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We study interference patterns and their time evolution of a superfluid fermionic gas re-
leased from a two-dimensional (2D) optical lattice below and above Feshbach resonance.
We calculate initial distribution of many subcondensates formed in a combined poten-
tial of a parabolic trap and a 2D optical lattice in the crossover from Bardeen–Cooper–
Schrieffer (BCS) superfluid to a Bose–Einstein condensate (BEC). By using Feynman
propagator method combined with numerical simulations we investigate the interference
patterns of the subcondensates for two different cases. One is when both the parabolic
trap and optical lattice are switched off. In this case, interference pattern displays a
main peak and many secondary peaks. The distance between these interference peaks
grows as time increases. The other one is when only the 2D optical lattice is switched
off. The interference pattern in this case is found to display decay and revival, and such
behavior repeats periodically with increasing time. In different regimes of the BCS-BEC
crossover, coherent arrays of interference patterns show different features, which can be
used to characterize experimentally different properties in different superfluid regimes
of the BCS–BEC crossover.
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1. Introduction

In recent years, study of superfluid Fermi gases has opened a new frontier of re-

search in the physics of ultracold matters. One of important topics in this field is

the property of neutral fermionic atoms in the crossover from Bardeen–Cooper–

Schrieffer (BCS) superfluid to a Bose–Einstein condensate (BEC). The under-

standing of BCS–BEC crossover not only has fundamental theoretical interest in

condensed-matter physics, but also has important applications for high-temperature

superconductivity and other significant physical problems. Thanks to the success-

ful application of magnetic-field induced Feshbach resonance, different superfluid

regimes can be realized and manipulated in a controllable way, leading to explo-

sive growth of research activity on the BCS–BEC crossover in ultracold fermionic

atomic gases.1–4

Optical lattices, i.e., regular arrays of many small potential wells created by one

or more sets of orthogonal intersecting laser beams, provide a periodic potential

for the motion of ultracold atomic gases. Fermionic atoms in optical lattices can

be used to simulate the motion of electrons in metals and semiconductors. Such

quantum simulation has many advantages comparing with using other systems.5

First, the period of an optical lattice potential is macroscopically large, and hence

advantageous for simplifying experimental measurements greatly. Second, the op-

tical lattice can be switched off, which is impossible in metals and semiconductors,

and both the period and intensity of the periodic potential formed by laser beams

can be manipulated and adjust at will. Third, it is easy to create one-dimensional

(1D), two-dimensional (2D) and three-dimensional (3D) optical lattices which are

static and free of defects,5 or artificially design quasi-periodic and disordered po-

tentials in a controllable way.6 As did in superfluid bosonic atoms, there are a lot

of research on superfluid fermionic atomic gases in optical lattices.1–4,7–9

Coherent property is an important topic in the study of superfluid fermionic

atomic gases. The most effective method for the observation of coherent property

is the measurement of interference patterns of superfluid Fermi gases when released

from optical lattices. In the remarkable experiment carried out by MIT group,10

high-contrast interference patterns of an ultracold fermionic atom (6Li) gas have

been observed, which has been recognized as the most direct and powerful exper-

imental evidence of good coherency of superfluid Fermi gases in the BCS–BEC

crossover.

However, above mentioned experimental and theoretical works on interference

patterns of superfluid Fermi gases are only for the case of 3D optical lattices. It

is natural to ask the question how about the situation if a superfluid Fermi gas is

released from a 2D optical lattice and what new characters will appear. It is just

this topic that will be addressed here. To the best of our knowledge, up to now

there is no study on interference patterns and their time evolution of superfluid

Fermi gases released from 2D optical lattices. In the present work, we consider

this problem theoretically and show that, in different regimes of the BCS–BEC
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crossover, coherent arrays of interference patterns and their evolution show quite

different features in comparison with the case of 3D optical lattices, which can

be used to characterize experimentally different properties in different superfluid

regimes of the BCS–BEC crossover.

The paper is arranged as follows. In Sec. 2, we give a simple introduction of

an order-parameter equation used to describe the dynamics of fermionic-pair con-

densate. In Sec. 3, by solving the order-parameter equation we calculate the initial

distribution of fermionic-pair subcondensates formed in a 2D optical lattice and

a parabolic potential trap. Coherent evolution of the subcondensates are investi-

gated in two different cases, including the one when both the optical lattice and

the parabolic trap are switched off, and the other one when only the 2D optical

lattice is switched off. Interference patterns of both cases are calculated by means

of Feynman propagator combined with numerical simulations. Section 4 contains

a discussion on the limitation of applicability of the order-parameter equation and

summary of our main results of the present work.

