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Abstract We investigate the three-wave resonant interaction (TWRI) of Bogoliubov excitations in a disk-shaped
Bose–Einstein condensate with the diffraction of the excitations taken into account. We show that the phase-matching
condition for the TWRI can be satisfied by a suitable selection of the wavevectors and the frequencies of the three
exciting modes involved in the TWRI. Using a method of multiple-scales we derive a set of nonlinearly coupled envelope
equations describing the TWRI process and give some explicit solitary-wave solutions.
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1 Introduction

The remarkable experimental realization of Bose–
Einstein condensation in weakly interacting atomic gases
has opened a new direction for the study on the non-
linear properties of matter waves. The most spectacu-
lar experimental progress achieved recently concern the
demonstration of atomic four-wave mixing,[1] the discov-
ery of superradiance,[2] the development of matter-wave
amplification,[3,4] and the observation of dark and bright
solitons as well as vortices in Bose–Einstein condensates
(BECs).[5,6] At the same time, an intensive theoretical
study in this area has appeared,[7−16] and new phenom-
ena such as atom holography through BEC,[17] coherent
matter-wave amplification, and superradiance in degen-
erate Fermi gases,[18] etc., have been predicted. These
researches have enabled the extension of linear atom op-
tics to a nonlinear regime, i.e., nonlinear atom optics,[19]

very much like the laser, which leads to the development
of nonlinear optics in the 1960s.

The study of collective excitations (or called quasi-
particles) is one of the main areas of interest for the re-
search activity in Bose-condensed gases. Much progress
has been made on study of the linear collective excitations
in Bose–Einstein condensates (BECs).[20] The research on
the nonlinear collective excitations in BECs has also at-
tracted much attention. Up to now, the investigation on
the nonlinear collective excitations can be classified into
two types. One of them is the low-energy excitations
with the size the same as that of condensate. The eigen-
frequencies of such excitations are discrete, i.e., they are
standing wave modes. The nonlinear frequency shift and
mode coupling have been explored both theoretically and
experimentally.[21−27] One of the interesting works in this
aspect is the experimental observation by Hodby et al.

on the Beliaev coupling of three discrete standing modes
of BEC in an anisotropic harmonic trap.[28] The other
type of excitations explored are those with the size much
smaller than that of the condensate. In this case the exci-
tations have higher energy and their eigen-frequencies are
continuous (or quasi-continuous), characterizing the in-
trinsic bulk property of the condensate.[29] Such collective
excitations can propagate a fairly long time before reach-
ing the boundary of the condensate. The most typical
nonlinear excitations of such kind explored in BECs are
solitary excitations, including dark and bright solitons.[5]

Recently, Ozeri et al. investigated the mixing of three
propagating wave-modes with energy down-conversion in
a homogeneous, single-component BEC with a repulsive
interatomic interaction and observed the oscillations of
excitation numbers between different plane-wave modes
involved in the mixing.[30]

In a recent work, we have studied the three-wave reso-
nant interaction (TWRI) in a disk-shaped BEC with a
repulsive interatomic interaction and found that three-
wave solitons are possible nonlinear excitations of the
system.[31] However, the TWRI envelope equations de-
rived and hence the soliton solutions obtained in that work
are not valid for the excitations with a narrower width be-
cause the effect of diffraction of the excitations has been
neglected. In order to consider the effect of diffraction
one must include the second spatial derivatives into the
TWRI envelope equations. Thus it is possible to find new
types of three-wave solitons in the BEC when the diffrac-
tion of the excitations is taken into account. It is this
topic that will be addressed here. Since the TWRI un-
der consideration is a process of energy up-conversion, at
zero temperature such a process can be well described by
an order parameter equation, i.e. the Gross–Pitaevskii
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(GP) equation. We shall show that the three-wave reso-
nance condition for the TWRI can be fulfilled by suitably
choosing the wavevectors and frequencies of three exciting
modes. Using a method of multiple-scales we derive the
nonlinearly coupled envelope equations including diffrac-
tion effect and give their explicit soliton solutions.

