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Accessing and manipulating dispersive shock waves in a nonlinear and nonlocal Rydberg medium
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Dispersive shock waves (DSWs) are fascinating wave phenomena occurring in media when nonlinearity
overwhelms dispersion (or diffraction). Creating DSWs with low generation power and realizing their active
controls is desirable but remains a longstanding challenge. Here, we propose a scheme to generate weak-light
DSWs and realize their manipulations in an atomic gas involving strongly interacting Rydberg states under the
condition of electromagnetically induced transparency. We show that for a two-dimensional Rydberg gas, weak
nonlocality of optical Kerr nonlinearity can significantly change and induce a singular behavior of the edge
speed and hence an instability of the DSWs, which, however, can be suppressed by increasing the degree of the
Kerr nonlocality. We also show that in a three-dimensional Rydberg gas, DSWs can be created and propagate
stably when the system works in the intermediate nonlocality regime. Different from the DSWs reported before,
the DSWs found here have extremely low generation power. Moreover, such DSWs can be actively controlled;
in particular, they can be stored and retrieved with high efficiency and fidelity through switching off and on a
control laser field. The results reported here are useful not only for unveiling intriguing physics of DSWs but
also for finding promising applications of nonlinear and nonlocal Rydberg media.

DOI: 10.1103/PhysRevA.107.033503

I. INTRODUCTION

A shock wave is a typical propagating disturbance char-
acterized by an abrupt, nearly discontinuous change in
the characteristics of a material medium. Shock waves are
widespread phenomena occurring in various physical systems,
including fluids [1–3], plasmas [4–6], Bose-Einstein conden-
sates [7–12], electron gases [13], and optical media [14–34].
Besides the fundamental physics related to these fascinating
nonlinear wave propagation phenomena, the increased interest
in shock waves is also motivated by their potential applica-
tions in the fields of engineering and medicine [35].

In optics, if propagation distance is short enough and a
laser pulse (or beam) in a nonlinear medium can reasonably be
described by disregarding effects of dissipation and dispersion
(or diffraction), an initially smooth laser pulse (or beam) will
steepen rapidly during propagation because of the nonlinear
effect and it will arrive at a point of gradient catastrophe,
known as wave breaking. If the dissipation is negligibly small,
after the occurrence of the wave breaking the laser pulse (or
beam) will acquire an oscillatory structure by the interplay be-
tween the nonlinearity and dispersion (or diffraction), called
a dispersive shock wave (DSW). Otherwise, if the dissipation
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dominates over the dispersion or diffraction, the laser pulse
(or beam) will acquire only a smooth front without any oscil-
lations, called a dissipative shock wave.

On the other hand, optical materials with nonlinearities
and nonlocalities are of great interest due to their intrigu-
ing physics and practical applications [36,37]. Particularly,
Rydberg atomic gases [38] working under the condition of
electromagnetically induced transparency (EIT) [39] possess
many unique properties, which include (i) the optical absorp-
tion due to the resonance between optical fields and atoms
can be greatly suppressed via the EIT [40], a quantum de-
construction interference effect induced by a control laser
field; (ii) they can map the strong and long-range interac-
tion (i.e., the Rydberg-Rydberg interaction) between atoms
in Rydberg states into the strong and long-range interaction
between photons [41], resulting in a giant and nonlocal optical
Kerr nonlinearity; and (iii) they are configurable and control-
lable in an active way due to the existence of many tunable
parameters [42], such as atomic levels, detuning, and laser
intensities, etc. Based on these striking features, Rydberg-EIT
systems have become an excellent platform for the research of
quantum and nonlinear optics in strongly interacting atomic
ensembles [43–49] and have promising applications in many
fields such as high precision measurement and quantum infor-
mation processing [50–52].

It is well-known that light propagation in media with
a local Kerr nonlinearity can be described by a nonlinear
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envelope equation, i.e., the local nonlinear Schrödinger equa-
tion (NLSE), which is completely integrable and can be solved
exactly by the inverse scattering transform [53]. A general
approach for describing DSWs in local nonlinear media was
developed by Gurevich and Pitaevskii [54], which is based on
the Whitham modulation theory of nonlinear waves [55,56].
In this approach, DSWs are approximated by modulated
periodic-wave solutions while the evolution of solution vari-
ables is governed by the Whitham modulation equations (see,
e.g., Refs. [57–60] and review papers [61,62]). However,
when the local Kerr nonlinearity is generalized to the nonlocal
case, the nonlinear envelope equation will be modified into a
nonlocal NLSE (NNLSE), which is nonintegrable and cannot
be solved by using the inverse scattering transform method.
Yet, the Gurevich-Pitaevskii method is still applicable and the
main characteristics of DSWs can still be attained from the
restricted Whitham equations [63–67].