2. Time Evolution of Interference Patterns

2.1. Initial distribution of subcondensates confined in parabolic

trap and optical lattice

We consider a superfluid Fermi gas that has an equal number of fermionic atoms

(i.e., 6Li or 40K) occupying two different internal (spin) states. At zero temperature,

all atoms are paired and condensed atomic pair density is ns = n/2, where n is

atomic density. The transition from BCS superfluid to BEC can be realized by

means of magnetic-field induced Feshbach resonance, and hence manipulating s-

wave scattering length as.
1–3 When as < 0 (as > 0), the system is prepared in

BCS (BEC) regime. Defining a dimensionless interaction parameter η ≡ 1/(kFas),

where kF = (3π2n)1/3 is Fermi wavenumber, one can distinguish several different

superfluid regimes, i.e., BCS regime (η < −1), BEC regime (η > 1), and BEC-BCS

crossover regime (−1 < η < 1). The case η = −∞ (η = +∞) is called BCS (BEC)

limit and the case η = 0 is called unitarity limit. Up to now both theoretical and

experimental studies verify that the transition from BCS regime to BEC regime is

smooth,1–3 and hence the study on physical properties of the superfluid Fermi gas

in various superfluid regimes can be done in a unified way.

In principle, the coherent property of the superfluid Fermi gas in the BCS–BEC

crossover can be studied based on a microscopic theory. In this approach one starts

from a model many-body Hamiltonian that includes main characters of ultracold

fermionic atomic gases. However, because the fermionic atom pairs in present sys-

tem are confined in a combined potential of an optical trap and an optical lattice,

the inhomogeneous and mesoscopic features of the system makes the microscopic

approach difficult. As a first step, one can resort to a phenomenological approach

which can simplify the problem considerably. Notice that for shallow optical lattice

depth the system is within superfluid regime, and hence at ultralow temperature the

1250017-3



January 26, 2012 12:14 WSPC/Guidelines-IJMPB S0217979212500178

S. Liu, W. Wen & G. Huang

condensed fermionic atom pairs do not decay into single atoms due to the existence

of energy gap in excitation spectrum. The dynamics of such perfect superfluid can

be well described phenomenologically by using an order-parameter equation.11–25

Different superfluid regimes can be characterized by an equation of state, which

can be obtained by quantum Monte-Carlo simulation or by other methods.26–28

The order-parameter equation captures dominant feature that the superfluid ex-

hibits macroscopically. Recently, the method of order-parameter equation has been

used to investigate linear collective excitations, ballistic expansion, and solitons in

superfluid Fermi gases, and the results obtained agree quite well with experimental

ones.11–25

The order-parameter equation valid for zero temperature takes the form

i~
∂Ψs

∂t
=

[

−~
2∇2

2M
+ V ho

s (r) + µs(ns)

]

Ψs . (1)

where r ≡ (x, y, z), Ψs(r, t) is the order-parameter (or called condensate wavefunc-

tion), M = 2m is the mass of fermionic atomic pair (with m being atomic mass),

V ho
s (r) is parabolic trap, which has can be modeled by the linear harmonic oscillator

potential1–3

V ho
s (r) =

M

2
[ω2

⊥(x
2 + y2) + ω2

zz
2] . (2)

with ω⊥ and ωz the trapping frequency in transverse (i.e., x and y) and axial (i.e., z)

directions, respectively.

The equation of state (also called bulk chemical potential) in Eq. (1) is obtained

by local density approximationa (LDA) and has the form µs(ns) = 2µ(2ns). Here

µ(n) = ∂[nε(n)]/∂n, with ε(n) being the bulk energy per particle for V ho
s = 0 (see

Footnote b). By defining ε(n) = (3/5)εFσ(η) (εF = ~
2k2F /(2m) is Fermi energy),

one obtains13–20

µ(n) = εF

[

σ(η) − η

5

∂σ(η)

∂η

]

. (3)

Generally, the expression of µ(n) is very complicated, and hence an analytical result

on the dynamics of the system is hard to obtain. A simple treatment is to make

a polytropic approximation, which assumes11–20,30–32 µ(n) = µ0(n/n0)γ , where µ0

and n0 are reference chemical potential and particle number density of the system.

In the following calculation we take n0 to be the equilibrium superfluid density at

the center of the parabolic potential. Thus one has µ0 = εF [σ(η
0) − η0σ′(η0)/5],

with η0 = 1/(k0Fas) and k
0
F = (3πn0)1/3. It is easy to check that in the deep BEC

regime (i.e., γ = 1) Eq. (1) coincides exactly with the one derived by Pieri and

Strinati29 based on Bogoliubov–de Gennes equations for superfluid fermionic pairs.

