
claimed that a superluminal optical soliton (i.e., the
propagating velocity of the soliton exceeds ¢ or even
becomes negative) can propagate stably in the system.
However, we find that their conclusion is incorrect. Be-
cause of the mistake of a sign in their Hamiltonian, the
Maxwell-Schrodinger equations presented in their paper
that describe the dynamics of probe field and atomic mo-
tion are not correct, which results in an incorrect linear
dispersion relation and hence an incorrect group velocity
of the probe field. In addition, by using their physical pa-
rameters, the soliton works in a far-off resonant regime
and its propagating velocity is not superluminal but sub-
luminal and very close to c. Actually, a superluminal op-
tical soliton, even obtained, works outside the transpar-
ency windows of a double dark resonance and hence
suffers a serious absorption. However, we shall show that
the system may support an ultraslow optical soliton with
very low light intensity if the parameters are chosen in
normal dispersion regimes near resonance. In this case
the system works inside the transparency windows and
hence the optical soliton may propagate stably for a fairly
long distance.

The system given in [1] consists of a resonant, lifetime-
broadened A-type atomic system with energy levels |1),
|2), and |3) and an additional lower level |[4). A weak,
pulsed probe field (with pulse duration 7y) of center fre-
quency w,/(2m) is coupled to the |1)—2) transition; a
strong and continuous-wave pumping field of frequency
w,/(2) is coupled to the |2)— |3) transition; and a strong
cw coupling field of frequency wy/(27) is coupled to the
two-folded lower levels |3) and [4), i.e., the |3)—|4) tran-
sition, respectively (see Fig. 1 of [1]).

The electric-field vector of the system can be written as
E=3,_, . qe& expli(k; r—wit)]+c.c., where e; is the unit
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vector in the [th polarization direction and k;=w;/c
(I=p,c,d). The Hamiltonian of the system has the form
fl:f[o+ﬁ’, where I:IO describes a free atom and H’
describes the interaction between the atom and the
optical field. In the Schrodinger picture, the state vector
of the systems is |1ﬂ(t))s=2f:10j(z,t) l/), where |j) is the
eigenstate of H,. Under electric-dipole and rotating-wave
approximations, the Hamiltonian takes the form

4
H=" ¢lj)(j] = {0, expli(k,z - w,)]2)(1]
J=1

+Qy expli(k, - - w.t)][2)(3

+Qgexpli(ky T - wgt)]|3)4] + H.el, (1)
where ¢ is the energy of state |/}, H.c. represents the
Hermitian conjugate and Oy=(e, P21)&p/ 1,

Qo=(e. Ppo3)&./T, and Qz=(e;  P3s)Eq/h are the half Rabi
frequencies for corresponding transitions, respectively. p;;
is the electric dipole matrix element associated with
the transitions |i)«|j). The detunings are given by A;
=(€2—€1)/ﬁ—w , A2=(€2—63)/ﬁ—wc, and A3=(63—64)/ﬁ—wd.
For simplicity, we choose the wave vector direction of the
probe field along the z axis, i.e., k,=k,e,.

To investigate the time evolution of the system, it is
more convenient to employ an interaction picture, which
is obtained by applying the operator U=exp(iH, ot/1) to act
on both H' and |¥(t))s. Thus we can obtain the
Hamiltonian and the state vector in the interaction pic-
ture, i.e., H;,=UH'U™! and [V (2))int= U|‘If(t))s. A further
simplification can be obtained by making the transforma-
tion Cj=A;expli[k;-r—(e/h+N)t]}, with k=0, ky=kpe,,
k3=kpez—kc,k4=kpe2—kc—kd, )\1=0, )\2=—A1, )\3=—A1
+A,, and \y,=—A;+Ay+A3. Then we obtain
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Hipo = h[A1[2)(2] + (Ay - A2)[3)(3] + (Ay = A — Ag)[4)(4[]
= R[4 [2)(1] + Q[ 2)(3[ + Q33 )(4| + H.c.] (2)
Using the Schrodinger equation,
ih0| W (t))int/ It =Hine| W (¢))int, one can readily obtain the
equations of motion for atomic-state amplitudes A; (j=1 to
4). Under a slowly varying envelope approximation,
Maxwell equation VZE-(1/c¢2)?E/at%=[1/(eyc?)]*P/ t>
with