In this paper, we propose a scheme to generate DSWs at
a weak-light level and realize their active manipulations. The
system under study consists of a cold Rydberg atomic gas with
a ladder-type energy-level configuration under the condition
of EIT (i.e., Rydberg-EIT), which possesses a giant nonlo-
cal Kerr nonlinearity with vanishing absorption. We derive a
NNLSE governing the propagation of a probe laser beam and
investigate the formation, propagation, and control of various
types of DSWs in two- and three-dimensional (2D and 3D)
Rydberg gases.

First, we show that DSWs can be created in a 2D Rydberg
gas [68]. We find that even the existence of a very weak
nonlocality of the Kerr nonlinearity (i.e., in the case that
the Rydberg blockade radius [69] is much smaller than the
probe beam radius) can significantly change the edge speeds
of DSWs. Based on the reduced model in the regime of weak
nonlocality, the nonlocality can also make the edge speeds
display a singular behavior when the local sound speed cs

of the light fluid is in the vicinity of the critical value ccr .
Furthermore, it can induce an instability of DSWs, emerging
from the small-amplitude edge, when cs � ccr . However, for
a moderate nonlocality (i.e., in the case that the Rydberg
blockade radius is of the same order with that of the probe
beam radius), the increase of the edge speeds becomes much
slower than that in the weak nonlocality regime with growth
of cs. In this situation, the singular behavior of the edge
speeds vanishes and the instability of DSWs is thoroughly
suppressed.

Second, we show that isotropic and anisotropic DSWs can
be created in a 3D Rydberg gas, where the wave breaking oc-
curs in both two transversal spatial dimensions, in the regime
of intermediate nonlocality. Moreover, spatiotemporal DSWs
can also be excited in the intermediate nonlocality regime,
for which the wave breaking occurs in two transversal spatial
dimensions and one time dimension. We demonstrate that all
the DSWs found here have extremely low generation power
(� 10 nanowatts). In addition, such DSWs can be actively
manipulated by tuning system parameters; particularly, they
can be easily stored and retrieved with high efficiency and
fidelity through switching off and on a control laser field.

We stress that the unique properties of the DSWs found
here stem from the EIT effect for light-atom interactions and
the giant nonlocal Kerr nonlinearity induced by the strong

FIG. 1. (a) Energy-level diagram and excitation scheme of the
Rydberg gas. |α〉 (= 1, 2, 3) are atomic quantum states; �2 and �3

are, respectively, one- and two-photon detuning; �12 and �23 are,
respectively, decay rates of |2〉 and |3〉; Ep and Ec are, respectively,
the probe and control fields. VvdW(r′ − r) = −h̄C6/|r′ − r|6 is the
van der Waals potential between the Rydberg atoms at positions r and
r′, respectively. (b) Geometry for possible experimental arrangement,
where dots denote ground atoms, dashed circles denote Rydberg
blockade radius, and L is the sample length. (c) Linear dispersion
relation ω = ω(k) [given by Eq. (22)] as a function of wave number
k for ρb = 1 and G = 5.7, with R = 0.2 (black solid line), R = 0.25
(red solid line; it is a straight line), R = 0.3 (blue solid line), and
R = 0.4 (green solid line). See text for details.

Rydberg-Rydberg interaction between atoms, which are quite
different from that found in conventional media (e.g., ne-
matic liquid crystals; see Ref. [70] and references therein).
The results reported in this paper are useful not only for
unveiling physics of nonlinear and nonlocal media but also
for promising applications for optical information processing
and transformation.

The remainder of the paper is arranged as follows. In
Sec. II, we describe the physical model and present the deriva-
tion of the NNLSE governing the nonlinear propagation of the
probe laser beam. In Sec. III, we study the sound propagation
in the weak nonlocality regime. In Secs. IV and V, we present
detailed results on the formation and propagation of DSWs in
multidimensional gases. In Sec. VI, we consider the storage
and retrieval of DSWs. Finally, Sec. VII contains summary on
the main results obtained in this paper.

