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Abstract The dynamics of coupled band gap solitons in one-dimensional Heisenberg ferromagnetic chains with bond
alternation is considered analytically. Using the method of multiple scales the nonlinear coupled-mode equations (i.e.
Manakov equations) for the upper cutoff mode of acoustic band and the lower cutoff mode of optical band are derived
under the quasi-discreteness approximation. Due to the cross-phase modulation the type of soliton excitations may
be changed and the vibrating frequencies of these soliton excitations may locate within or outside the gap of magnon
frequency bands.
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1 Introduction

Recent years have shown increased interest in the
study of nonlinear localized excitations in condensed mat-
ter systems. Ferromagnetic and antiferromagnetic chain
compounds, e.g. CsNiF3 and TMMC [(CCD3)4NMnCl3],
have been shown to be good systems exhibiting soliton-
type nonlinear excitations.[1−4] However, since in theory
almost all approaches involved the continuum approxi-
mations, some nonlinear modes with rather short wave-
length have been lost.[5] Note that the Heisenberg model
describing magnetic phenomena is inherently discrete,
with the lattice spacing a fundamental physical param-
eter. For such discrete systems an accurate microscopic
description involves a set of difference-differential equa-
tions and the intrinsic discreteness may drastically modify
the nonlinear dynamics of the systems. The discreteness
makes the properties of the system periodic, so that due
to the interplay between the discreteness and the nonlin-
earity, certain types of nonlinear excitations which have
no direct analog in continuum models, may exist. In
fact, some nonlinear localized magnon modes, say intrin-
sic localized magnon modes, have attracted much recent
theoretical attention[6−11] and some of them have been
observed experimentally.[12] Lai and Sievers have given a
comprehensive review on this subject.[13]

Note that some magnetic systems, e.g. layered materi-
als grown by molecular-beam epitaxy, display strong alter-
nating exchange interaction (i.e. bond alternation).[14,15]

Due to the bond alternation and the discreteness of the
system, magnon frequency spectrum splits into two bands,
i.e. an acoustic and an optical bands. There is band gap

between two bands and an upper cutoff frequency for all
the bands. In linear theory, spin waves cannot propagate
in the band gap. But the situation is changed drastically
when the nonlinearity of the system plays a significant
role. Some new types of nonlinear localized modes, e.g.
spin gap solitons, can appear with their vibrating frequen-
cies in the gap of the magnon bands. References [16] and
[17] presented a detailed study on these spin gap solitons.

In view of aforementioned works, we found that up
to now almost all studies on magnetic solitons have fo-
cused on single-mode excitations. In this paper, we con-
sider the nonlinear coupling of two magnon modes rele-
vant to the boundary of Brillouin zone. Using the method
of multiple scales we derive coupled nonlinear envelope
equations (i.e. Manakov equations) based on a quasi-
discreteness approach.[18−20] Coupled soliton-soliton and
soliton-kink solutions are given explicitly and these new
types of nonlinear excitations display interesting proper-
ties. The paper is organized as follows. In Sec. 2, based
on a quasi-discreteness approach developed in Refs [18]–
[20], we present the model and make an asymptotic ex-
pansion. A set of coupled-mode equations are derived.
Section 3 provides coupled soliton solutions and discusses
their properties, in particular for their vibrating frequen-
cies. Finally, section 4 contains a summary of our results.

2 Model and Asymptotic Expansion

2.1 The Model

The system we considered is the one-dimensional al-
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ternating Heisenberg ferromagnet with the Hamiltonian

H = −
∑

i

JiSi ·Si+1 −
∑

i

Di(Sz
i )2 − gµBf

∑
i

Sz
i , (1)

where Si = (Sx
i , S

y
i , S

z
i ) is the spin on the site i and

Jj = J1δj,2i +J2δj,2i+1 (J2 > J1 > 0) is the strength of al-
ternating bonds. Dj = D1δj,2i +D2δj,2i+1 (D2 > D1 > 0)
is the uniaxial crystal-field anisotropy parameter and f is
the intensity of external magnetic field along z-direction.
The ground-state configuration of the system corresponds
to all spins aligned in the z-axis direction.