We assume that the superfluid Fermi gas is prepared in the anisotropic 3D

harmonic potential (2). The trapping frequency in the axial direction is much larger

aLDA is valid for slowly-varying external potential. The present system fulfills LDA condition.
bAn interpolating analytical formula for has been given in Ref. 13 for 7Li.
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than that in the transverse directions, i.e., ωz ≫ ω⊥. Obviously, in equilibrium the

system is a large disk-shaped condensate. Then a 2D optical lattice potential of the

form

V op
s (x, y) = sER[sin

2(qx) + sin2(qy)] , (4)

is added to the system, which forms by two orthogonal intersecting laser beams with

wave vector q = 2π/λ fixed by the wavelength λ of the laser beams. The lattice

potential depth is sER with recoil energy defined by ER = ~
2q2/(2M), where s is

a dimensionless parameter controlling the intensity of the laser field. It is expected

that the large disk-shaped condensate will become many subcondensates when the

2D optical lattice is switched on. Our aim is to obtain interference patterns of

the superfluid Fermi gas. Thus the initial distribution of these subcondensates,

described by Ψs(r, 0), must be calculated firstly.

In fact, Ψs(r, 0) we are looking for is nothing but the ground-state solution of

the order-parameter equation (1), which is however hard to obtained analytically

because Eq. (1) is not only nonlinear but also has variable coefficients. Of course,

one can directly integrate Eq. (1) numerically, but such result is not transparent for

the physical analysis of interference patterns and their evolution. Here we employ

the technique developed in Refs. 33 and 34 to obtain the approximate analytical

expression of Ψs(r, 0) when both the parabolic trap and the 2D optical lattice are

present.

Notice that the size of the system is much larger than that of each subconden-

sate. If the optical lattice depth is moderately large the optical lattice potential

can be expressed by a superposition of many approximate harmonic potentials,

i.e., V op
s = (Mω2

op/2)[
∑

kx
(x − kxd)

2 +
∑

ky
(y − kyd)

2]. Here the effective fre-

quency is defined by ωop = 2
√
sER/~, typically much larger than the frequency

of the parabolic potential. Obviously, the presence of 2D optical lattice makes the

large, disk-shaped condensate formed in the parabolic trap split into a 2D arrays

of weakly coupled, small cigar-shaped subcondensates that are located in minima

of the combined potential Vs = V ho
s + V op

s .

We assume that typical width of subcondensates is much less than the period

d = λ/2 of the optical lattice and the subcondensates in different lattice sites

are fully coherent. In this case the chemical potential of these subcondensates is

identical and hence the condensate wavefunction of the system can be obtained by

the tight-binding approximation

Ψs(r, t) =
∑

kx,ky

ψkx,ky
(x, y, z) exp(−iµGt/~) , (5)

where µG is the chemical potential of the system, kx and ky are the central positions

of various subcondensates. Substituting Eq. (5) into Eq. (1) we get

{

−~
2∇2

2M
+

1

2
M [ω2

⊥(x
2 + y2) + ω2

zz
2] +

1

2
Mω2

op[(x − kxd)
2
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+(y − kyd)
2] + µ0

s

(

ns

n0
s

)γ}

ψkx,ky
= µGψkx,ky

, (6)

where µ0
s = µs(n

0
s). In obtaining Eq. (6) the small overlap between adjacent sub-

condensates is ignored. Using the transformation x−kxd→ x, y−kyd→ y, Eq. (6)

becomes
[

−~
2∇2

2M
+

1

2
Mω2

⊥[(x + kxd)
2 + (y + kyd)

2] +
1

2
Mω2

zz
2

+
1

2
Mω2

op(x
2 + y2) + µ0

s

(

ns

n0
s

)γ]

ψkx,ky
= µGψkx,ky

, (7)

which is the equation determining ψkx,ky
at the lattice site (kx, ky). Because ωop ≫

ω⊥, it is obvious that, for the subcondensate confined in the lattice site ψkx,ky
, one

has x≪ kxd and y ≪ kyd, and hence Eq. (7) can be simplified into

[

−~
2∇2

2M
+

1

2
Mω2

zz
2 +

1

2
Mω2

op(x
2 + y2) + µ0

s

(

ns

n0
s

)γ]

ψkx,ky
= µkx,ky

ψkx,ky
,

(8)

where µkx,ky
= µG− (M/2)ω2

⊥
d2(k2x+ k2y), which is the effective chemical potential

for the subcondensate at lattice site (kx, ky).

