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Abstract
An ensemble of excited atoms can synchronize emission of light collectively in a process known as
superradiance when its characteristic size is smaller than the wavelength of emitted photons. The
underlying superradiance depends strongly on electromagnetic (photon) fields surrounding the
atomic ensemble. High mode densities of microwave photons from 300 K blackbody radiation
(BBR) significantly enhance decay rates of Rydberg states to neighbouring states, enabling
superradiance that is not possible with bare vacuum induced spontaneous decay. Here we report
observations of the superradiance of ultracold Rydberg atoms embedded in a bath of
room-temperature photons. The temporal evolution of the Rydberg |nD〉 to |(n + 1)P〉
superradiant decay of Cs atoms (n the principal quantum number) is measured directly in free
space. Theoretical simulations confirm the BBR enhanced superradiance in large Rydberg
ensembles. We demonstrate that the van der Waals interactions between Rydberg atoms change the
superradiant dynamics and modify the scaling of the superradiance. In the presence of static
electric fields, we find that the superradiance becomes slow, potentially due to many-body
interaction induced dephasing. Our study provides insights into many-body dynamics of
interacting atoms coupled to thermal BBR, and might open a route to the design of blackbody
thermometry at microwave frequencies via collective, dissipative photon-atom interactions.

1. Introduction

Superradiance describes cooperative radiation of an ensemble of dense excited atoms, in which atomic
decay is synchronized collectively by vacuum photon fields. Superradiance leads to faster and stronger light
emission than independent radiations. Since predicted by Dicke in 1954 [1], superradiance has been
observed in a variety of systems [2–17]. Superradiance plays important roles in understanding
fundamentally important light–matter interactions and phase transitions [18, 19]. Recently, it has been
shown that superradiance finds applications in realizing quantum metrology [20, 21], laser [22–26], and
atomic clocks [27], etc.

When the surrounding photon field is modified locally by, e.g. cavities, characters of light–matter
interactions change drastically, leading to unconventional phenomena such as the paradigmatic Casimir
[28] and Purcell effects [29, 30]. A thermal bath of blackbody photons can modify the interaction, too. This
causes tiny energy shifts to groundstate atoms, and can be detected by accurate optical clocks [31, 32]. In
electronically high-lying Rydberg states, atoms can strongly interact with blackbody radiation (BBR) [33].
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Figure 1. Rydberg superradiance of caesium atoms. (a) Experimental setup. The coupling laser λc = 510 nm and probe laser
λp = 852 nm counter-propagate through the trap centre. At time t, Rydberg atoms are field ionized and detected at the MCP.
(b) Two-photon Rydberg excitation. The probe light (Rabi frequency Ωp) drives the lower transition |6S1/2, F = 4〉 →
|6P3/2, F′ = 5〉, and is blue detuned 360 MHz from |6P3/2, F′ = 5〉 using a double-pass acousto-optic modulator (AOM). The
control light (Rabi frequency Ωc) couples the transition |6P3/2, F′ = 5〉 → |↑〉 = |nD5/2〉. The |↑〉 state decays to a neighbouring
Rydberg state |↓〉 = |(n + 1)P3/2〉 at decay rate Γ ∼ kHz. (c) Snapshots of ion signals. The first gate (blue) measures populations
in state |↑〉 = |60D5/2〉. The second gate (red) gives populations in state |↓〉 = |61P3/2〉. (d) Evolution of Rydberg atom number
N↓ (N↑). The dynamics is slow when t < 2 μs and accelerated rapidly when t > 2 μs. N↓ (N↑) reaches the maximal (minimal)
value at around t = 5 μs. This time scale is much shorter than the lifetime of Rydberg atoms ∼ms. MOT: magneto-optical trap.
MCP: microchannel plate.

At room temperature T, BBR photons of low-frequency microwave (MW) fields can provide successive
energies to couple different Rydberg states, i.e. kT > �ω (k, �, and ω to be the Boltzmann constant, Planck
constant and transition frequency). Due to high numbers of MW photons per mode in the BBR field [34],
the decay of single Rydberg atoms is orders of magnitude faster than in vacuum. The increase of decay rates
[33, 35] and energy shifts [36] of Rydberg atoms have been measured. The large wavelength (∼mm) of MW
photons moreover permit superradiance of Rydberg atoms. Superradiance of Rydberg atoms driven by
vacuum fields has been reported [6]. However, Rydberg superradiance induced by thermal BBR has only
been observed in the presence of cavities [37].

In this work, we report the observation of the superradiance of high-lying Rydberg |nD5/2〉 states of
caesium atoms in a magneto-optical trap (MOT), triggered by room-temperature BBR. Superradiance of
the Rydberg atom ensembles is induced by thermal MW photons of wavelength ∼mm, which is much larger
than spatial extensions ∼μm of the atomic gases [1]. We measure the superradiant decay in selective
|nD5/2〉 → |(n + 1)P3/2〉 transition, and scaling with respect to atom numbers and Rydberg states. We
identify that the superradiant decay is strongly influenced by van der Waals (vdW) interactions of Rydberg
atoms, confirmed by careful theoretical analysis and large-scale numerical simulations. Our study opens a
window to experimentally explore the superradiant dynamics of interacting many-body systems coupled to
thermal BBR, and enable to develop blackbody thermometry at MW frequencies through collective
photon-Rydberg atom interactions.