Assume that |S,M〉 is the common eigenstate of the
angular momenta S2

i and Sz
i , where S is the spin mag-

nitude and M (taking values −S,−S + 1, . . . , S − 1, S) is
the eigenvalue of Sz

i . Thus the ground state of the spin
at site i is |0〉i = |S, S〉i. The SU(2) coherent state |ζi〉
associated with the spin Si is given by[16,21]

|ζi〉 = (1 + |ζi|2)−S exp(ζiS−i )|0〉i , (2)

where S±i = Sx
i ± iSy

i and ζi is a complex spin deviation
defined as a magnon field variable. The SU(2) coherent
state of the system constituting the ferromagnetic chain
with bond alternation can be constructed by

|Ψ〉 = Πi|ζi〉 . (3)

Applying the path-integral theory combined with a sta-
tionary phase approximation[7] the Heisenberg equation

of motion for spin Si is transferred into the following one

i
d
dt
ζi = σiζi − S(Jiζi+1 + Ji−1ζi−1) + U(ζi, ζi±1) (4)

with

σi = S(J1 + J2) + (2S − 1)Di + gµBf , (5)

U = JiS(|ζi+1|2ζi+1 + ζ∗i+1ζ
2
i − 2|ζi+1|2ζi)/(1 + |ζi+1|2)

+ Ji−1S(|ζi−1|2ζi−1 + ζ∗i−1ζ
2
i

− 2|ζi−1|2ζi)/(1 + |ζi−1|2)

− 2Di(2S − 1)|ζi|2ζi/(1 + |ζi|2) , (6)

here for simplicity we have taken h̄ = 1.
The alternating bond splits the system into two sub-

lattices A and B with

A = {· · · ,S2i−2,S2i,S2i+2, · · ·}

= {· · · ,Sa,n−1,Sa,n,Sa,n+1, · · ·}

(even spins) and

B = {· · · ,S2i−1,S2i+1,S2i+3, · · ·}

= {· · · ,Sb,n−1,Sb,n,Sb,n+1, · · ·}

(odd spins), where n is the index of nth unit cell with
lattice constant a = 2a0, a0 is the spacing between two
nearest-neighbor spins. Then the coherent state ampli-
tude equation (4) becomes

i
d
dt
φn = σ1φn − S(J1ψn + J2ψn−1) + J1S(ψn|ψn|2 + φ2

nψ
∗
n − 2φn|ψn|2)/(1 + |ψn|2) + J2S(ψn−1|ψn−1|2

+ φ2
nψ

∗
n−1 − 2φn|ψn−1|2)/(1 + |ψn−1|2)− 2D1(2S − 1)φn|φn|2/(1 + |φn|2) , (7)

i
d
dt
ψn = σ2ψn − S(J1φn + J2φn+1) + J1S(φn|φn|2 + ψ2

nφ
∗
n − 2ψn|φn|2)/(1 + |φn|2) + J2S(φn+1|φn+1|2

+ ψ2
nφ

∗
n+1 − 2ψn|φn+1|2)/(1 + |φn+1|2)− 2D2(2S − 1)ψn|ψn|2/(1 + |ψn|2) , (8)

where φn = ζ2i, ψn = ζ2i+1.