By our assumption, we have ~ωz ≪ µG ≪ ~ωop, and hence all subconden-

sates in the optical lattice are cigar-shaped with their long axes along z-direction.

It is reasonable to assume that the motion of the subcondensates in the x- and

y-directions is essentially frozen and hence the wavefunction has the Gaussian

form φ(x, y) = (πa2op)
−1/2 exp[−(x2 + y2)/(2a2op)] with aop =

√

~/(Mωop). Tak-

ing ψkx,ky
(r) = φ(x, y)ϕkx ,ky

(z), the 3D Eq. (8) is reduced to a 1D one:

[

− ~
2

2M

∂2

∂z2
+

1

2
Mω2

zz
2 + g1D|ϕkx,ky

(z)|2γ
]

ϕkx,ky
(z)

= (µkx,ky
− ~ωop)ϕkx,ky

(z) , (9)

which describes the cigar-shaped condensate at the lattice site (kx, ky). The solution

of this equation can be obtained by using Thomas–Fermi approximation,,1–3 i.e., the

kinetic energy term can be disregarded. Thus we obtain

ϕkx,ky
(z) =

[

µkx,ky
− ~ωop − 1

2
Mω2

zz
2

g1D

]

1
2γ

(10)

with g1D = µ0
s/[(n

0
sπa

2
op)

γ(γ+1)]. Using these results it is readily to get the number

of condensed fermionic pairs in the subcondensate located at the lattice site (kx, ky)

Nkx,ky
= N0,0

[

1−
k2x + k2y
k2M

]
1
γ
+ 1

2

, (11)
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where k2M = 2(µG − ~ωop)/(Mω2
⊥
d2). The condition k2x + k2y ≤ k2M gives the total

number of subcondensates, i.e., πk2M . In Eq. (11), N0,0 is the number of condensed

fermionic pairs at the central lattice site, which is given by

N0,0 =
π1/2Γ(1/γ + 1)kMd

Γ(1/γ + 3/2)

(

Mω2
⊥
k2Md

2

2g1D

)1/γ
ω⊥

ωz
. (12)

The normalization condition N =
∑

kx,ky
Nkx,ky

, here N is the total number of the

condensed fermionic pairs in the system, yields

kM =

[

N
Γ(1/γ + 2/3)

Γ(1/γ + 1)

(3γ + 2)

2π3/2γd

(

2g1D
Mω2

⊥
d2

)1/γ
ωz

ω⊥

]

γ

3γ+2

. (13)

Based on the above results we finally obtain the normalized condensate wavefunc-

tion of the system in the combined potential of the parabolic trap and the optical

lattice at time t = 0 (see footnote c)

Ψs(r, t = 0) = An

∑

kx,ky

′

(

1−
k2x + k2y
k2M

)
1
2γ

+ 1
4

× exp

[

− (x− kxd)
2 + (y − kyd)

2

2a2op

]

ϕkx,ky
(z) , (14)

where An = [(3γ+2)/(2γπ2k2Ma
2
op)]

1/2 is a normalization constant, the prime in the

sum means that the summation for kx and ky is taken in the region k2x + k2y ≤ k2M ,

and ϕkx,ky
(z) is a normalized function in z-direction, given by Eq. (10).

In x–y coordinate space, the density distribution of the subcondensates at t = 0

is

ns(x, y, t = 0) ≡ N

∫

dzns(x, y, z, t = 0) = N |Ψs(x, y, t = 0)|2 , (15)

where

Ψs(x, y, t = 0) ≡ An

∑

kx,ky

′

(

1−
k2x + k2y
k2M

)
1
2γ

+ 1
4

exp

[

− (x− kxd)
2 + (y − kyd)

2

2a2op

]

.

(16)

2.2. Interference patterns and their evolution after switching off

both the parabolic trap and optical lattice

The time evolution of the superfluid Fermi gas after release of the parabolic trap

and optical lattice potentials can be obtained through solving the Ginzburg–Gross–

Pitaevskii (GGP) equation (1) by taking Eq. (16) as an initial condition. Noticing

cIn the following, t = 0 will be taken as the initial time for free expansion of the superfluid Fermi
gas.
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that the gas is freely expanded, the interaction among atoms during the expansion is

small and thus can be neglected. Thus we can employ famous Feynman propagator

method35 to obtain the condensate wavefunction for any time t > 0. It is easy to

get

Ψs(x, y, t) =

∫ ∞

−∞

dx′
∫ ∞

−∞

dy′G(x, y, t;x′, y′, t′ = 0)Ψs(x
′, y′, t′ = 0) , (17)

where the propagator G(x, y, t;x′, y′, t′ = 0) is given by

G(x, y, t;x′, y′, t′ = 0) =

(

2πi~t

M

)−1

exp

[

iM((x− x′)2 + (y − y′)2)

2~t

]

. (18)

The integration on the right-hand side of Eq. (17) can be done exactly, yielding

Ψs(x, y, t) = An

(

1

1 + iα

)

∑

kx,ky

′

(

1−
k2x + k2y
k2M

)
1
2γ

+ 1
4

× exp

[

− (x− kxd)
2 + (y − kyd)

2

2a2op(1 + iα)

]

(19)

with a dimensionless parameter α = ~t/Ma2op.