II. MODEL AND ENVELOPE EQUATION

A. Physical model

We start to consider a cold atomic gas with a ladder-
type three-level configuration [see Fig. 1(a)], where |1〉, |2〉,
and |3〉 denote, respectively, the ground, intermediate, and
high-lying Rydberg state. A weak probe laser field Ep (with
angular frequency ωp and wave number kp = ωp/c) couples
the transition |1〉 ↔ |2〉, and a strong control laser field Ec

(with angular frequency ωc and wave number kc = ωc/c) cou-
ples the transition |2〉 ↔ |3〉. The total electric-field vector
reads E = Ep + Ec = ∑

l=p,c elEl exp[i(kl · r − ωl t )] + c.c.,
where c.c. represents the complex conjugate of the pre-
ceding term; ep and Ep (ec and Ec) are, respectively, the
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polarization unit vector and envelope of the probe (control)
field. For avoiding the residue Doppler effect, the probe and
control fields are assumed to counterpropagate along the z axis
[Fig. 1(b)], and hence we have kp = kpez and kc = −kcez,
with ez the unit vector along the z direction.

The Hamiltonian of the system under electric-dipole and
rotating-wave approximations is given by Ĥ = Na

∫
d3r Ĥ ,

where Na is the atomic density and Ĥ is the Hamiltonian
density with the form

Ĥ = −h̄
3∑

α=2

�α Ŝαα (r, t ) − h̄[�pŜ12 + �cŜ23 + H.c.]

+Na

∫
d3r′Ŝ33(r′, t )VvdW(r′ − r)Ŝ33(r, t ). (1)

Here, �2 = ωp − (E2 − E1)/h̄ and �3 = ωp + ωc − (E3 −
E1)/h̄ are, respectively, one- and two-photon detunings,
with Eα the eigenenergy of the atomic state |α〉; Ŝαβ =
|β〉〈α| exp{i[(kβ − kα ) · r − (ωβ − ωα + �β − �α )t]} (α, β =
1, 2, 3) are atomic transition operators associated
with the states α and β, satisfying the commu-
tation relation [Ŝαβ (r, t ), Ŝμν (r′, t )] = (1/Na)δ(r −
r′)[δαν Ŝμβ (r′, t ) − δμβ Ŝαν (r′, t )]; �p = (ep · p12)Ep/(2h̄)
and �c = (ec · p23)Ec/(2h̄) are, respectively, half Rabi
frequencies of the probe and control fields, with pαβ the
electric-dipole matrix elements associated with the transition
|β〉 ↔ |α〉. The last term on the right-hand side of Eq. (1)
stems from the strongly interacting Rydberg states, where
VvdW(r′ − r) = −h̄C6/|r′ − r|6 is the van der Waals (vdW)
interaction potential between the Rydberg atoms located at
the positions r′ and r [38], with C6 the dispersion parameter
determined by the characteristics of atoms.

Under slowly varying envelope approximation, the
Maxwell equation governing the propagation of the probe
field is reduced into

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + 1

2kp
∇2

⊥�p + kp

2
χp�p = 0, (2)

where ∇2
⊥ = ∂xx + ∂yy is the transverse Laplacian operator and

χp = Na(ep · p12)2ρ21/(ε0h̄�p) is the probe-field susceptibil-
ity. The dynamics of the atomic gas is controlled by the optical
Bloch equation

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] − � [ρ̂], (3)

where ρ̂ is a 6 × 6 density matrix, with the matrix element
ραβ ≡ 〈Ŝαβ〉 [71]; � is a 6 × 6 relaxation matrix describing
the spontaneous emission and dephasing of the atoms. The
explicit expression of Eq. (3) is presented in Appendix A.

B. Nonlinear envelope equation

Since in our consideration the probe field is much weaker
than the control field, a perturbation method can be adopted
to solve the Maxwell-Bloch (MB) Eqs. (2) and (3). When
solving the MB equations, a key point is how to give an ap-
propriate theoretical approach on the many-body correlations.
From Eq. (A1) in Appendix A, one sees that the equations for
the one-body correlations ραβ (r, t ) involve two-body correla-
tions ρ33,3α (r′, r, t ) = 〈Ŝ33(r′, t )Ŝ3α (r, t )〉 (α = 1, 2), so one

must solve the equations for the two-body correlations, which,
however, involve three-body correlations, and so on. Such an
infinite equation chain (i.e., the BBGKY hierarchy) can be
solved by the reductive density matrix expansion developed in
Refs. [48,72]. Based on this approach, we obtain the following
(3 + 1)D [73] NNLSE:

i

(
∂

∂z
− 1

Vg

∂

∂t

)
�p − K2

2

∂2�p

∂t2
+ 1

2kp
∇2

⊥�p

+
∫

d3r′G(r′ − r)|�p(r′, t )|2�p(r, t ) = −iA�p, (4)

where

Vg =
(

1

c
+ κ12

|�c|2 + d2
31

D2
1

)−1

(5)

characterizes the group velocity of the probe-field envelope,
with c the light speed in vacuum (c ≈ 2.99 × 1010 cm s−1)
and D1 = |�c|2 − d21d31, with dα1 = �α + i�α/2 (�α is the
decay rate of the state |α〉; α = 2, 3). The second term on the
left-hand side describes the group-velocity (or second-order)
dispersion of the system, with the coefficient K2 given by