The remainder of the article is arranged as follows. In section 2, the experiment setup is described and
the fast Rydberg decay between |nD〉 and |(n + 1)P〉 transitions observed in the experiment is presented. In
section 3, the lifetime of the Rydberg states is estimated and the superradiance dependence on the MW
wavelength, atomic number, and BBR temperature is discussed theoretically. In section 4, a master equation
model including vdW interactions between Rydberg atoms is introduced and the mean field simulation on
the master equation is carried out, with the theoretical result compared with the experimental one. In
section 5, the scaling of the Rydberg superradiance is calculated, and the dependence of the superradiance
on the particle number, Rydberg states, and BBR temperature are provided both experimentally and
theoretically. In section 6, a preliminary experimental result on the superradiance dynamics in the presence
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Figure 2. Properties of caesium atoms. (a) Energy levels ωnl of caesium atoms. The principal quantum numbers are n = 60, and
61. State |60D5/2〉 and |61P3/2〉 are energetically close. (b) The |60D〉 → |nP〉 transition frequency ωnP

60D, the lowest transition
frequency ω61P

60D 	 2π × 3.2 GHz. Note that one specific case is shown. In general, the superradiant transition from |nD5/2〉 to
|(n + 1)P3/2〉 holds for all Rydberg level n. (c) The decay rate from |nD〉 state to |(n + 1)P3/2〉 for different temperature T (with
n = 60, 63 and 70). At room temperature, the decay rate is significantly increased.

of MW and static electric fields is given, which manifests the signature of dipole–dipole interactions
between atoms. Lastly, section 7 contains a summary of the research results obtained in this work.

2. Experiment

In our experiment, up to 107 caesium atoms are laser cooled to 100 μK and trapped in a spherical (diameter
≈ 550 μm) MOT (see figure 1(a)). Starting from the groundstate |6S1/2, F = 4〉, Rydberg |↑〉 = |nD5/2〉
state is excited through intermediate state |6P3/2, F′= 5〉. The level scheme is depicted in figure 1(b). Both
the probe and control lasers are linearly polarized and counter propagating through the MOT centre (with
corresponding waists 80 μm and 40 μm) forming a cylindrical excitation region.

In each experiment cycle, atoms are excited to the Rydberg state (n � 60) in 6 μs (after turning off the
trap laser). Due to blockade by the vdW interaction (blockade radius Rb), number Ne of Rydberg atoms is
varied between 103 to 104 by changing the laser power. After switching off the excitation laser, Rydberg
atoms are allowed to evolve for a duration t, and then ionized by a state-dependent electric field. The ions
are detected by a microchannel plate (MCP) detector with efficiency about 10%. The detail of our
experiment can be found in appendix A.

The state-selective ionization and detection method shows that Rydberg state |nD5/2〉 decays
immediately to the energetically closest |(n + 1)P3/2〉 state (see example of atomic levels in figure 2(a)). In
figure 1(c), snapshots of ion signals are shown for state |60D5/2〉. Increasing time t, the population transfers
to |61P3/2〉 state rapidly where the peak is drifted towards a later time. The population of |61P3/2〉 state is
obtained in the red gate region. The tail in this gate when t = 0 indicates that the decay occurs slightly also
during the Rydberg excitation.

The population dynamics of the system displays qualitatively different behaviours at later time. As
shown in figure 1(d), populations change slowly when t < 2 μs. During 2 μs < t < 4 μs, a large portion of
the population is transferred to state |61P3/2〉 rapidly. The population in state |61P3/2〉 reaches maximal at
t ≈ 5 μs, and then decays to other states when t > 5 μs. Due to the low temperature of the atomic gas, the
thermal dephasing rate is relatively low ∼2 MHz, which is much smaller than the threshold to trigger
amplified spontaneous emission (about 200 MHz for typical experimental parameters) [38]. Therefore such
fast decay, much shorter than the lifetime 2.6 ms in the underlying transition at room temperature, is
rooted from superradiance of the Rydberg ensemble interacting with BBR photons. For convenience,
quantum number J = 5/2 and J ′= 3/2 will be omitted in the notation from now on.
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Figure 3. Calculating results of the superradiance parameters. (a) BBR photon number n̄ω(T) in |60D〉 → |nP〉 transition at
T = 300 K. The maximal value of n̄ω(T) is found in the transition |60D〉 → |61P〉. (b) Decay rate of |60D〉 → |nP〉 transition at
T = 0 (blue) and T = 300 K (orange). As Γn′ l′

nl (0) ∝ (ωn′ l′
nl )3, the rate becomes larger when decaying to lower states at T = 0. At

T = 300 K, BBR enhances decay rates corresponding to MW transitions. (c) Transition wavelength for different
|nD5/2〉 → |(n + a)P3/2〉 transition (a = 1, 2, 3). The |nD5/2〉 → |(n + 1)P3/2〉 transition gives the largest wavelength (tens of
mm), far larger than the spatial dimension of the trap, enabling superradiant decay. (d) Superradiance threshold parameter at
T = 300 K. Parameter Cn′ l′

nl in the |nD〉 → |(n + 1)P〉 transitions is orders of magnitude larger than other transitions, due to large
wavelengths and high mode densities of the MW photons.

Figure 4. Population evolution. (a1)–(a4) Net changes of the |61P〉 population. Experimental data (dot) and master equation
simulation (solid) agree well. The green dash-dotted curve corresponds to fitting the experimental data. The blue dashed curve is
the analytical equation (6). The ratio Nt/Ne ≈ 0.35 is largely independent of data sets. (b1)–(b4) Net changes of the |64P〉
population. The ratio Nt/Ne ≈ 0.28 for different data sets. (c1)–(c3) Net changes of the |71P〉 population, and the ratio
Nt/Ne ≈ 0.32 for different data sets. (c4) The ratio Nt/Ne for different principal quantum number n. The ratio stays a constant
when varying Ne at a given n, showing consistency of the experiment and simulation [27].