Now we discuss the interference patterns and their property in the BCS–BEC

crossover. Assume the parabolic potential is highly anisotropic, with trapping fre-

quencies ω⊥ = 2π×200 Hz and ωz = 2π×20,000 Hz. The total number of fermionic

atomic pairs is N = 5 × 104 and the laser beam wavelength of the optical lattice

is λ = 1064 nm and laser beam intensity is s = 5. Two semi-axes in the radial

directions of the laser beam are R2
j = 2µs(0)/(Mω2

j ) (j = x, y). The Fermi energy

of the trapped fermions, defined by EF = ~(6Nωxωyωz)
1/3, determines the value

1/k0F = 0.33 µm. When the dimensionless interaction parameter η0 takes vales from

4.0, 0.5 to 0, and then to −0.48 and −1.0, we obtain values of η0, γ, µ0
s/ε

0
F , and

R⊥ (R⊥ ≡ (RxRy)
1/2), given in Table 1.

Shown in Fig. 1 are interference patterns of pair density distribution in the

regime BCS–BEC crossover based on the result given by Eq. (19). Parameters are

chosen as (η0, γ, µ0
s/ε

0
F ) = (0.5, 0.992, 0.358), which corresponds to the case (b) of

Table 1. The sequent panels in the figure are the interference patterns for time

t = 0, t = 0.3π/ω⊥, t = 0.5π/ω⊥, t = 0.7π/ω⊥, and 1.0π/ω⊥, respectively. We

Table 1. Parameters of the superfluid Fermi gas in the
BCS–BEC crossover used in numerical simulations.

(a) (b) (c) (d) (e)

η0 4.0 0.5 0.0 −0.48 −1.0
γ 1.025 0.992 0.667 0.589 0.599
µ0
s/ε

0
F

0.035 0.358 0.820 1.335 1.544
R⊥(µm) 4.12 13.53 20.71 26.12 28.09
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Fig. 1. (Color online) Time evolution of the interference patterns of the superfluid Fermi in the
regime of BCS–BEC crossover for (η0, γ, µ0

s/ε
0
F
) = (0.5, 0.992, 0.358) (i.e., the case (b) of Table 1)

when both the parabolic trap and the optical lattice are switched off. Sequent panels in the figure
are for time t = 0, t = 0.3π/ω⊥, t = 0.5π/ω⊥, t = 0.7π/ω⊥, and 1.0π/ω⊥, respectively.

see that interference patterns are not stationary. Although the position of the prin-

cipal maximum (i.e., the central peak) is not movable, the position of secondary

maximums (i.e., the secondary peaks) are not fixed and they are movable as time

goes on. In fact, many other high-order secondary maximums exist in the interfer-

ence patterns, which are not obvious in the figure because of their smaller values

1250017-9
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in density. It is easy to obtain the position of the four secondary maximums

r±1(t) = ±
[

2π~t

Md
ex +

2π~t

Md
ey

]

, (20)

where ex and ey are unit vectors along x- and y-directions, respectively. Thus

the separation between the secondary maximums is proportional to time t. These

evolution characters of the interference patterns of the superfluid Fermi gas are

due to the quantum property of the system. This point can be easily understood by

Eq. (19), in which the parameter α that results in dispersion (and hence expansion)

of the condensate wavefunction is proportional to the Planck constant ~. In addition,

Eq. (20) manifests also the quantum property of the interference patterns, since ~

is also involved.