P = N {ps1A24] expli(k,z — w,t)] + PasAaA,
xexplilk, - - ,0)] + Pidsd]
Xexpli(ky - r—wgt)] +c.c.}

can be reduced to an equation for the probe field half
Rabi frequency ;. Thus we have the following
Maxwell-Schriodinger (MS) equations:

J

(Lﬁ_t + d2)A2 + QIAI + 92A3 = 0, (33)
i ds |A b

| — Q! Q =0, 3
i s jAs+ Az + QA (3b)

i dy|A ;

| — O.A;=0, 3
ot da)Aat JAs (3¢)
d 194 q

| —+—-——1Q =0 3
4 9z + c ot 1+K12A2A1 ) ( )

where 2;‘1:1 |Aj|2=1, where do=—A;+iys, d3=—A1+Ag+iys,
and dy=—-A1+Ag+Ag+iyy with vy, (j=2,3,4) describing the
decay rate of the energy level |j). k12=N,w,|p12/*/(2€ch)
is the coupling constant describing the interaction
between the electric field and the atoms, with N, being
the atomic density and ¢ being the vacuum dielectric
constant.

Before solving the MS Egs. (3a)—(3d), we first examine
the linear property of the system. We assume that atoms
are initially populated in the state |1). Since in the linear
regime the probe field is very weak, the ground state is
not depleted during time evolution and hence A;~ 1. Tak-
ing Q; and A; (j=2 to 4) as being proportional to
expli(K(w)z—wt)], one obtains the linear dispersion
relation

w Q3] ~ (@ + dg)(w+dy)

K(w) = PR D(w) , (4)

where
D(w) = |Qg|2(w + d2) + |Qz|2(a) + d4)
- (Q) + d2)(w + d3)(w + d4) .

In most operation conditions K(w) can be Taylor expanded
around the center frequency of the probe field, i.e., ®=0.
We obtain K(w)=Ky+K;w+35Kew?+: -, where the coeffi-
cients K;=[?K(w)/d']| ,=0 (j=0,1,2, ...), which can be ob-
tained from Eq. (4) explicitly. Ky=¢+ia/2 gives the phase
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shift ¢ per unit length and absorption coefficient «, K;
=1/V, determines the group velocity V, of the probe
pulse, and Ky represents the group-velocity dispersion
that contributes to the probe pulse’s shape change and an
additional loss.

Shown in Fig. 1 are the dispersion (solid curve) and ab-
sorption (dashed curve) curves of the probe field Qq,
which are characterized by Re(K) and Im(K), respectively.
The parameters are taken as y,=1.0x107s71, 13=1.0
X10%s71 1, =1.0X 102571, k15=1.0X10°cm™ 1571, A=A,
=A3=0, 09=3.6x107s71, and 03=1.8%x107s"l. Two
transparency windows (called double dark resonance)
open due to the quantum interference effect induced by
the pumping field ()5 and the coupling field Q5.

From the figure we see that the dispersion of the sys-
tem can be divided into normal and anomalous dispersion
regimes. In the normal dispersion regimes we have V,
<c¢ (subluminal propagation); in the anomalous disper-
sion regimes one has V,>c and even V, becomes negative
(superluminal propagation). It is obvious that in the
anomalous dispersion regimes the system always has a
very large absorption, whereas in the normal dispersion
regimes the absorption is reduced considerably due to the
electromagnetically induced transparency (EIT) effect,
i.e., the appearance of the EIT transparency windows.
Consequently, the system is nearly transparent (opaque)
if working in the normal (anomalous) dispersion regimes.
This conclusion remains valid even when an envelope
soliton forms when the weak nonlinear effect of the
system is taken into account.

In [1], the authors mistook a sign in their Hamiltonian,
and hence the MS equations derived by them are not cor-
rect, which results in an incorrect linear dispersion rela-
tion and an incorrect group-velocity expression of the
probe field. Actually, the sign of the second term of their
linear dispersion relation [i.e., Eq. (6) in [1]] should be
minus.