2.2 Asymptotic Expansion

The conventionally used analytical approach for co-
herent state amplitude equations involved the continuum
approximation. This procedure is valid only for long wave-
length excitations. Genuine modes of the discreteness of
the system are lost in such a treatment. Here we take the
quasi-discreteness approach developed in Refs [18]–[20] to
investigate the coupling between two cutoff modes of spin
wave relevant to the boundary of the Brillouin zone. The
carrier waves of these cutoff modes vary fast thus have
fairly short wavelength. To this aim we make the expan-
sion

un(t) = εu(1)(ξn, τ ; θn) + ε2u(2)(ξn, τ ; θn) + · · ·

=
∞∑

ν=1

u(ν)
n,n , (9)

where un(t) represents φn(t) or ψn(t). The quantity ε is a
smallness but finite parameter denoting the magnitude of
the amplitude of the excitation and u(ν)

n,n ≡ u(ν)(ξn, τ ; θn)
with ξn = ε(na − λt) and τ = ε2t (slow variables). λ is
a parameter to be determined by a solvability condition.
The fast variable, ξn = qna−ωt, representing the phase of
the carrier wave, is taken to be completely discrete. Sub-
stituting Eq. (9) into Eqs (7) and (8) and comparing the
coefficients of the same powers of ε, one obtains(

i
∂

∂t
− σ1

)
φ(j)

n,n + S(J1ψ
(j)
n,n + J2ψ

(j)
n,n−1) = M (j)

n,n , (10)

M (1)
n,n = 0 , (11)
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M (2)
n,n = iλ

∂

∂ξn
φ(1)

n,n + J2Sa
∂

∂ξn
ψ

(1)
n,n−1 , (12)

M (3)
n,n = · · · , (13)

and(
i
∂

∂t
− σ2

)
ψ(j)

n,n + S(J1φ
(j)
n,n + J2φ

(j)
n,n+1) = N (j)

n,n , (14)

N (1)
n,n = 0 , (15)

N (2)
n,n = iλ

∂

∂ξn
ψ(1)

n,n + J2Sa
∂

∂ξn
φ

(1)
n,n+1 , (16)

N (3)
n,n = · · · (17)

with j = 1, 2, 3, . . . . The expressions of M (j)
n,n and N

(j)
n,n

(j = 3, 4, . . .) are not explicitly written down here.

2.3 Coupled-Mode Equations

Now we derive coupled-mode equations starting from
Eqs (10) ∼ (17). For j = 1 it is easy to get

φ(1)
n,n = A−(ξn, τ) exp(iθ−n )

− S[J1 + J2 exp(−iqa)]
ω+(q)− σ1

A+(ξn, τ) exp(iθ+n ) , (18)

ψ(1)
n,n = −S[J1 + J2 exp(iqa)]

ω−(q)− σ2
A−(ξn, τ) exp(iθ−n )

+A+(ξn, τ) exp(iθ+n ) , (19)

where A− and A+ are two envelope (or amplitude) func-
tions yet to be determined. θ±n = qna − ω±(q)t are the
phases of the carrier waves for the acoustic (minus sign)
and the optical (plus sign) modes. ω± are given by

ω±(q) =
1
2
{σ1 + σ2 ± [(σ2 − σ1)2

+ 4S2[J2
1 + J2

2 + 2J1J2 cos(qa)] ]1/2} . (20)

Thus we see that the magnon frequency spectrum of the
Heisenberg ferromagnetic chain with bond alternation dis-
plays two branches. One is the lower branch ω−(q) (the
acoustic branch) and the other is the upper branch ω+(q)
(the optical branch). At q = 0 the eigenfrequency spec-
trum has a lower cutoff

ω−(0) = (1/2){σ1 + σ2 − [(σ2 − σ1)2 + 4S2(J1 + J2)2]1/2}

for the acoustic mode and an upper cutoff

ω+(0) = (1/2){σ1 + σ2 + [(σ2 − σ1)2 + 4S2(J1 + J2)2]1/2}

for the optical mode. At q = π/a there exists a frequency

gap between the upper cutoff of the acoustic band, ω1, and
the lower cutoff of the optical band, ω2, with

ω1 ≡ ω−(π/a) =
1
2
{σ1 + σ2 − [(σ2 − σ1)2

+ 4S2(J2 − J1)2]1/2} , (21)

ω2 ≡ ω+(π/a) =
1
2
{σ1 + σ2 + [(σ2 − σ1)2

+ 4S2(J2 − J1)2]1/2} . (22)