2 Model and Phase-Matching Condition for
TWRI

The dynamics of a weakly interacting Bose gas at
zero temperature is described by the time-dependent GP
equation,[20]

ih̄
∂Ψ
∂t

=
[
− h̄2

2m
∇2 + Vext(r) + g|Ψ|2

]
Ψ , (1)

where Ψ is an order parameter,
∫

dr|Ψ|2 = N is the
atomic number in the condensate, g = 4πh̄2as/m is
the interaction constant with as the s-wave scattering
length (as > 0 for a repulsive interaction). We con-
sider a disk-shaped harmonic trap of the form Vext(r) =
m[ω2

⊥(x2 + y2) + ω2
zz2]/2 with ω⊥ � ωz, where ω⊥ and

ωz are the frequencies of the trap in the transverse (x
and y) and axial (z) directions, respectively. Expressing
the order parameter in terms of its modulus and phase,
Ψ =

√
n exp(iφ), we get a set of coupled equations for n

and φ. By introducing (x, y, z) = az(x′, y′, z′), t = ω−1
z t′,

n = n0n
′ with az = [h̄/(mωz)]1/2 and n0 = N/a3

z, we ob-
tain the following dimensionless equations of motion after
dropping the primes

∂n

∂t
+∇ · (n∇φ) = 0 , (2)

∂φ

∂t
+

1
2
z2 + V‖(x, y) + Qn

+
1
2

[
(∇φ)2 − 1√

n
∇2
√

n
]

= 0 (3)

with Q = 4πNas/az and
∫

drn = 1.

V‖(x, y) = (ω⊥/ωz)2(x2 + y2)/2

is the dimensionless trapping potential in the x and y

directions. Since ω⊥/ωz is very small, we can neglect
V‖ in Eq. (3), i.e., the excitations can propagate only
within the disk plane due to the strong confinement in
the z direction. In this situation we can make the quasi-
2D approximation,[14]

√
n = P (x, y, t)G0(z), φ = −µt +

ϕ(x, y, t), where G0(z) = exp(−z2/2) is the ground-state
wave function of the 1D harmonic oscillator with the har-
monic oscillator with the harmonic potential z2/2 in the
z-direction, µ is the chemical potential of the condensate
and ϕ is a phase function contributed from the excitation,
which is assumed to be a function of x and y because as
mentioned above the generated excitation can propagate
only in the x and y directions. Then equations (2) and

(3) are reduced to

∂P

∂t
+

∂P

∂x

∂ϕ

∂x
+

∂P

∂y

∂ϕ

∂y
+

P

2

(∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
= 0 , (4)

−1
2

(∂2P

∂x2
+

∂2P

∂y2

)
−

(
µ− 1

2

)
P

+
[∂ϕ

∂t
+

1
2

(∂ϕ

∂x

)2

+
1
2

(∂ϕ

∂y

)2]
P + Q′P 3 = 0 , (5)

where Q′ = I0Q is an effective interaction constant with

I0 =
∫ ∞

−∞
dzG4

0(z)/
∫ ∞

−∞
dzG2

0(z) = 1/
√

2 .

In principle, one can take into account the contribution
of the higher-order eigen-modes of the harmonic oscillator
in the z-direction, as done in Ref. [15] for a cigar-shaped
trap. However, as here we have assumed n0g � h̄ωz, the
contribution from these higher-order eigen-modes is small
and can thus be safely neglected. On the other hand for
the thin disk-shaped trap (ω⊥/ωz � 1) the trapping po-
tential in the (x, y) plane is a slowly-varying function of x

and y and hence the size of the condensate in the radial
direction is much larger than the size of the excitations
(with the order of the healing length) considered below.
In the propagation of the excitations for short times, the
boundary of the condensate does not come into play and
we can therefore take the condensate as uniform in the
(x, y) plane (i.e. neglecting the affect from V||(x, y) ). The
effect of the condensate boundary will be considered else-
where.

The linear dispersion relation of an excitation can be
obtained by assuming in Eqs. (4) and (5)

P = u0 + a(x, y, t) (u0 > 0) .