Using the parameters given in [1], we obtain
$»=-9.9996 X 103 rad cm™, B=5.9998 X 1075 cm™1,
K,=(34.54+i0.01) X102 cm™1s, Ky,=(0.12+i12.47)

150 :

Fig. 1. (Color online) The dispersion curve Re(K) (solid curve)
and the absorption curve Im(K) (dashed curve) of the probe field
as functions of w. The parameters are given in the text.
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x10720ecm™1s2, and W=(11.11+i0.07) X107 2*cm!s2.
With these parameters, we obtain the following conclu-
sions: (i) The group velocity of the probe field is Vg
=0.96¢, i.e., the propagation of the probe pulse is sublu-
minal and it travels with a velocity close to but slower
than c. (i1) It is impossible to generate a stable optical
soliton in this case because the real part of the coefficient
K, is much larger than its corresponding imaginary part.
(iii) The center frequency of the probe field locates at

=-1.0x10"1s"!, which is very far away from the
resonant region of the system, thus not interesting for the
active resonant system under study [2].

Although the system cannot support stable superlumi-
nal solitons as claimed in [1], it can, however, support ul-
traslow optical solitons in normal dispersion regimes near
resonance. To demonstrate this, we derive a nonlinear en-
velope equation that describes the time evolution of the
probe field envelope by employing the method of multiple
scales [3]. For this aim we make the asymptotic expansion
Aj=8+3;_1€'A(j=1,2,3,4) and ;=3 _ 0", where
€ is a small parameter characterizing the small popula-
tion depletion in the state |1). To obtain a divergence-free
expansion, all quantities on the right-hand side of the
asymptotic expansion are considered functions of the mul-
tiscale variables z;=€z (1=0 to 2) and ¢;=¢€t (1=0, 1). Sub-
stituting the expansion and the multiscale variables into
Eqgs. (3a)—(3d), we obtain a chain of linear but inhomoge-
neous equations for AJ(»”) and Q(ln), which can be solved
order by order.

The leading order (j=1) solution is just that obtained in
the linear regime. The expression of (); has the form
Fexp(i6), here 0=K(w)zg—wty with F being a yet to be
determined envelope function depending on the slow vari-
ables t; and Z;(j=1,2). At the second order (j=2),
a divergence-free condition requires
i[oF/dz1+(1/Vg) 0F [ 3t1]=0, i.e., the envelope F travels
with the group velocity V,. At the third order (j=3) a
divergence-free condition yields the equation

OF K, @F ,
| — - —— — Wexp(- FIF|*=0, 5
l&z2 9 t% xp(- ay29)F|F| (5)
with a;=€2a and

W=- K12(|QS|2 - d3d4)[HQS‘2 - de4|2
+]Qu?(ldyl? + |53 V(D|DP),

which characterizes the self-phase modulation effect of
the system.

Combining the envelope equations obtained in the sec-
ond and the third orders and returning to the original
variables, we arrive at the following dimensionless equa-
tion:

du u
i—+— +2ujul’=idyu, (6)
s

do>
where s=-2/(2Lp), o=(t-2/Vy)/ 1, u=eF/Upe ?, and
do=Lp/L,. Here LD=7%/I~{2 is the characteristic disper-
sion length, Ly=1/a is the characteristic absorption

length, and Uy=(1/7,)\VKy/W is the characteristic Rabi
frequency of the probe field. The tildes above V,, K, and
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W denote their real part. To obtain Eq. (6), we have as-
sumed that the real part of these coefficients is much
larger than their corresponding imaginary part, which is
realistic for the present system, as shown below.

If dy<«1 (i.e.,, Ly>>Lp), the terms on the right-hand
side of Eq. (6) are high-order ones and thus can be ne-
glected within the propagation distance around Lp. In
this case Eq. (6) reduces to the standard nonlinear
Schrodinger (NLS) equation idu/ds+d*u/do?+2u|ul?=0,
which is completely integrable and allows multisoliton
solutions. A single bright soliton solution reads
u=sech oexp(is), or in terms of field

) 1 I~{2 1 z z
Q,=Uei?=— | —sech| —|t-— | |exp| iz —i— |,
70 W 70 V 2LD

g
(7)

which describes a fundamental bright soliton traveling
with velocity Vg.

Now we consider a practical atomic system that can be
realized by a typical alkali atomic (such as 8Rb) vapor at
ultracold low temperature. The parameters can be chosen
as  y1=10%x107s"!, 93=1.0x10*s"!, and y,=1.0
x10%2s7l. We take «y3=1.0x10%cm™'s! (N, =5.4
X100 cm=3), 0,=38.6x107s71, Q03=1.8x107s71, A;=A,
=1.0x10%°s71, A3=1.0x10%8s"!, and A\p=c/v,=0.8
X 10*em. With these parameters we get Ky=(1.67
-i0.03)ecm™, K;=(3.56+i0.15)x107cm™s, K,=(3.77
+i0.21) X 10~ 18 ecm~1 52, and W=(5.90+i0.11)
X 10718 cm~1 s2. We see that the imaginary parts of these
coefficients are indeed much smaller than their corre-
sponding real part. If 7,=1.0x10%s, we obtain Lp
=2.65cm, Ly=32cm, and Uy=2.5x107 571,