In order to show different features of the interference patterns in different su-

perfluid regimes of the BCS–BEC crossover, in Fig. 2 we have presented the sim-

ulating result of the interference patterns for dimensionless density ns(x, y, t)/n1

(n1 ≡ N/aop) when the system is released from both the parabolic trap and the

optical lattice at t = 0.4π/ω⊥. Interference patterns in panels (a), (b), (c), (d),

and (e) are obtained by calculating ns/n1 based on the parameters given in the

cases (a), (b), (c), (d) and (e) of Table 1. We see that from the BEC regime [case

(a)], through the crossover regime [cases (b), (c) and (d)], to the BCS regime [case

(e)], the interference peaks become wider and their maxima are also lowered grad-

ually. Plotted in the panel (f) is maximum value of principal interference peak

[i.e., ns(x = y = 0, t = 0.4π/ω⊥)/n1] as a function of η0. The physical reason for

the change of the interference patterns from the BEC regime to the BCS regime can

be explained as follows. Because in the BEC (BCS) regime the reference chemical

potential µ0
s is smaller (larger), the radius of the condensate R⊥ is smaller (larger)

(see Table 1 for detail), which results in a larger (smaller) peak value and narrower

(wider) width of the interference peaks in the BEC (BCS) regime. We stress that

although such feature exists also in the case of 3D optical lattice, but for the 2D

optical lattice considered here the decrease of the value of interference peak from

the BEC regime to BCS regime is faster and more obvious, which is advantageous

and convenient in experiment for distinguishing different superfluid regimes in the

BCS–BEC crossover.

2.3. Interference patterns after switching off only the

optical lattice

Taking the advantage of the propagator method, we further explore the time evo-

lution of interference patterns of the superfluid Fermi gas in an alternative way.

Instead of switching off both the parabolic trap and optical lattice as studied in the

last subsection, we now consider the situation of turning off the optical lattice but

maintaining the parabolic trap. In this situation the subcondensates evolve inside

the parabolic trap for a variable time.
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Fig. 2. (Color online) Dimensionless column pair density ns(x, y)/n1 in the BCS–BEC crossover
for time t = 0.4π/ω⊥ when the system is released from both the parabolic trap and the optical
lattice. Interference patterns in panels (a)–(e) are obtained based on the parameters given in
the cases (a)–(e) of Table 1. Shown in the panel (f) is maximum of principal interference peak
[i.e., ns(x = y = 0, t = 0.4π/ω⊥)/n1] as a function of η0.

When only the parabolic trap is kept, the evolution of condensate wavefunction

is given by the integration

Ψs(x, y, t) =

∫ ∞

−∞

dx′
∫ ∞

−∞

dy′K(x, y, t;x′, y′, t′ = 0)Ψs(x
′, y′, t′ = 0) , (21)

involved the initial wavefunction of the condensate in the combined trapping,

Ψ(x′, y′, t′ = 0), given by Eq. (16), and the propagator for the particles in the

parabolic trap

K(x, y, t;x′, y′, t′ = 0) =

2
∏

j=1

Kj(xj , t;x
′

j , t
′ = 0) , (22)

1250017-11
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where

Kj(xj , t;x
′

j , t
′ = 0) =

[

Mω⊥

2πi~ sinω⊥t

]1/2

× exp

{

iMω⊥

2~ sinω⊥t

[

(x2j + x′j
2
) cosω⊥t− 2xjx

′

j

]

}

. (23)

with (x1, x2) ≡ (x, y).

It is easy to get the following analytical result of Ψs(x, y, t) for the evolution of

the condensate

Ψs(x, y, t) = An

∑

kx,ky

′

(

1−
k2x + k2y
k2M

)

2+γ

4γ 2
∏

j=1

Ξj(xj , t) , (24)

where

Ξj(xj , t) =

[

1

sinω⊥t(cotω⊥t+ iβ)

]1/2

exp

[

− (xj − kjd cosω⊥t)
2

2a2op sin
2 ω⊥t(β2 + cot2 ω⊥t)

]

× exp

[

−i cotω⊥t(xj − kjd cosω⊥t)
2

2βa2op sin
2 ω⊥t(cot

2 ω⊥t+ β2)

]

× exp

[

i
(x2j cosω⊥t+ k2jd

2 cosω⊥t− 2xjkjd)

2βa2op sinω⊥t

]

, (25)

with β = ~/(Mω⊥a
2
op).

Based on the above result, in Fig. 3 we have shown the interference pattern for

pair density distribution of the superfluid Fermi gas in the BCS regime characterized

by the set of parameters (η0, γ, µ0
s/ε

0
F ) = (−1.0, 1.544, 0.599) for the case (e) of

Table 1. Sequent panels in the figure are for the time t taking at 0, 0.3π/ω⊥,

0.45π/ω⊥, 0.7π/ω⊥, and 1.0π/ω⊥, respectively. The system parameters chosen are

ω⊥ = 2π × 200 Hz, ωz = 2π × 20,000 Hz, N = 5 × 104, λ = 1064 nm, and s = 5.