The band gap width is

ω2 − ω1 = [(σ2 − σ1)2 + 4S2(J2 − J1)2]1/2

= [(2S − 1)2(D2 −D1)2 + 4S2(J2 − J1)2]1/2.(23)

In linear theory, the frequency gap is a “forbidden band (or
stop band)” for the spin waves. However, if the amplitude
of the spin waves is significant, nonlinearity of the system
cannot be neglected. Some nonlinear localized spin wave
modes may appear in the band gap. Reference [16] has
studied the nonlinear single-mode excitations with the vi-
brating frequencies within or outside the gap. Here we are
interested in the nonlinear coupling between the acoustic
upper cutoff mode and the optical lower cutoff mode. To
this end we take q (the wave number of the carrier wave)
to be π/a and hence equations (18) and (19) become

φ(1)
n,n = A−(ξn, τ)(−1)n exp(−iω1t)

+
S(J2 − J1)
ω2 − σ1

A+(ξn, τ)(−1)n exp(−iω2t) , (24)

ψ(1)
n,n =

S(J2 − J1)
ω1 − σ2

A−(ξn, τ)(−1)n exp(−iω1t)

+A+(ξn, τ)(−1)n exp(−iω2t) . (25)

In the next order (j = 2), a solvability condition de-
mands λ = 0 and hence ξn = εna ≡ xn. This is a quite
natural result because the cutoff modes have vanishing
group velocity. The solution in this order is given by

φ(2)
n,n = − J2Sa

ω2 − σ1

∂A+

∂ξn
(−1)n exp(−iω2t) , (26)

ψ(1)
n,n =

J2Sa

ω1 − σ2

∂A−
∂ξn

(−1)n exp(−iω1t) . (27)

With the results obtained in Eqs (24) ∼ (27) one can
calculate M

(3)
n,n and N

(3)
n,n. The solvability conditions of

Eqs (10) and (14) with j = 3 yield the closed equations
for A− and A+,

i
∂A1

∂t
− β

∂2A1

∂x2
n

+ P1|A1|2A1 +Q1|A2|2A1 = 0 , (28)

i
∂A2

∂t
+ β

∂2A2

∂x2
n

+ P2|A2|2A2 +Q2|A1|2A2 = 0 , (29)

when returning to original variables, where we have taken
A1 = εA− and A2 = εA+. The coefficients appearing in
Eqs (28) and (29) are given by

β =
J1J2S

2a2

[(2S − 1)2(D2 −D1)2 + 4S2(J2 − J1)2]1/2
, (30)

P1 =
−2(ω1 − σ1)
σ1 + σ2 − 2ω1

{
2ω1 − σ1 − σ2 + 2S(J1 + J2)

+ (2S − 1)
[D1(ω1 − σ2)

ω1 − σ1
+
D2(ω1 − σ1)
ω1 − σ2

]}
, (31)

P2 =
−2(ω2 − σ2)
σ1 + σ2 − 2ω2

{
2ω2 − σ1 − σ2 + 2S(J1 + J2)
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+ (2S − 1)
[D1(ω2 − σ2)

ω2 − σ1
+
D2(ω2 − σ1)
ω2 − σ2

]}
, (32)

Q1 =
2(ω2 − σ2)

σ1 + σ2 − 2ω1

{
(2S − 1)(D1 +D2) + S(J1 + J2)

×
[ω1 − σ2

ω1 − σ1
+
S(J2 − J1)
ω1 − σ2

− 2
]}

, (33)

Q1 =
2(ω1 − σ1)

σ1 + σ2 − 2ω2

{
(2S − 1)(D1 +D2) + S(J1 + J2)

×
[ω2 − σ1

ω2 − σ2
+
S(J2 − J1)
ω2 − σ1

− 2
]}

. (34)

Equations (28) and (29) are coupled-mode equations we
sought. They are called the Manakov equations in soliton
theory.[22] The different signs of the second-order spatial
derivatives in Eqs (28) and (29) result from the different
dispersion [denoted by ω′′(q)] of the acoustic upper cut-
off and the optical lower cutoff modes. At q = π/a, two
cutoff modes have the same magnitude of dispersion but
with different signs. For each envelope Aj , in addition
to a self-modulation term |Aj |2Aj , there is also a cross-
phase modulation term |Aj |2A3−j (j = 1, 2), which will
drastically change the properties of the nonlinear local-
ized excitations in comparison with the case of a single
acoustic upper cutoff or a single optical lower cutoff mode
if excited separately.