Here (a, ϕ) = (a0, ϕ0) exp[i(k · r − ωt)] + c.c. with k =
(kx, ky), and r = (x, y) ( u0, a0 and ϕ0 are constants).
The result reads

ω(k) =
1
2
k(4c2 + k2)1/2 , (6)

where k2 = k2
x + k2

y, and c =
√

Q′u0 is the sound speed
of the system. Equation (6) is a Bogoliubov-type excita-
tion spectrum in two dimensions. A precise measurement
for such an excitation spectrum in BEC has been done by
Steinhauer et al. recently.[29]

We are interested in a TWRI among three collective
modes (kj , ωj) (j = 1, 2, 3) excited in the background of
the condensate. One of necessary conditions for the TWRI
is the phase-matching condition,

ω1 + ω2 = ω3 , (7)

k1 + k2 = k3 , (8)

where ωj ≡ ω(kj). From Eq. (6) it is easy to show that
these conditions can be satisfied if we select

k1 = (k1 cos ϑ, k1 sinϑ) , (9)
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k3 = (k3, 0) , (10)

k2 = k3 − k1 = (k3 − k1 cos ϑ,−k1 sinϑ) , (11)

where the angle ϑ satisfies the following relation,

cos ϑ =
1

2k3k1

{
k2
3 + k2

1 + 2c2 − 2
[
c4

+
(
k3

√
c2 +

1
4
k2
3 − k1

√
c2 +

1
4
k2
1

)2]1/2}
. (12)

Equation (12) has solution for any non-vanishing k1 and
k3. Another necessary condition for the TWRI is that
the nonlinearity describing the interaction between the
collective modes must have a quadratic component, sim-
ilar to a χ(2) nonlinearity in a nonlinear optical medium.
From Eqs. (4) and (5) we see that the equations describing
the excitations (P − u0, ϕ) are of not only quadratic but
also cubic nonlinearities. Consequently, in the disk-shaped
condensate a TWRI of collective excitation is indeed pos-
sible if the angle ϑ is chosen according to Eq. (12).

3 Envelope Equations for TWRI with Diffrac-
tion

Let us now derive the nonlinear envelope equations for
the TWRI with the diffraction of the excitations taken
into account. We employ the asymptotic expansion

P = u0 + ε(a(1) + ε1/2a(2) + εa(3) + · · ·) , (13)

ϕ = ε(ϕ(1) + ε1/2ϕ(2) + εϕ(3) + · · ·) , (14)

where ε is a small parameter characterizing the relative
amplitude of the excitation, and a(j), ϕ(j) (j = 1, 2, 3, . . .)
are the functions of the multiple-scale variables x, y, t,
ε1/2x, ε1/2y, εx, and εy. Substituting the above expan-
sion to Eqs. (4) and (5) we obtain

∂a(j)

∂t
+

1
2
u0

( ∂2

∂x2
+

∂2

∂y2

)
ϕ(j) = α(j) , (15)

−1
2

( ∂2

∂x2
+

∂2

∂y2

)
a(j) + 2c2a(j) + u0

∂

∂t
ϕ(j) = β(j) , (16)

j = 1, 2, 3, . . . The explicit expressions of α(j) and β(j) are
omitted here.

At leading order (j = 1), the solution reads

ϕ(1) = A0 + (A exp(iθ) + c.c.) , (17)

a(1) =
i
2

u0k
2

ω
A exp(iθ) + c.c. , (18)

where A0 (real) and A (complex) are yet to be deter-
mined envelope functions of the slow variables ε1/2x, ε1/2y,
εx, and εy introduced necessarily to eliminate the secu-
lar terms appearing in the higher-order approximations.
θ = k · r − ωt with ω(k) being just the linear dispersion
relation given by Eq. (6), and c.c. represents a correspond-
ing complex conjugate term.

In the process of the TWRI, three wave modes are
involved and hence the leading-order solution should be
taken as

ϕ(1) = A0 +
3∑

j=1

(Aj exp(iθj) + c.c.) , (19)

a(1) =
3∑

j=1

Bj exp(iθj) + c.c. , (20)

where Bj = (iu0k
2
j /2ωj)Aj , θj = kj ·r−ωjt, and Bj is the

envelope of the j-th wave mode. kj and ωj (j = 1, 2, 3) are
chosen according to the TWRI phase-matching conditions
(7) and (8). At the second order (j = 2) the solvability
conditions of Eqs. (15) and (16) result in

v1x
∂B1

∂x1
+ v1y

∂B1

∂y1
= 0 , (21)

v2x
∂B2

∂x1
+ v2y

∂B2

∂y1
= 0 , (22)

v3x
∂B3

∂x1
+ v3y

∂B3

∂y1
= 0 , (23)

where vjx and vjy (j = 1, 2, 3) are the components of the
group velocity of the j-th wave modes, vj = ∇kj