3. BBR enhanced Rydberg superradiance

Decay of Rydberg atoms is affected by BBR and such effect has been experimentally observed. For example,
the recent experiment has found that lifetimes in Rydberg nS state are determined by 300 K BBR [40]. To
identify the lifetime between Rydberg levels, the decay rate of spontaneous transition between nJ and n′J′
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states can be calculated by [35, 41, 42],

Γn′J′
nJ =

ωn′J′
nJ

3

2πε0�mec3

2J + 1

2J ′ + 1
|〈nJ|er|n′J ′〉|2, (1)

where me is the electron mass, ωn′J′
nJ = |EnJ − En′J′ | is the transition frequency, with EnJ and En′J′ being

energies of nJ and n′J′ states, respectively. Energies EnL = −1/(2n2
eff) (in atomic units) of the Rydberg states

are expressed through the effective quantum number neff = n − μJ, where μJ is a quantum defect of
Rydberg nJ-state, which can be found in reference [43].

The lifetime of a Rydberg state depends on background BBR temperature. Taking into account of
photon number per mode at temperature T, the decay rate becomes, Γn′J′

nJ (T) = Γn′J′
nJ n̄ω(T), where the

thermal factor n̄ω(T) = 1/[exp(�ωn′J′
nJ /kBT) − 1] gives Bose–Einstein statistics of photon numbers at

temperature T. The total decay rate is ΓnJ(T) =
∑

n′J′Γ
n′J′
nJ (T) [41, 44]. For MW transitions, the photon

energy is far smaller than the thermal energy, i.e. �ωnn′ 
 kBT, such that the thermal factor is far larger
than 1.

As an example, we show that the transition frequency between |60D〉 and |61P〉 state in figure 2(a). The
transition frequency ω61P

60D ≈ 2π × 3.2 GHz is far smaller than other transition energy (highlighted with a
box). Though MW photons of various frequencies can be emitted with higher rates, superradiance on the
other hand enhances emission rates of selected transitions, depending on MW wavelengths λn′ l′

nl .
Wavelengths of the MW photon corresponding to |60D〉 → |61P〉 is about 92.93 mm � d = 550 μm (the
size of the atomic sample) or wavelengths of other MW photons. We also plot the decay rate Γ from |nD〉
state to |(n + 1)P3/2〉 as functions of temperature T in figure 2(c). Here Γ almost linearly increase with T.
Clearly at room temperature, the decay rate is greatly enhanced by n̄ω(T) � 1. Superradiance in the
|nD〉 → |(n + 1)P〉 transition is much stronger than one of the |nS〉 → |nP〉 transition [6], due to the low
frequency MW transition.

In the experiment, frequency ω61P
60D ≈ 2π × 3.2 GHz in |60D〉 → |61P〉 transition, far smaller than

kBT/� = 2π × 6248 GHz when T = 300 K. The corresponding photon number approaches 2000
(figure 3(a)), which amplifies the underlying decay rate by three orders of magnitude (figure 3(b)). Very
importantly, superradiance is triggered in this transition, as the wavelength of the MW photons is
92.93 mm (figure 3(c)), much larger than the dimension of the gas. The strength of superradiance is
characterized by a threshold parameter C n′l′

nl = Γn′l′
nl (T)Gn′l′

nl /Γnl(T), where Gn′ l′
nl = 3(λn′l′

nl )2/8πd2 is a form
factor and λn′l′

nl is the wavelength of underlying transition [2]. The larger the parameter Cn′l′
nl is, the stronger

superradiance takes place. As shown in figure 3(d), the threshold parameter (∼105) corresponding to the
|60D〉 → |61P〉 transition is several orders of magnitude larger than that of other transitions [6].

The resulting strong superradiance exhibits sensitive dependence on numbers of the Rydberg atoms. In
figures 4(a)–(c), net changes of the |61P〉 population, i.e. growth of the Rydberg atom number Ne when
t � 0, are shown. A generic feature is that populations increase rapidly and arrive at maximal values, after a
slow varying stage. Increasing Ne, the population dynamics become faster such that it takes less time to
reach the maxima.

4. Master equation simulation

We now model the superradiant dynamics using a many-body master equation. First we note that there
were many discussions on the role played by dipole–dipole interactions during the superradiant decay. For
example, it has been shown that dipole–dipole interactions between Rydberg atoms can slow down or even
destroy superradiance [45, 51], because the dipole–dipole interaction is enormous in the Dicke limit
(d 
 λ(n+1)P

nD ). On the other hand, other theories have shown that the dipole–dipole interaction will not
reduce the collective decay rate in a large system [38, 39], while the presence of the dipole–dipole
interaction simply broadens the spectra. In our experiment, it seems that the dipole–dipole interaction
plays a negligible role, as the superradiant decay has not been affected. Therefore here we argue that the
dipole–dipole interaction could be neglected, due to the angular average of the dipolar interactions vanishes
in such large ensemble. We will discuss this in the following section.