Using the above parameters we see that at the distance
of the forming soliton (i.e., Ly =2.65 cm) the absorption of
the probe field can be safely neglected because L4 >>Lp. In
this case the system can be described reasonably by the
standard NLS equation, and hence the probe field Rabi
frequency takes the soliton form (7). With the above pa-

rameters we obtain Vg=9.3 X 1075¢, which means that the
soliton presented above is subluminal and propagates
with an ultraslow velocity.

The input power of the ultraslow optical soliton in the
normal dispersion regimes described by Eq. (7) can be
easily calculated by Poynting’s vector [4]. By a simple
calculation we obtain the average flux of energy over
P=P, . sech?[(t-2/V,)/ ],

carrier-wave period
with  the peak  power  Pp,,=2&cn,Syl €p|?nax

=2&4cn,So(h/[pys] )2K,/(72W). Here n, is the refractive in-
dex and S is the cross-sectional area of the probe field.
Using the above parameters and Sy~ 0.01 cm?, we obtain

P ax=8.3x10"2mW. Thus to produce such an ultraslow
soliton only very low input light intensity is needed. This
sharply contrasts with nonresonant media, such as opti-
cal fibers, where picosecond or femtosecond laser pulses
are required to reach a high peak power for the formation
of a soliton.

We now discuss the stability of the ultraslow optical
soliton by using numerical simulations. In Fig. 2(a), we
have plotted the wave shape of |Q,/U|? as a function of
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(a) The waveshape of |Q;/U,|? as a function of ¢/7, and z/(2Lp) with the parameters given just below Eq. (7). The solution is

numerically obtained from Eq. (6) with full complex coefficients taken into account. The initial condition is given by 4(0,#)/U,
=sech(¢/ 7). (b) The wave shape during a collision between two ultraslow optical solitons. The initial condition is given by Q,(0,¢)/U,

=sech[(¢-3.0)/75]+1.2 sech[1.2(¢t+3.0)/ 7).

t/ 7y and z/(2Lp) with the parameters given below Eq. (7).
The solution is obtained by numerically solving Eq. (6)
with the full complex coefficients included. The space and
time derivatives are performed by using a split-step
Fourier method for superior conservation of energy and
other invariants. The initial condition is given by
04(0,8)Ug=sech(t/7,). We see that the amplitude of the
soliton undergoes only a slight decrease and its width un-
dergoes a slight increase due to the influence of the imagi-
nary part of the coefficients. We have also made a simu-
lation of the interaction between two ultraslow optical
solitons. Assume initially that we have two solitons cre-
ated in the system. As time goes on they collide and then
depart each other. Shown in Fig. 2(b) is the wave shape of
the two solitons during their collision. The initial condi-
tion in the simulation is given by Q4(0,7)/U,
=sech[(¢-3.0)/ 7]+ 1.2 sech[1.2(¢+3.0)/ 7y]. We see that af-
ter the collision the two solitons recover their initial
waveforms.

In conclusion, we have made a detailed study of the
possibility of the formation and propagation of optical
solitons in a resonant, lifetime-broadened A-type atomic
system, in which the two-folded lower levels are coupled
by a coherent laser field. We have shown that the analysis
given in [1] is incorrect. The reason is that the Hamil-
tonian presented by them has a mistake in sign, the
Maxwell-Schrodinger equations describing the dynamics
of probe field and atomic motion derived by them are thus
also incorrect, which results in an incorrect linear disper-
sion relation and hence an incorrect group velocity of the
probe field. We have also shown that if a superluminal op-
tical soliton is generated, it suffers a serious absorption

because it works outside the transparency windows of the
double dark resonance. However, the system can support
an ultraslow optical soliton if working in the normal dis-
persion regimes. The ultraslow optical soliton can propa-
gate stably for a fairly long distance because in this case
the system works inside the transparency windows. In
addition, we have demonstrated that such an ultraslow
optical soliton can be generated by using a very low light
intensity. Because of their robust propagating property,
the ultraslow optical solitons in such a system may have
potential applications in optical information processing
and transmission.
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