ωj .
At the third order (j = 3) the solvability conditions

of Eqs. (15) and (16) give rise to the closed equations
governing the evolution of the envelopes Bj . After mak-
ing the transformation bj = εBj (j = 1, 2, 3) and using
Eqs. (21) ∼ (23), these equations take the forms

i
(∂b1

∂x
+

v1y

v1x

∂b1

∂y

)
− g1

∂2b1

∂y2
+ σ1b

∗
2b3 e i∆k·x = 0 , (24)

i
(∂b2

∂x
+

v2y

v2x

∂b2

∂y
)− g2

∂2b2

∂y2
+ σ2b

∗
1b3 e i∆k·x = 0 , (25)

i
(∂b3

∂x
+

v3y

v3x

∂b3

∂y
)− g3

∂2b3

∂y2
+ σ3b1b2 e−i∆k·x = 0 , (26)

when returning to the original variables. Equations (24) ∼
(26) describe the evolution of the wave envelopes for the
TWRI. Different from the result in Ref. [31], here the
diffraction effect of each wave mode has been included,
reflected by the second-order derivative terms appearing
in the envelope equations. The coefficients of the diffrac-
tive terms are given by gj = −(1 + v2

jy/v2
jx)/(2kjx). The

explicit expressions for the nonlinear coefficients σj are
omitted here. A possible phase mismatch for the TWRI
has also been considered, which is denoted by the phase
factor ∆k · x with ∆k = k3 − k1 − k2.

4 Exact Soliton Solutions of TWRI Equations

We now present some exact soliton solutions of
Eqs. (24) ∼ (26). For simplicity, we assume the phase-
mismatch ∆k only has x component ∆kx, i.e. the y com-
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ponent ∆ky = 0. We set

b1 =
√

σ1ω1/(σ3ω3)F1 ,

b2 =
√

σ2ω3/(σ3ω2)F2 ,

and b3 = F3. Then equations (24) ∼ (26) are transformed
into the following forms

i
(∂F1

∂x
+

v1y

v1x

∂F1

∂y

)
− g1

∂2F1

∂y2
+ σF ∗

2 F3 e i∆kxx = 0 , (27)

i
(∂F2

∂x
+

v2y

v2x

∂F2

∂y

)
−g2

∂2F2

∂y2
+σ

ω2

ω1
F ∗

1 F3 e i∆kxx = 0 , (28)

i
(∂F3

∂x
+

v3y

v3x

∂F3

∂y

)
−g3

∂2F3

∂y2
+σ

ω3

ω1
F1F2 e−i∆kxx = 0 .(29)

To solve the above equations we assume[32]

Fj = Fj0Uj(ζ) exp(iζj)

with

ζ = Ωs−Kξ ,

ζj = Kjξ − Ωjs (j = 1, 2, 3) ,

s = T−1
0 (y − v1y/v1xx) ,

ξ = x|g1|/T 2
0 ,

where T0 denotes the soliton width. Substituting this
ansatz into Eqs. (27) ∼ (29) we obtain a set of equations
for Uj with the relations

K3 = K1 + K2 + β , (30)

Ω3 = Ω1 + Ω2 , (31)

K/Ω = α1Ω1 = α2Ω2 − γ2 = α3Ω3 − γ3 , (32)

where

α1 = 2 sgn(g1) , α2 = 2g2/|g1| ,
α3 = 2g3/|g1| , LD = T 2

0 /|g1| ,
β = −(∆kx)LD ,

γ2 = −(LD/T0)(v2y/v2x − v1y/v1x) ,

γ3 = −(LD/T0)(v3y/v3x − v1y/v1x) .

Then we get the following three types of soliton solutions.