For vanishing dipole–dipole interaction and focussing on the superradiant decay between the two
Rydberg states, dynamics of the system can be modelled by the quantum master equation for the
many-atom density operator ρ:

∂ρ

∂t
= −i[H, ρ] + D(ρ), (2)
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under a two-level approximation. The Hamiltonian in the equation is given by

H =

Nt∑
k �=j

�

[
1

2
VD(rjk)n̂j

↑↑n̂k
↑↑ +

1

2
VP(rjk)n̂j

↓↓n̂k
↓↓

]
. (3)

where n̂j
↑↑ = Î/2 − Ŝj

z and n̂j
↓↓ = Î/2 + Ŝj

z (̂I is identity operator) are atomic number operators respectively

at the upper state |↑〉 and the lower state |↓〉, VD(P) = CD(P)
6 /|rj − rk|6 is the vdW potential with the

dispersive coefficient CD(P)
6 ∝ n11. Note that influences of the vdW interaction on superradiance have not

been explored so far, though effects due to dipole–dipole interactions have been extensively investigated.
In equation (2) the radiative decay from the upper state |↑〉 to the lower state |↓〉 is described by

collective dissipation of Lindblad form [46]

D(ρ) =
Nt∑

j,k=1

�Γ

(
Ŝj
−ρŜk

+ − 1

2
{Ŝk

+Ŝj
−, ρ}

)
. (4)

where Γ = Γ(n+1)P
nD (T) is the decay rate, whose spatial dependence can be neglected as averaging spacing

between Rydberg atoms is much smaller than λ(n+1)P
nD . In both (3) and (4), Sj = (Ŝ j

x , Ŝ j
y , Ŝ j

z ) are the Pauli
matrix of the jth atom, and Ŝk

± = Ŝk
x ± iŜk

y are the raising (+) and lowering (−) operator.
For small systems (i.e. a few tens of atoms), the quantum master equation can be solved by direct

diagonalization. However, the number of Rydberg excitation is large (i.e. 103 ∼ 104) in experiment. To
efficiently simulate a large system (total particle number Nt � 1), one can apply the method of the discrete
truncated Wigner approximation (DTWA), which is a phase space method by which the density-operator
equation can be replaced by its mean-value equation with the quantum fluctuations of the system involved
in random initial states [47, 48].

Based on the idea of the DTWA, we define mean values sk = 〈Sk〉 for our system. Then we obtain the
equations of motion of sk associated with the master equation (2), with the form

∂sk
x

∂t
= −sk

z

N∑
j=1

Γjksj
x − sk

y

N∑
j=1,j�=k

V11

2
(0.5 + sj

z) + sk
y

N∑
j=1,j�=k

V22

2
(0.5 − sj

z), (5a)

∂sk
y

∂t
= −sk

z

N∑
j=1

Γjksj
y + sk

x

N∑
j=1,j�=k

V11

2
(0.5 + sj

z) − sk
x

N∑
j=1,j�=k

V22

2
(0.5 − sj

z), (5b)

∂sk
z

∂t
=

N∑
j=1

Γjk(sj
xsk

x + sj
ysk

y), (5c)

In the DTWA method, we describe the initial state by a Wigner probability distribution,
pk
μ,aμ (μ = x, y, z; the subscript aμ denotes the index of each trajectory, k denotes the position of Rydberg

atom) for certain discrete configurations of Bloch vector elements, sk
μ = 〈Ŝk

μ〉. Consider the eigen-expansion

of the spin operators, Ŝμk =
∑

aμ
ηk
μ,aμ |η

k
μ,aμ〉〈η

k
μ,aμ |, where ηk

μ,aμ and |ηk
μ,aμ〉 denote the eigenvalues and

eigen-vectors, respectively. Then, we select the ‘ath’ eigenvalue, λk
μ(t = 0) = ηk

μ,aμ/2, with probability

pk
μ,aμ = Tr[ρ̂k

0|ηk
μ,aμ〉〈η

k
μ,aμ |]. Specifically, all the atoms initially populate in the upper state |↑〉, with initial

density matrix ρ̂k
0 = |↑〉〈↑|, which leads to fixed classical spin component along z, σk

z = −1/2, and
fluctuating spin components in the orthogonal directions σk

x(y) ∈ {−1/2, 1/2}, each with 50% probability.
Mean values of observable (i.e. the Rydberg population) are calculated by averaging over many trajectories.
In the simulation, we consider an ensemble of Rydberg atoms separated by the blockade radius Rb and with
an Gaussian distribution in space. Typically we run �104 trajectories to obtain mean values through the
ensemble average, which guarantee the convergence of DTWA results. A generalized truncated Wigner
approximation (GDTWA) method is give in the appendix B for spin-3/2 atoms when simulating dynamics
involving all four levels [49].

5. Scaling of Rydberg superradiance

Without vdW interactions, the master equation can be solved analytically, yielding the solution to N↓ [50],

N↓ =
Nt

2
+

Nt

2
tanh

[
Γ(Nt + 1)

2
(t − td)

]
, (6)
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Figure 5. Scaling of the Rydberg superradiance. (a) Collective decay Γc obtained from fitting the experiment (labels) and
numerical simulations (solid). Γc is proportional to (Ne)α. Here α are 2.24 (red), 2.96 (blue), and 4.07 (green) for n = 60, 63,
and 70, respectively. In interaction-free case, α = 1. (b) Normalized photon emission rate R(t) for different Ne. The peak height
becomes lower and delay time increases for smaller Ne. (c) Maximal rate Rmax. We find Rmax ∝ (Ne)β , where β are 3.14 (red), 3.56
(blue), and 3.62 (green) for n = 60, 63, and 70, respectively. Dashed lines represent the interaction-free case β = 2 for n = 60
(red), 63 (blue), and 70 (green). (d) Maximal rate Rmax as a function of BBR temperature T. Here Rmax ∝ T ξ , where
ξ = 2.57, 3.01, 3.12 for n = 60, 63, and 70. In the simulation, particle number is Nt = 10 000.

where td = In(Nt)/[Γ(Nt + 1)] is the delay time, and the collective decay rate ∝NtΓ. The analytical
solution N↓ predicts faster superradiant transition (dashed curves in figures 4(a1)–(a4)).