3 Coupled Soliton Solutions

3.1 Single-Mode Excitations

Let us first consider the single-mode excitations of
Eqs (28) and (29). An optical lower cutoff mode exci-
tation corresponds to A1 = 0 but A2 6= 0. Thus the
Manakov equations (28) and (29) reduce to the nonlinear
Schrödinger (NLS) equation for A2,

i
∂A2

∂t
+ β

∂2A2

∂x2
n

+ P2|A2|2A2 = 0 , (35)

which, because P2 > 0 and β > 0, admits the soliton
solution

A2 =
(2β
P2

)1/2

k sech [k(xn − 2kk1βt)]

× exp{i[k1xn − (k2
1 − k2)βt]} (36)

with k and k1 two arbitrary constants. Thus for single-
mode excitations it is impossible to obtain a kink for the
optical lower cutoff mode.

The acoustic upper cutoff mode excitations correspond
to setting A2 = 0 but A1 6= 0. Hence equations (28) and

(29) are simplified to the NLS equation for A1,

i
∂A1

∂t
− β

∂2A1

∂x2
n

+ P1|A1|2A1 = 0 , (37)

which, depending on the sign of P1, allows soliton and
kink solutions. When P1 > 0, we have the kink solution

A1 =
(2β
P1

)1/2

k tanh[k(xn − 2kk1βt)]

× exp{i[k1xn + (k2
1 + 2k2)βt]} . (38)

However, if P1 < 0 one has the soliton solution

A1 =
( 2β
−P1

)1/2

k sech [k(xn − 2kk1βt)]

× exp{i[k1xn − (k2
1 − k2)βt]} . (39)

From the results obtained above, we have the conclusion
that the optical lower cutoff mode is always a soliton but
the acoustic upper cutoff mode may be either a soliton or
a kink, depending on the parameters of the system. This
picture, however, will be changed when the coupling of
the two cutoff modes is taken into account.

3.2 Coupled-Mode Excitations

Now we turn our attention to the coupled nonlinear
excitations of the system. This requires us to solve the
coupled-mode equations (28) and (29) with A1 and A2

nonzero. We find that equations (28) and (29) admit the
following coupled soliton solutions.

(i) Kink-soliton If P1P2 −Q1Q2 > 0, P1 +Q2 > 0
and P2 + Q1 > 0, we have the coupled acoustic upper
cutoff kink and optical lower cutoff soliton solution

A1 = W1 tanh(kxn + 2βkk1t) exp[i(k1xn − Ω1t)] , (40)

A2 = W2 sech (kxn + 2βkk1t) exp[i(k1xn − Ω2t)] (41)

with

W 2
1 =

2βk2(P2 +Q1)
P1P2 −Q1Q2

, (42)

W 2
2 =

2βk2(P1 +Q2)
P1P2 −Q1Q2

, (43)

Ω1 = −β(2k2 + k2
1)−

2βk2Q1(P1 +Q2)
P1P2 −Q1Q2

, (44)

Ω2 = β(k2 + k2
1)−

2βk2P2(P1 +Q2)
P1P2 −Q1Q2

, (45)

where k and k1 are two arbitrary constants. In this case
the solution of Eqs (7) and (8) in the leading-order ap-
proximation takes the form

φn(t) = W1 tanh(kxn + 2βkk1βt)(−1)n exp{i[k1xn − (ω1 + Ω1)t]}

+
S(J2 − J1)
ω2 − σ1

W2 sech (kxn + 2βkk1t)(−1)n exp{i[k1xn − (ω2 + Ω2t)]} , (46)
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ψn(t) =
S(J2 − J1)
ω1 − σ2

W1 tanh(kxn + 2βkk1βt)(−1)n exp{i[k1xn − (ω1 + Ω1)t]}

+W2 sech (kxn + 2βkk1t)(−1)n exp{i[k1xn − (ω2 + Ω2t)]} . (47)

If k and k1 are set to zero, the excitation denoted by

Eqs (46) and (47) is a standing kink-soliton pair.