Type 1

If α1, α2, and α3 have the same sign, the solutions of Eqs. (27) ∼ (29) take the form

F1 = 3
ω1|g1|

σT 2
0

√
ω2ω3

δ1
√

α2α3Ω2sech2(Ωs−Kξ) exp[i(K1ξ − Ω1s)] , (33)

F2 = 3

√
ω1/ω3|g1|

σT 2
0

δ2
√

α1α3Ω2sech2(Ωs−Kξ) exp[i(K2ξ − Ω2s)] , (34)

F3 = −3

√
ω1/ω2|g1|

σT 2
0

δ1δ2
√

α1α2sgn(α3)Ω2sech2(Ωs−Kξ) exp[i(K3ξ − Ω3s)] , (35)

where

δj = ±1 (j = 1, 2) , K = α1ΩΩ1 , K1 = α1Ω2
1/2− 2α1Ω2 , K2 = α2Ω2

2/2− γ2Ω2 − 2α2Ω2 ,

Ω2 = [α3Ω2
3 − α1Ω2

1 − α2Ω2
2 + 2(γ2Ω2 − γ3Ω3 − β)]/4(α3 − α1 − α2) .

The parameters Ωj (j = 1, 2, 3) are determined by
Eqs. (31) and (32). From Eqs. (33) ∼ (35) we see that
the three wave modes are simultaneously one-hump spa-
tial solitons with the same central position. The physical
reason for the formation of such simultaneous solitons is
due to the mutual self-trapping through a cascading pro-
cess between different excitation modes.

Shown in Fig. 1 is the modulus of the order parameter
in the z = 0 plane, i.e.

|Ψ| = u0 + εa(1) = u0 + P1 + P2 + P3 ,

where u0 is the condensate background and Pj (j = 1, 2, 3)
is the amplitude of the j-th wave mode with

Pj = bj exp(iθj) + c.c .

The parameters are chosen as u0 = 1.0, c = 1.0, k1 = 0.2,
k3 = 0.4, ∆kx = 0.01, T0 = 1.0, and sj = 1.0 (j = 1, 2, 3)

at time t = 1.0.

Fig. 1 The quality |Ψ|−u0 in the case of the three-wave
soliton excitation with diffraction, given by the solutions
(33) ∼ (35). The parameters are chosen as u0 = 1.0,
c = 1.0, k1 = 0.2, k3 = 0.4, ∆kx = 0.01, T0 = 1.0,
sj = 1.0 (j = 1, 2, 3) at time t = 1.0.
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For illustrating clearly, the cross section of each wave mode for different positions x is shown in Fig. 2.

Fig. 2 The amplitudes of the three modes Pj (j = 1, 2, 3) for x = −10.0, x = −5.0, x = 0.0, and x = 5.0, respectively.
The parameters are the same as used in Fig. 1.

Type 2

The case sign(α1) = sign(α2) = sign(α3) also gives rise to the solutions

F1 = −3
ω1|g1|

σT 2
0

√
ω2ω3

δ1
√

α2α3Ω2
[2
3
− sech2(Ωs−Kξ)

]
exp[i(K1ξ − Ω1s)] , (36)

F2 = −3
√

ω1ω3|g1|
σT 2

0

δ2
√

α1α3Ω2
[2
3
− sech2(Ωs−Kξ)

]
exp[i(K2ξ − Ω2s)] , (37)

F3 = 3

√
ω1/ω2|g1|

σT 2
0

δ1δ2
√

α1α2sgn(α3)Ω2
[2
3
− sech2(Ωs−Kξ)

]
exp[i(K3ξ − Ω3s)] (38)

with

K = α1ΩΩ1 , K1 =
α1

2
Ω2

1 + 2α1Ω2 , K2 =
α2

2
Ω2

2 − γ2Ω2 + 2α2Ω2 ,

Ω2 =
−α3Ω2

3 + α1Ω2
1 + α2Ω2

2 + 2(−γ2Ω2 + γ3Ω3 + β)
4(α3 − α1 − α2)

.

The solutions (36) ∼ (38) represent three dark solitons. Figure 3 shows the cross sections in different positions y

for the amplitudes of the three wave modes at time t = 1.0. We see that the intensity of each of the wave modes has
two minima.
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Fig. 3 The amplitudes of the three modes Pj (j = 1, 2, 3) at y = −1.0, y = 0.0, y = 1.5, y = 3.0, respectively, given
by the solutions (36) ∼ (38). The parameters are chosen as u0 = 1.0, c = 1.0 k1 = 2.0, k3 = 5.0, ∆kx = 0.1, T0 = 1.0,
sj = 1.0 (j = 1, 2, 3) at time t = 1.0.