By taking into account of the vdW interaction, our numerical simulation agrees nicely with the
experimental data (figures 4(a1)–(a4)). The slower superradiance can be understood that the vdW
interaction mixes superradiant and other states. As the latter typically decay slower, such dephasing
therefore increases the superradiant decay time. The number Nt of Rydberg atoms used in the simulation is
about 35% of the experimental value Ne. This difference could attribute to the fact that only some of the
Rydberg atoms in the trap are in superradiant states, as we observe atoms remain in the initial state even
when t > 5 μs (figure 1(d)).

We have also plotted dynamical evolution of N↓ for state |63P〉 and |71P〉 in the figures 4(b1)–(b4) and
(c1)–(c3). DTWA simulations capture our experimental data very well. In figure 4(c4), one sees that the
number Nt of Rydberg atoms used in the simulation is about 25%–35% of the experimental value Ne for all
Rydberg states (n = 60, n = 63, and n = 70). The ratio fluctuates around a constant when increasing Ne for
a given Rydberg state, which indicates that the experiment and corresponding simulation are consistent.
The finite detection efficiency of the MCP might affect values of Ne, and hence the ratio Nt/Ne. The time
scale, however, is not affected by the detection efficiency, as the ion signal is linearly proportional to Ne.

Drastically, the vdW interaction alters scaling of superradiance with respect to Ne and principal
quantum numbers. First, the collective decay rate Γc changes nonlinearly with Ne, which is confirmed by
the numerical simulation, shown in figure 5(a). In contrast to the interaction-free case (see equation (6)),
the rate Γc ∝ (Ne)α, where α increases from 2.24 (n = 60), to 2.96 (n = 63) and 4.07 (n = 70). Due to
stronger vdW interactions (∝n11) and smaller decay rate (∝n−3), the collective rate decreases in
higher-lying states.

Next, we study the emission rate of MW photons, given by r(t) = Ṅ↓. Without vdW interactions, the
emission rate can be derived from equation (6),

r(t) =
ΓN2

t

4
sech2

[
Γ(Nt + 1)

2
(t − td)]

]
, (7)

which has the maximal emission rate rm = ΓN2
t /4 at t = td, i.e. proportional to Nt quadratically.

The emission rate is obtained by fitting the experimental data (green dash-dotted curves in
figures 4(a1)–(a4)). In figure 5(b) normalized rate R(t) = 4r(t)/ΓN2

r is shown, where Nr is the largest Ne
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Figure 6. Superradiance with and without MW fields. (a) The MW field is applied during the superradiant decay. (b) Population
of state |60D5/2〉 and |61P3/2〉 at t = 2 μs (corresponding to figure 1(c)). (c) The population difference with and without MW
fields. One sees that the population in state |60D5/2〉 decreases, and population in state |61P3/2〉 increases due to the MW field
coupling. The MW field modulate the population dynamics dramatically (b). The number of Rydberg atoms is about 26 300.

among experiments for a Rydberg state |nD〉. For example, Nr = 28 300 for state |60D〉 (see figures 4(a) and
5(a)). Profiles of R(t) exhibit a single peak whose location varies with Ne. The maximal value Rmax is 1 when
N = Nr and t = td, and smaller than 1 when Ne < Nr (figure 5(b)).

In figure 5(c), Rmax as a function of Ne is shown. Both the experimental data and simulation show
Rmax ∝ Nβ

e . Due to strong vdW interactions, the power β increases from 3.14 (n = 60), to 3.56 (n = 63)
and 3.62 (n = 70). When fitting the experimental and simulation data, we have tried other forms of the
fitting equation, such as the combination of linear and quadratic equation, which cannot fit the data. The
higher power here might be caused by the nonlinear interaction, which can be examined by employing
lower Rydberg states. Note that the overall rate is slower than the inter-free case even though the power is
larger. Moreover, the peak rate Rmax depends also on the BBR temperature. Our numerical simulations
show Rmax ∝ T ξ, where ξ = 2.57, 3.01, 3.12 for n = 60, 63 and 70, respectively (figure 5(d)). Such
dependence might enable a way to measure BBR temperatures.