We see that initially (t = 0) there exists a central peak only. As the time goes

on the central peak decays and sidepeaks grow gradually. At t = 0.45π/ω⊥ the

central peak becomes smallest, and then the pattern recovers to the initial shape at

t = 1.0π/ω⊥. It is found that when t increases further from 1.0π/ω⊥ to 2.0π/ω⊥, we

obtain the same result shown in the figure. Thus the interference pattern exhibits

a periodic decay and revival, with the oscillating periodicity π/ω⊥.

It is easy to get the analytical expression of the maximum value of the central

peak, which reaches its maximum value at time tm = (2m− 1)π/(2ω⊥), here m is

a positive integer. At time tm, one has

ns(x = y = 0, tm) = N

(

3γ + 2

2γ

)[

Mω⊥

π~a2opkM

]2





∑

kx,ky

′

(

1−
k2x + k2y
k2M

)

2+γ

4γ





2

. (26)
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Fig. 3. (Color online) Evolution of the interference pattern of the superfluid Fermi gas when
keeping in the parabolic trap but released from the optical lattice. The system parameters are
(η0, γ, µ0

s/ε
0
F
) = (−1.0, 0.599, 1.544). The sequent panels show the patterns for t = 0, 0.3π/ω⊥,

0.4π/ω⊥, and 0.45π/ω⊥ respectively.

By transforming the summation for kx and ky into an integration, we obtain

ns(x = y = 0, tm) = 8Nγ
(3γ + 2)

(2 + 5γ)2

(

Mω⊥kM
~a2op

)2

. (27)

The position of the secondary peaks near the central peak can be obtained
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Fig. 4. (Color online) Column pair density distribution ns(x, y) in the BCS–BEC crossover when

the subcondensates have been released from the optical lattice potential for t = 0.3π/ω⊥. The
interference in panels (a)–(e) are obtained by calculating ns(x, y) based on the parameters given
in cases (a)–(e) of Table 1. The panel (f) is the maxima of central peak ns(x = y = 0) as a function
of η0. In all figures the values of pairs density ns(x, y) have been normalized by n1 = N/a2op.

analytically, which read

r±1(t) = ±
[

2π~

Mω⊥d
sin(ω⊥t)ex +

2π~

Mω⊥d
sin(ω⊥t)ey

]

. (28)

There are two physical reasons for the oscillating behavior (decay and revival)

of the interference pattern. One is due to the confinement of the parabolic trap.

The other one arises from the quantum property of the system, which can be seen

from the expression of Eq. (25) where the parameter β that contributes dispersion

is proportional to the Planck constant ~.

In order to make a comparison between the interference patterns in different su-

perfluid regimes of the BCS–BEC crossover when only the optical lattice is switched
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off, in Fig. 4 we have plotted the simulating result of ns/n1 for t = 0.3π/ω⊥. Panels

(a), (b), (c), (d), and (e) are obtained for the parameters given in the cases (a),

(b), (c), (d) and (e) of Table 1. One can see that from the BEC regime [case (a)],

through the crossover regime [cases (b), (c) and (d)], to the BCS regime [case (e)],

the interference peaks become wider and their maxima are also lowered gradually.

The panel (f) is the maximum value of central peak ns(x = y = 0) as a function of

η0. Different features of the interference patterns for different superfluid regimes are

clearly shown, with the physical reasons being basically the same as that explained

in the last subsection.

In the calculation of interference patterns given above, interatomic interaction

between atoms has been neglected. Here we make an estimation on the role played

by atomic interaction during the expansion of the fermionic atomic gas. The kinetic,

potential, and interaction energies of the system are respectively given by

Ekin(t) = N

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dz
~
2

2M
|∇Ψs(r, t)|2 , (29a)

Epot(t) = N

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dz[V ho
s (r) + V op

s (x, y)]|Ψs(r, t)|2 , (29b)

Eint(t) = N

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dz
µs(ns)

γ + 1
|Ψs(r, t)|2 . (29c)

We first estimate above energies before the expansion (i.e., t = 0) by considering

η0 = 4 (i.e., the case (a) of Table 1; BEC regime) and η0 = −1 (i.e., the case

(e) of Table 1; BCS regime). For η0 = 4, we obtain Ekin(0) = 0.72 × 10−18 J,

Epot(0) = 0.22 × 10−15 J, Eint(0) = 0.43 × 10−13 J; For η0 = −1, we obtain

Ekin(0) = 0.93× 10−14 J, Epot(0) = 0.32× 10−11 J, Eint(0) = 0.16× 10−11 J. This

result tells us that in the ground state (i.e., before the expansion) the interaction

energy is very significant and must be taken into account. However, when atoms is

released from the optical lattice, the gas expands rapidly, the interatomic interaction

decreases rapidly also. This point can be seen by calculating the interaction energy

during the expansion. By using above expressions we obtain the ratio of interaction

energy to the total energy, i.e., Eint(t)/E(t), where the total energy is given by

E(t) = Ekin(t) +Epot(t) +Eint(t). Shown in Fig. 5 is our calculating result. We see

that when the atomic gas expands for only 10 microseconds, Eint(t)/E(t) decreases

to 5% for both cases (i.e. η0 = 4 and η0 = −1.0). Thus the interaction energy

is indeed small during the expansion for a larger time, which is the situation of

measurement of interference patterns in experiment.