Type 3

If α1α2 < 0 and α2α3 > 0, one has the solutions

F1 = −3
ω1|g1|

σT 2
0

√
ω2ω3

δ1δ2
√

α2α3sgn(α3)Ω2sech2(Ωs−Kξ) exp[i(K1ξ − Ω1s)] , (39)

F2 = 3

√
ω1/ω3|g1|

σT 2
0

iδ1

√
−α1α3Ω2sech(Ωs−Kξ) tanh(Ωs−Kξ) exp[i(K2ξ − Ω2s)] , (40)

F3 = 3

√
ω1/ω2|g1|

σT 2
0

iδ2

√
−α1α2Ω2sech(Ωs−Kξ) tanh(Ωs−Kξ) exp[i(K3ξ − Ω3s)] (41)

with

K = α1ΩΩ1 , K1 =
α1

2
Ω2

1 + α1Ω2 , K2 =
α2

2
(Ω2

2 − Ω2)− γ2Ω2 ,

Ω2 =
α3Ω2

3 − α1Ω2
1 − α2Ω2

2 + 2(γ2Ω2 − γ3Ω3 − β)
2α1 − α2 + α3

.

From Eqs. (39) ∼ (41) we see that one fundamental wave mode is a two-hump soliton, but another fundamental wave
mode and the harmonic wave mode are two-hump solitons, different from the soliton solutions in Types 1 and 2, see
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Fig. 4. Obviously, other types of three-wave soliton solutions are also possible for Eqs. (27) ∼ (29), which are not
presented here.

Fig. 4 The amplitudes of the three wave modes Pj (j = 1, 2, 3) at different positions y = −20.0, y = −15.0, y = −10.0,
and y = 0.0, respectively, given by the solutions (39) ∼ (41). The parameters are chosen as u0 = 1.0, c = 1.0, k1 = 0.2,
k3 = −0.8, ∆kx = 0.01, T0 = 1.0, sj = 1.0 (j = 1, 2, 3) at time t = 1.0.

5 Discussion and Summary

We have investigated the TWRI of Bogoliubov exci-
tations in a disk-shaped Bose–Einstein condensate. Dif-
ferent from previous approach here the effect of diffrac-
tion of the excitations is taken into account. We have
shown that the phase-matching condition for the TWRI
can be fulfilled by suitably choosing the wavevectors and
the frequencies of the three exciting modes involved in the
TWRI. Using a method of multiple-scales we have derived
a set of nonlinearly coupled envelope equations describing
the TWRI process, in which the second-order derivatives
representing the diffraction appear. We have also pro-
vided some explicit three-wave soliton solutions for these
envelope equations.

Note that the three-wave soliton solutions obtained
here are different from those found in Ref. [31]. Due to
the diffraction effect the three wave modes involved in the
TWRI can be three simultaneous solitons. The formation
of such simultaneous solitons is due to the cascading pro-
cess contributed from the nonlinear coupling between the
three wave modes. In this process, the fundamental and
the harmonic waves interact with themselves through re-
peated wave-wave interactions. For instance the energy
of one fundamental wave is first upconverted to another
fundamental wave and the harmonic wave and then down-
converted again, resulting in a mutual self-trapping of each
wave and thus the formation of three simultaneous solitary
waves. The results presented in this work can be useful to
understanding the nonlinear property of larger-amplitude
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excitations and as a guide for new experiment findings in
the study of Bose–Einstein condensates.

Disk-shaped traps have been used to realize the first
BEC in 1995[33] and observed linear excitations lately.[34]

To experimentally demonstrate the TWRI phenomenon,
one can use a disk-shaped BEC and employ a two-photon
Bragg transition technique. This technique has been used
recently by Katz et al. for studying the Beliaev damping
of Bogoliubov excitations (a down-converted TWRI) in a
BEC.[35] If the amplitude of the excitations is made large
and the wavevectors and frequencies of two fundamental

waves are chosen according to the phase-matching condi-
tion of the TWRI, it is possible to observe the TWRI and
related three-wave solitons predicted in this work. Theo-
retically, one can discuss further the second-harmonic gen-
eration and four-wave mixing of the collective excitations
in the system.