K2 = 2κ12
(d21 + 2d31)|�c|2 + d3

31

D3
1

. (6)

The last term on the left-hand side is contributed by the
Kerr nonlinearity originating from the Rydberg-Rydberg in-
teraction, in which the nonlocal response function G(r′ − r)
(describing the collective photon-photon interaction) owns the
form

G(r′ − r) = −kp(ep · p12)2

2ε0h̄

N2
a d21

D1
R(r′ − r)VvdW(r′ − r),

(7)

with

R(r′ − r) =

2∑
m=0

PmVvdW(r′ − r)m

3∑
n=0

QnVvdW(r′ − r)n

. (8)

Here, Pn and Qm are functions of system parameters (including
�α , γαβ , and �c), whose explicit expressions are very cum-
bersome and hence omitted here. Because the dephasing in
the system is much smaller than the spontaneous emission,
Eq. (8) can be further simplified to be

R(r′ − r) ≈ − 2(d21 + d31)|�c|2�c/|D1|2
2d21|�c|2 + D2[2d31 − VvdW(r′ − r)]

, (9)

with D2 = |�c|2 − d21(d21 + d31). It is due to the contribution
of R(r′ − r) that makes the response function G(r) have a
soft-core profile near |r| = 0 [43].

The term on the right-hand side of Eq. (4) describes
the linear optical absorption of the medium, where A =
2κ12Im(d31/D1). Since under the EIT and large one-photon
detuning conditions, i.e., |�c|2 
 γ21γ31 and |�2| 
 γ21, A
is very small in comparison with other coefficients [39], the
term on the right-hand side of Eq. (4) will be neglected in the
following discussions except in Sec. VI.
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The probe-field susceptibility can be expanded as the form
of χp ≈ χ (1)

p + ∫
d3r′χ (3)

p (r′ − r)|Ep(r′)|2, where χ (1)
p and

χ (3)
p are, respectively, the linear and third-order nonlinear

optical susceptibilities. The relation between χ (3)
p and the

nonlinear response function G(r′ − r) is given by

χ (3)(r′ − r) = 2(ep · p12)2

kph̄2 G(r′ − r). (10)

Two key features of the nonlinear susceptibility χ (3) are the
following: (i) it is position dependent, i.e., nonlocal in space;
(ii) it can be enhanced greatly; in fact, it can reach to the order
of magnitude of 10−9 m2V−2, which is more than 11 orders
larger than that obtained by using common nonlinear optical
materials, such as optical fibers [72,74]. These unique features
are rooted from the strong and long-ranged Rydberg-Rydberg
interaction.

III. SOUND PROPAGATION IN WEAK NONLOCALITY
REGIME

We first investigate the sound propagation based on the
hydrodynamical representation of the NNLSE (4). To extract
analytical results, we consider the case of DSWs under some
realistic physical conditions.

A. Characteristic quantities and systemic parameters

If the probe beam is rather extended in the y direction, one
can reduce Eq. (4) into the dimensionless form

i

(
∂

∂ζ
+ 1

λ

∂

∂τ

)
U +D∂2U

∂τ 2
+ 1

2

∂2U

∂ξ 2

+ G
∫

dξ ′g(ξ ′ − ξ )|U (ξ ′, ζ , τ )|2U = 0, (11)

with the new variables defined by U = �p/�0, ξ = x/R0,
ζ = z/Ldiff , τ = t/τ0, λ = Vgτ0/Ldiff , D = Ldiff/Ldisp, and
G = Ldiff/Lnlin. Here, �0 is maximum half Rabi frequency
of the probe field, R0 is beam radius, τ0 is pulse duration,
Ldiff = ωpR2

0/c is characteristic diffraction length, Ldisp =
−2τ 2

0 /K2 is characteristic dispersion length, and Lnlin =
1/(G0|�0|2) is characteristic nonlinearity length, the con-
stant G0 = ∫

d3r|G(r)|. The dimensionless nonlocal response
function is defined by g(ξ ′ − ξ ) = (R0/G0)

∫
dydzG(ξ ′ −

ξ, y, z), obeying the normalization condition
∫

dξ |g(ξ )| = 1.
Equation (11) is a (2 + 1)D NNLSE with ζ , τ , and ξ as
independent variables.