(ii) Soliton-kink If P1P2 −Q1Q2 < 0, P1 +Q2 > 0

and P2+Q1 > 0, one has the coupled acoustic upper cutoff

soliton and optical lower cutoff kink solution

A1 = W1 sech (kxn + 2βkk1t) exp[i(k1xn − Ω1t)] , (48)

A2 = W2 tanh(kxn + 2βkk1t) exp[i(k1xn − Ω2t)] (49)

with

W 2
1 =

2βk2(P2 +Q1)
P1P2 −Q1Q2

, (50)

W 2
2 =

2βk2(P1 +Q2)
P1P2 −Q1Q2

, (51)

Ω1 = −β(2k2 + k2
1)−

2βk2Q1(P1 +Q2)
P1P2 −Q1Q2

, (52)

Ω2 = β(k2 + k2
1)−

2βk2P2(P1 +Q2)
P1P2 −Q1Q2

, (53)

where k and k1 are still two arbitrary constants. In this case the solution of Eqs (7) and (8) reads

φn(t) = W1 sech (kxn + 2βkk1βt)(−1)n exp{i[k1xn − (ω1 + Ω1)t]}

+
S(J2 − J1)
ω2 − σ1

W2 tanh(kxn + 2βkk1t)(−1)n exp{i[k1xn − (ω2 + Ω2t)]} , (54)

ψn(t) =
S(J2 − J1)
ω1 − σ2

W1 sech (kxn + 2βkk1βt)(−1)n exp{i[k1xn − (ω1 + Ω1)t]}

+W2 tanh(kxn + 2βkk1t)(−1)n exp{i[k1xn − (ω2 + Ω2t)]} . (55)

When k and k1 are taken to be zero, equations (54) and
(55) represent a standing soliton-kink pair.

From the results given above, we see that, different
from the case of the single-mode excitation, the optical
lower cutoff mode can be a kink due to the mode-mode
coupling. The reason is that when the mode-coupling
is taken into account, the cross-phase modulation can
change the type of the nonlinear localized modes and
hence result in the transition from soliton to kink, and
vice versa.[23]

3.3 Discussion for the Case D1 = D2

The results presented in the last subsection showed
that coupled soliton excitations are possible in the alter-
nating Heisenberg ferromagnetic chain. One of the im-
portant properties is the frequency shift of relevant cut-
off modes due to the nonlinear coupling. Such frequency
shifts can be calculated from the formulae provided in
Eqs (44) and (45) for the kink-soliton and Eqs (52) and
(53) for the soliton-kink, respectively. Since too many pa-
rameters are involved, it is not easy to see the lowering
or rising of their vibrating frequencies relative to the cor-
responding linear modes. Here for simplicity we assume
D1 = D2 = D to see the frequency shifts due to the non-
linear coupling.

Note that in this circumstance the coefficients of
Eqs (28) and (29) take the values β = J1J2Sa

2/[2(J2 −

J1)] > 0, Pj = 4JjS + 2(2S − 1)D > 0 (j = 1, 2),
Q2 = 4(2S−1)D > 0 and Q1 = 4(2S−1)D−2S(J1 +J2).
Thus we always have positive P1 +Q2 and P2 +Q1. The
results are given as follows.