Acknowledgments

The authors are indebted to CUI Wei-Na, HANG
Chao, and Nicolas Compagnion for their useful discus-
sions.

References

[1] L. Deng, et al., Nature (London) 398 (1999) 218.

[2] S. Inouye, et al., Science 285 (1999) 571.

[3] S. Inouye, et al., Nature (London) 402 (1999) 641.

[4] M. Kozuma, et al., Science 286 (1999) 2309.

[5] S. Burger, et al., Phys. Rev. Lett. 83 (1999) 5198; J.
Denschlag, et al., Science 287 (2000) 97; Z. Dutton, et
al., Science 293 (2001) 663; K.E. Strecker, et al., Nature
417 (2002) 150; L. Khaykovich, et al., Science 296 (2002)
1290.

[6] M.R. Mattews, et al., Phys. Rev. Lett. 83 (1999) 2498;
K.W. Madison, et al., Phys. Rev. Lett. 84 (2000) 806;
J.R. Abo-Shaeer, et al., Science 292 (2001) 476; B.P. An-
derson, et al., Phys. Rev. Lett. 86 (2001) 2926.

[7] V.M. Perez-Garcia, et al., Phys. Rev. A57 (1998) 3837;
A.E. Muryshev, et al., Phys. Rev. A60 (1999) R2665;
Th. Busch and J.R. Anglin, Phys. Rev. Lett. 84 (2000)
2298; E.V. Goldstein and P. Meystre, Phys. Rev. A59
(1999) 1509; M. Trippenbach, et al., Phys. Rev. A62
(2000) 023608.

[8] Y. Wu, et al., Phys. Rev. A61 (2000) 043604.

[9] W.M. Liu, et al., Phys. Rev. Lett. 84 (2000) 2294.

[10] B. Wu, et al. Phys. Rev. Lett. 88 (2002) 034101.

[11] W. Hai, et al., Phys. Rev. E66 (2002) 026202.

[12] Y.L. Ma and S.T. Chui, Phys. Rev. A65 (2002) 053610.

[13] Q. Yang, et al., Phys. Rev. A67 (2003) 013603.

[14] G. Huang, et al., Phys. Rev. A64 (2001) 013617.

[15] G. Huang, et al., Phys. Rev. A65 (2002) 053605.

[16] G. Huang, et al., Phys. Rev. A67 (2003) 023604.

[17] O. Zobay, E.V. Goldstein, and P. Meystre, Phys. Rev.
A60 (1999) 3999.

[18] M.G. Moore and P. Meystre, Phys. Rev. Lett. 86 (2001)
4199; W. Ketterle and S. Inouye, Phys. Rev. Lett. 86
(2001) 4203.

[19] S.L. Rolston and W.D. Phillips, Nature (London) 416
(2002) 219.

[20] C.J. Pethick and H. Smith, Bose–Einstein Condensation
in Dilute Gases, Cambridge University Press, Cambridge
(2002).

[21] P.A. Ruprecht, et al., Phys. Rev. A54 (1996) 4178.

[22] F. Dalfovo, et al., Phys. Rev. A56 (1997) 4855.

[23] S.A. Morgan, et al., Phys. Rev. A57 (1998) 3818.

[24] G. Hechenblaikner, et al., Phys. Rev. Lett. 85 (2000) 692.

[25] G. Hechenblaikner, et al., Phys. Rev. A65 (2002) 033612.

[26] U. Al Khawaja and H.T.C. Stoof, Phys. Rev. A65 (2002)
013605.

[27] D. McPeake and J.F. McCann, arXiv:cond-mat/0303058.

[28] E. Hodby, et al., Phys. Rev. Lett. 86 (2001) 2196.

[29] J. Steinhauer, et al., Phys. Rev. Lett. 88 (2002) 120407.

[30] R. Ozeri, et al., Phys. Rev. Lett. 90 (2003) 170401.

[31] C. Sun and G. Huang, J. Phys. B, submitted.

[32] G. Huang, et al., J. Phys. A: Math. Gen. 83 (2000) 8477.

[33] M.H. Anderson, et al., Science 269 (1995) 198.

[34] D.S. Jin, et al., Phys. Rev. Lett. 77 (1996) 420.

[35] N. Katz, et al., Phys. Rev. Lett. 89 (2002) 220401.