3. Discussion and Summary

The results given above is obtained based on the GGP equation (1). Although up

to now many research works for studying the physical property of superfluid Fermi

gases are based on the GGP equation (Refs. 11–25; see also section 3’2.3 of Ref. 2),
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Fig. 5. (Color online) The ratio of interaction energy to the total energy Eint/E as a function
of time t, for the case η0 = 4 and the case η0 = −1 during the expansion of the fermionic atomic
gas.

no discussion on the limitation of this equation has been provided in literature. In

fact, the GGP equation is valid under the following conditions: (i) The system is

in a superfluid state, and works at zero temperature or very low temperature with

thermal particle playing no significant role. (ii) Particle numbers in two internal

(spin) states are equal, and all particle are paired and condensed, i.e., depletion

of the condensate play no significant role. (iii) When an external, time-dependent

perturbation is applied to the condensate, only low-energy collective excitations

are generated, with the excitation energy less than the energy gap of single-particle

excitations, i.e., single-particle excitation due to the breaking of Cooper pairs does

not occur. (iv) The particle number of the system is large.

In the deep BCS regime (i.e., η0 ≪ −1) one must be careful when using the

GGP equation. The reason is that, for the present-day superfluid Fermi gases re-

alized experimentally, the energy gap ∆gap of single-particle excitations is small.

This can be seen by the formula ∆gap = 1.76kBTc, where Tc is critical temperature.

Taking Tc ≈ 200 nK, we obtain ∆gap/h ≈ 100 s−1. Thus a collective excitation with

oscillating frequency the same as that of trapping potential (usually between sev-

eral tens and several hundred Hertz) will break Cooper pairs, i.e., single-particle

excitations are unavoidable when collective oscillations are excited in the deep BCS

regime with oscillating frequency having the same order as that of the trapping po-

tential. Furthermore, there is another reason for the invalidity of the GGP equation

in the deep BCS regime. In fact, in the deep BCS regime and when ∆gap is small,

a quantum depletion of the condensate may be significant. In this case, the GGP

equation becomes invalid because it does not include the quantum depletion of the

condensate. Of course, if experimental conditions can be improved to increase ∆gap

(which can be realized, e.g., by increasing condensed particle number, hopefully

in cold Fermi-gas experiments in future), the GGP equation may be used even in

the deep BCS regime. Another way is to add some correction terms in the GGP
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equation (1) to include the effects of the pair-breaking and the quantum depletion.

Then one will obtain a new, dissipative GGP equation. This is an interesting topic

deserving to explore, but beyond the scope of our present work.

In summary, we have made a detailed investigation on the interference patterns

and their time evolution of a superfluid Fermi gas in the BCS–BEC crossover. Based

on a superfluid order-parameter equation, we have calculated the initial distribu-

tion of subcondensates formed in a combined potential of a parabolic trap and a 2D

optical lattice. By using the Feynman propagator method combined with numeri-

cal simulations we have discussed the interference patterns of the subcondensates

for two different cases. The first one is when both the parabolic trap and optical

lattice are switched off simultaneously. In this case, interference pattern displays

a main peak and secondary peaks. The separation between the interference peaks

is proportional to time. The other one is when the 2D optical lattice is switched

off but the parabolic trap is maintained. The interference pattern in this case is

found to display decay and revival. The decay and revival repeats periodically with

increasing time. Such behavior of the interference patterns is due to the quantum

property of the superfluid Fermi gas and due to the contribution of the combined

potentials that act on the system. We have demonstrated that in the case of 2D

optical lattice the interference patterns in different superfluid regimes of the BCS–

BEC crossover have more obvious features than that in the case of a 3D optical

lattice. Thus it is more convenient to use the 2D optical lattice system to experi-

mentally distinguishing different superfluid regimes of the BCS–BEC crossover. We

note that in a recent experiment Martiyanov et al.36 have successfully realized a

degenerate fermionic (6Li) atomic gas in 2D, in which the interaction of atoms in

the gas can be widely tuned by means of Feshbach resonance. Such system can

be used to study the interference patterns predicted in the present work when the

system is prepared in an optical lattice.
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