6. Superradiant dynamics with MW and static electric fields

To further identify electric field effects on the Rydberg transitions, we applied a microwave electric (MW)
field with frequency 3.21 573 GHz resonantly interacting with the |60D5/2〉 → |61P3/2〉 transition, as shown
in figure 6(a). In the presence of the MW field, the TOF signals are changed apparently, i.e. more Rydberg
atoms are transferred to the |61P〉 state, see figure 6(b). It can be seen that the TOF signals in the presence
of the MW field appear at the same position as the one without applying the MW field, indicating that the
signal is indeed due to the |60D5/2〉 → |61P3/2〉 decay. This change of populations is a result of the interplay
between the MW field and superradiant decay. To highlight the effect of the MW coupling, we show the
population difference, i.e. subtracting the ion signal when the MW field is off (bottom) from the one (top)
with the MW field. As shown in figure 6(c), the population in state |60D〉 reduces (blue gate), and
population in state |61P〉 states increases (red gate), due to the MW coupling. The profile demonstrates that
the superradiant decay takes place between these two states. Another feature in the presence of the MW field
is that the delay time of the TOF signal is slightly increased, possibly due to the interplay between the
dipolar interactions and superradiance.
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Figure 7. Dipole–dipole interactions. (a) A static electric field is applied immediately after preparing the initial states, which
aligns the dipoles, leading to non-negligible dipole–dipole interactions. (b) Population in state |60D5/2〉. Superradiant dynamics
slows down when the dipole–dipole interaction is present. The stronger the electric field, the slower the decay of the population.
The number of Rydberg atoms is same for different E field. (c) Population in state |61P3/2〉. Due to the dipole–dipole interaction,
the population in state |61P3/2〉 grows slower when the electric field is stronger.

On the other hand, it is known that dipole–dipole interactions will depend on angle θjk between the
dipole and molecule axis that connects the j and kth Rydberg atoms, i.e. Ve

jk ∝ C3[1 − 3 cos2(θjk)]/R3
jk.

However without external fields, there are a large number of Rydberg atoms, such that the net interaction
for any Rydberg atoms vanishes, i.e.

∑
kVjk ∝

∫ π

0 (1 − 3 cos2 θ) sin θ dθ = 0, where we have replaced the
sum by a continuous integral in the estimation.

To check this, we have carried out additional experiments by applying a static electric field to the
sample. See the timing and results in figure 7. The electric field will align the dipoles along the direction of
the field. In this case, a net dipole–dipole interaction will be induced. The presence of dipole–dipole
interactions will slow down the superradiance due to many-body dephasing [50]. In our experiment, we
indeed find that speed of the superradiant decay is reduced when the electric field is strong, see figures 7(b)
and (c), where stronger electric fields give stronger dipole–dipole interactions, and hence cause slower
superradiant decay [50, 51]. This becomes apparent in the decay dynamics in the nD state. The
accumulation of populations in the (n + 1)P state will depend on the strength of the electric field. When the
field is weak, slower dynamics can also be found. When the electric field is strong, not only the dynamics
becomes slow, but the electric field can couple other Rydberg states, such that the total population in the
(n + 1)P state reduces.

7. Conclusion and discussion

We have observed the superradiant decay of the |nD〉 → |(n + 1)P〉 transition in an ensemble of
laser-cooled caesium Rydberg atoms in free space. The superradiance is found to be enhanced by finite
temperature BBR due to high number densities of MW photons, confirmed by many-body simulations. The
vdW interaction drastically modifies superradiance, leading to state dependent scaling. Our system offers a
controllable platform to investigate the interplay between strong collective dissipation and two-body
Rydberg interactions. Beyond fundamental interests, our study might be useful in developing BBR
thermometry in the MW domain whose sensitivities can be improved by collective light-atom interactions,
with applications to improve accuracy of atomic clocks [52–55].

Moreover, our study touches some open questions in the study of superradiance, i.e. the existence of
superradiance in Rydberg gases [58], and roles played by the dipole–dipole interactions. Focussing on the
dipole–dipole interactions, numerical simulations based on finite systems (tens to a few hundred atoms)
show that it will slow down the superradiance [51]. The dipole–dipole interaction seems not present in our
experiment. Compared to reference [51], the difference is that the number of atoms participating
superradiance is tens of thousands in our experiment. For larger number of atoms, it has been shown
theoretically [38, 39] that the dipole–dipole interaction will not reduce the superradiant decay rate, but
induce broader spectra. To explore the role of the dipole–dipole interaction, one requirement might be to
control the dipole–dipole interaction in the experiment. One may achieve this by applying external electric
fields to induce the dipole–dipole interaction, readily available in our experiment. This allows us to
understand how superradiance is affected, by tuning the strength, and even turning on and off, the dipolar
interaction.
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Appendix A. Preparation and detection of Rydberg atoms in the experiment

Our experiment is performed in a standard caesium MOT. The atomic cloud has a diameter ∼550 μm and
temperature ∼100 μK. After switching off the MOT beams, we apply a two-photon excitation lasers of 6 μs
pulse to pump the groundstate atoms to Rydberg state |nD5/2〉. The state preparation process is described as
follows: the probe laser (852 nm laser, Toptica DLpro) drives ground |6S1/2, F = 4〉 → |6P3/2, F′= 5〉
transition and the coupling laser (510 nm laser, Toptica TA-SHG110) couples the |6P3/2, F′ = 5〉 → |nD5/2〉
transition. The laser frequencies are stabilized using a super stable optical cavity with 1.5 GHz FSR and
15 000 fineness and the 852 nm laser is blue shifted 360 MHz from the intermediate level |6P3/2, F′ = 5〉
using a double-pass AOM. The 852 and 510 nm beams, with respective waist of 80 μm and 40 μm, are
overlapped at the MOT centre in a counter propagating geometry yielding a cylindrical excitation region.
Typical Rabi frequencies of the two lasers are Ωp = 2π × 132.05 MHz and Ωc = 2π × 6.91 MHz. The
excitation region is surrounded by three pairs of field-compensation electrodes, which allow us to reduce
stray electric fields via Stark spectroscopy, corresponding stray field less than 30 mV cm−1.