(i) The kink-soliton case This type of coupled soli-
ton [given by Eqs (40) and (41)] requires P1P2−Q1Q2 > 0,
which means D > r, where r = T (1 + δ)(1 + ρ) with
I = 2J2S/[3(2S−1)], ρ2 = 1+3δ/(1+ δ)2 and δ = J1/J2.
The vibrating frequency of the acoustic upper cutoff kink
is ω1 + Ω1 [See the first term of Eqs (46) and (47)]. We
obtain

(a) Ω1 < 0 if y1 < β1 and D < r1;
(b) Ω1 > 0 if 1 < β1 < y1 and r1 < D < r;

where β1 = k2
1/(2k

2) and

y1 =
α2

1 − α3

2ρα1 + α2
, (56)

r1 =
I(1 + δ)
β1 − 1

{
β1 +

1 + 5δ
4(1 + δ)

+
[
ρ2β2

1 +
β1(1 + 2δ)
2(1 + δ)

+
(7δ − 1)2

16(1 + δ)2
]1/2}

(57)

with α1 = ρ+ (5 + 9δ)/[4(1 + δ)], α2 = (1 + 2δ)/[2(1 + δ)]
and α3 = (7δ− 1)2/[16(1 + δ)2]. From the case (a) we see
that the vibrating frequency of the acoustic upper cutoff
kink is in the acoustic band. The case (b) shows that
in certain conditions, the vibrating frequency can also lo-
cate in the frequency gap between the acoustic and optical
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bands.
The vibrating frequency of the optical lower cutoff soli-

ton is given by ω2 + Ω2. We find
(c) Ω2 > 0 when β1 < y2 and D < r2;
(d) Ω2 < 0 if β1 > y2 and r2 < D < r;

where

y2 =
f3 − f2

1

2ρf1 + f2
, (58)

r2 =
I(1 + δ)
3/2 + β1

{
β1 −

1
1 + δ

+
[
ρ2β2

1 −
(2− δ)β1

(1 + δ)2
+

4− 9δ
(1 + δ)2

]1/2}
(59)

with f1 = 3(1 + ρ)/2 + 1/(1 + δ), f2 = (2 − δ)/(1 + δ)2

and f3 = (4− 9δ)/(1 + δ)2. Thus the vibrating frequency
of the optical lower cutoff soliton may be in and outside
the frequency gap of the magnon bands.

(ii) The soliton-kink case The coupled soliton
with this type requires P1P2 − Q1Q2 < 0, which means
D < r. We find that, for any parameter of the system,
Ω1 < 0, which yields the vibrating frequency of the acous-
tic upper cutoff soliton within the acoustic band. For the
optical lower cutoff kink, we obtain

(e) Ω2 > 0 if D < r2 and β1 > y3;
(f) Ω2 < 0 if 1 < β1 < y3 and r < D < r3.

Hence the vibrating frequency of the optical lower cut-
off kink may be also in the band gap or in the optical

band. This case is very different from the single-mode ex-
citation, where the optical lower cutoff mode is always a
soliton with its vibrating frequency in the gap.

4 Summary

Based on the quasi-discreteness multiple scale ap-
proach, we have investigated the dynamics of coupled gap
solitons in the Heisenberg ferromagnetic chain with bond
alternation. Nonlinear coupled-mode equations (i.e. the
Manakov equations) have been derived for the envelopes
of the acoustic upper cutoff and the optical lower cutoff
modes. Coupled soliton-kink and kink-soliton solutions
are provided explicitly. The results show that the vibrat-
ing frequencies of these nonlinearly coupled localized soli-
tons can be within and outside the magnon spectrum band
gap.

Band gap solitons have been observed experimentally
in one-dimensional photonic crystals[24] and in the pendu-
lum lattices.[25] Note that the alternating exchange inter-
action in magnetic systems can occur in layered materials
of quasi-one-dimensional character[14] and other materials
which may grow in a layered manner by molecular-beam
epitaxy. Our results presented above for the coupled mag-
netic gap solitons may be useful for further understand-
ing the excitation spectrum in magnetic systems and as a
guide for new experimental findings.
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