To experimentally measure Rydberg population, we use a ramping electric field to ionize the Rydberg
atoms. In the experiments, the electric field is linearly increased to 256 V cm−1 in 3 μs, unless stated
elsewhere explicitly. This field is much larger than the ionization threshold. Resultant ions are detected with
a micro-channel plate (MCP) detector with a detection efficiency ∼10%. The detected ion signals are
amplified with an amplifier and analysed with a boxcar integrator (SR250) and then recorded with a
computer.

Before measuring Rydberg atoms, we first calibrate the MCP ions detection system with two shadow
images taken before and after the laser excitation. From the difference of two shadow images, we obtain the
number of Rydberg excitation, Ne, and therefore the gain factor, G, of the MCP ions detection system. The
gain factor is defined as,

G =
Vsignal · tgate · Ssensitivity

Ne
, (A.1)

where Vsignal is the intensity of the measured ion signal, tgate is the boxcar gate width, and Ssensitivity is the
boxcar setting sensitivity, respectively. The shadow image is usually used to detect the number of MOT
atoms. From the difference of two shadow images taken before and after the Rydberg excitation, we can
extract the number of Rydberg excitation, which is compared to the ionization signal of Rydberg atoms,
Vsignal. Using equation (A.1), we obtain the gain factor, shown in figure A1. For different Rydberg excitation
power and pulse duration, the averaged gain factor is G = 0.011 ± 0.004. Considering the detection
efficiency (10%), the effective gain factor of the MCP detection system is Geff = 0.11 ± 0.04 in our
experiment, which is used throughout the experiment to determine the number of Rydberg atoms.

To verify our experimental signals is the field ionization of Rydberg atoms instead of the free ion signal,
we have made experimental tests, with the result illustrated in figure A2.

It is seen that the Rydberg population can be detected when the ionization field is larger than the
ionization threshold of respective Rydberg states. When the electric field is lower than the threshold field,
ion signals vanish (except fluctuations coming from background noise). This makes sure that the signal we
measured is due to decay of Rydberg states, i.e. excluding auto-ionization of Rydberg atoms [56, 57].
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Figure A1. Measured G coefficient versus the power of coupling laser P510. Three fixed excitation pulses 2 μs (green square), 4 μs
(red cross) and 8 μs (blue circle) are shown, respectively. The averaged value is shown as the dashed line.

Figure A2. Time of flight spectroscopy of field ionization of Rydberg atoms. The black line represents for Eion < Ethres =
52.2 V cm−1, and the red line represents for Eion > Ethres. When the ionization field is low, Rydberg ion signals are negligible,
indicating that auto-ionization of Rydberg atoms is not present in the experiment. The Rydberg atoms are ionized only when
Eion > Ethres. Specially, when the ionization field Eion = 256 V cm−1 (blue line), Rydberg ion signal becomes strong. Here we
consider the Rydberg state |↑〉 = |60D5/2〉.

Figure A3. Angular dependent dispersion coefficient ˜C6(θ) in states |60D5/2〉 and |61P3/2〉. Other Rydberg states have similar
shape. Mean value C6 is used in the numerical simulations.

Appendix B. Many-body dynamics based on the four-level model

In this work, we have focussed on superradiant dynamics that take place when the excitation laser is turned
off. By focussing on the superradiant decay, we have shown that superradiant dynamics can be effectively
approximated by a two-level model, involving only states |nD5/2〉 = |↑〉, |nP3/2〉 = |↓〉. Dispersion

coefficient C̃6(θ) are angular dependent in general for both |nD5/2〉 and |(n + 1)P3/2〉 states, as shown in

figure A3. In the numerical simulation, we have used mean value C6 = 1/π ×
∫ π

0 C̃6(θ)dθ, which allows us
to reproduce experimental data well. With the mean dispersion coefficient C6, we define blockade radius
Rb = (C6/Ω)1/6 with Ω = ΩpΩc/(2Δ).
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The two-photon excitation is used to pump the groundstate atoms to the initial state |nD5/2〉 in the
experiment. In the experiment, four states (two lower and two Rydberg states) are involved. Here, we denote
|1〉 = |6S〉, |2〉 = |6P〉, |3〉 = |nD〉, and |4〉 = |(n + 1)P〉. The system can be described by the Hamiltonian
Ĥ = Ĥa + Ĥint in the interaction picture and rotating-wave approximation (� = 1),

Ĥa =
N∑

j=1

[
−Δ2σ̂

j
22 +Ωpσ̂

j
21(r, t) +Ωcσ̂

j
32(r, t) + h.c.

]
, (2.1a)

Ĥint =

N∑
j=1

N∑
k �=j

[
1

2
V33

jk σ̂
j
33σ̂

k
33 +

1

2
V44

jk σ̂
j
44σ̂

k
44

]
, (2.1b)

where σ̂
j
αβ = |α〉〈β|j (α,β = 1, 2, 3, 4) is the transition operator of the jth atom. The dissipation effect is

described by the Lindblad operator D1(ρ) and D2(ρ),

D1(ρ) =
∑

j,k

Γjk

(
σ̂

j
43ρσ̂

k
34 −

1

2
{σ̂k

34σ̂
j
43, ρ}

)
, (2.2a)

D2(ρ) =
N∑

j=1

Γ12

(
σ̂

j
12ρσ̂

j
21 −

1

2
{σ̂j

22, ρ}
)
+ Γ23

(
σ̂

j
23ρσ̂

j
32 −

1

2
{σ̂j

33, ρ}
)

, (2.2b)

where D1 denotes the collective radiation between the Rydberg states and D2 describes the single-body
decay between state |2〉(|3〉) to state |1〉(|4〉) with rate Γ12 (Γ34).

For a few particles, the master equation can be solved numerically. To capture the build up of
superradiant emission in a large ensemble, we employ a generalized discrete truncated Wigner
approximation (GDTWA) based on a Monte Carlo sampling in phase space, where GDTWA method can
effectively capture complex quantum dynamics in high spin systems [49]. The generic density matrix for a
discrete system with D states takes the form ρ̂i =

∑D
α=1,β=1cαβ|α〉〈β|. For D = 4 (equivalent to a spin-3/2

atom), the states |α〉 with α = 1, 2, 3, 4 associates to the spin states ms = −3/2,−1/2, 1/2, 3/2 of the
spin-3/2 atom. Since (ρ̂i)† = ρ̂i and Tr(ρ̂i) = 1 and total (D2 − 1) real numbers are needed to describe an
arbitrary state, which can be expressed as average values of (D2 − 1) orthogonal observable:

Λ̂[i],R
α,β<α = (|β〉〈α| + |α〉〈β|), 1 � α � D, 1 � β � D − 1

Λ̂[i],I
α,β<α = −i(|β〉〈α| − |α〉〈β|), 1 � α � D, 1 � β � D − 1

Λ̂[i],D
α =

√
2

α(α+ 1)

⎛
⎝ α∑

β=1

|β〉〈β| − α|α+ 1〉〈α+ 1|

⎞
⎠ , 1 � α � D − 1,

(2.3)

where Λ̂
[i],R/I
α,β<α correspond to the real (‘R’) and imaginary (‘I’) parts of the off-diagonal parts of cαβ and

Λ̂[i],D
α to linear combinations of the real diagonal elements cαα. Note that for D = 2, the matrices are

standard Pauli matrices for spin 1/2 system (see the DTWA method in main text). For D > 2, the matrices
reduce to a generalized Gell–Mann matrices (GGMs) and corresponds to SU(D) group for spin-(D − 1)/2
system.

In the GDTWA method, we describe the initial state by a probability ‘Wigner’ distribution, p[i]
μ,aμ with aμ

denoting the index of each trajectory [49]. The discrete set of initial configurations, {λ[i]
μ }, can be

interpreted by a ‘projective measurement of the GGM’: for each λ[i]
μ , we choose a set of initial

configurations given by the eigenvalues of each GGM. Consider the eigen-expansion of the GGMs,

Λ̂[i]
μ =

∑
aμ

η[i]
μ,aμ |η

[i]
μ,aμ〉〈η

[i]
μ,aμ |, (2.4)

where η[i]
μ,aμ and |η[i]

μ,aμ〉 denote the eigenvalues and eigenvectors, respectively. Then, we select the initial

condition λ[i]
μ (t = 0) = η[i]

μ,aμ/2, with probability p[i]
μ,aμ = Tr[ρ̂[i]

0 |η[i]
μ,aμ〉〈η

[i]
μ,aμ |]. Specifically, for the initial
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Figure B1. GDTWA simulation of the four-level model. (a) Time evolution of atomic populations of levels |1〉, |2〉, |3〉 and |4〉.
All atoms initially populate at the groundstate ΠN

j=1|1j〉, and the probe and control fields are switched off at t = 6 μs. Before the
excitation laser is turned off, the population in state |4〉 is very small (inset). After the laser is turned off, a fast population
transfer from state |3〉 to state |4〉 is found. (b) The time evolution of the real and imaginary part of coherence ρ34 between
Rydberg states for one trajectory. Im(ρ34) has a sech form due to superradiance.

state

ρ̂[i]
0 = |1〉〈1| =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

which leads to fixed diagonal Bloch vector element λ[i],D
1 = 1/2, λ[i],D

2 = 1/
√

12, λ[i],D
2 = 1/

√
24, fixed

off-diagonal elements λ[i],D
α>β,β>1 = 0 and fluctuating off-diagonal elements λ[i],D

α=1,2,3,4,β=1 ∈ {−1/2, 1/2},
each with 50% probability.

To show dynamics starting from the laser excitation, we have made simulations with the following
parameters: Γ = 389.9 Hz (n = 60), the number for groundstate atom N = 6000, Γ12 = 2π × 5.2 MHz,
Ωp = 2π × 132.05 MHz, Ωc = 2π × 6.91 MHz, and Δ = 360 MHz. Here N is the number of groundstate
atoms (not the number of Rydberg state atoms). Here superradiance takes place on a much longer time
scale, as the number of atoms can be excited to Rydberg states is small. To mimic the experiment, we have
increased the single-body decay rate by a factor of 3, in order to illustrate the |3〉 → |4〉 decay. As shown in
figure B1(a), about 22% atoms are excited to state |3〉 during the laser excitation. In the mean time state |4〉
is populated weakly, which is seen in the experiment. Once the laser is turned off, superradiance is
triggered. We see rapid population transfer |3〉 → |4〉 when t > 6 μs. When looking at the coherence ρ34, we
find that its profile shows a hyperbolic function form, due to the emergence of superradiance.

It is not possible for us to simulate system sizes close to the experiment with the four-level model, even
using the GDTWA. In typical experiments hundreds of thousand atoms interact with laser fields. Among
them, tens of thousand atoms are excited to Rydberg states. It is numerically challenging to simulate such
large systems. As we focus on dynamics after the laser is switched off, this allows us to apply the two-level
approximation. In this way, we can efficiently simulate dynamics of large system sizes by excluding
groundstate atoms from the model.
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