We assume that the probe field is sought with the form

U (ζ , τ, ξ ) = p(ζ , τ ) u(ζ , ξ ), (12)

where p(ζ , τ ) is a Gaussian wave packet propagating along
the z direction with the group velocity Vg, i.e.,

p(ζ , τ ) = 1

4

√
2πρ2

0

e−(ζ−λτ )2/(4ρ2
0 ) = 1

4

√
2πρ2

0

e−(z−Vgt )2/(4ρ2
0 L2

diff ),

(13)
with ρ0 a free real parameter. Since this wave packet is a
solution of the equation i[∂/∂ζ + (1/λ)∂/∂τ ]p = 0, Eq. (11),

after integrating over the variable τ , becomes

i
∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
+ G

∫
dξ ′g(ξ ′ − ξ ) |u(ξ ′, ζ )|2 u = 0, (14)

which governs the propagation of u if the group-velocity dis-
persion can be neglected (i.e., the dimensionless dispersion
parameter D� 1). It is a (1 + 1)D NNLSE with ζ and ξ as
independent variables [75].

Since the above analysis applied to the Rydberg-EIT sys-
tem is rather general, we will consider laser-cooled 87Rb
atomic gas as an example. The atomic levels are selected to be
|1〉 = |5S1/2〉, |2〉 = |5P3/2〉, and |3〉 = |nS1/2〉, with the spon-
taneous decay rates �2 ≈ 2π × 6 MHz and �3 ≈ 2π kHz.
The value of the dispersion parameter C6 depends on the
principal quantum number n; when n = 30, C6 ≈ −2π ×
68 MHz μm6. The half Rabi frequency of the control field
is chosen as �c = 10 MHz while the density of the atomic
gas is chosen as Na = 1.0 × 1010 cm−3. The one- and two-
photon detunings are, respectively, taken to be �2 = 60 MHz
and �3 = −0.2 MHz, by which the system approximately
works under the condition of EIT and only a small part of the
atoms are excited into the Rydberg state, avoiding a significant
probe-field absorption due to the Rydberg blockade effect.

By using the above parameters, we obtain the numerical
value of the group velocity of the probe pulse, i.e., Vg ≈
1.5 × 10−5 c. Such an ultraslow propagation velocity of the
probe-field pulse comes from the EIT effect induced by the
control field. If choosing the probe beam radius R0 ≈ 7.7 μm,
time duration τ0 ≈ 1.6 μs, and maximum half Rabi frequency
of the probe field �0 ≈ 5 MHz, we obtain Ldiff ≈ 0.47 mm,
Lnlin ≈ 0.11 mm, and Ldisp ≈ 2.1 cm (see Table I). Thereby,
the dimensionless coefficients of Eq. (11) are given by G ≈
4.1 and D ≈ 0.02 � 1, which means that the second-order
dispersion is indeed negligible.

With the given parameters, the dimensionless nonlocal re-
sponse function g(ξ ′ − ξ ) given by Eq. (14) can be written as

g(�ξ ) ≈ −g0

∫
dydz

{
g1 + g2

σ 6

[
�ξ 2 + (y2 + z2)

R2
0

]3
}−1

,

(15)
where �ξ = ξ ′ − ξ , g0 ≈ 1.26, g1 = 1 + i 0.28, and g2 =
1.5 × 10−3. In Eq. (15), σ is defined as

σ = Rb/R0, (16)

which characterizes the nonlocality degree of the Kerr non-
linearity. Here Rb = (|C6/δEIT|)1/6 is the Rydberg blockade
radius, with δEIT = |�c|2/|�2| denoting the linewidth of EIT
transmission spectrum for |�2| 
 �2. Using the parameters
given above, we have Rb ≈ 2.6μm. Up to this point, we can
draw the following conclusions: (i) under the condition that
�2 is much larger than �2 and �3 (i.e., �2 
 �2, �3), the
imaginary part of the nonlocal response function g(ξ ′ − ξ ) is
much smaller than the corresponding real part; and (ii) the
interaction between photons is repulsive, thus the Kerr nonlin-
earity obtained is of the type of defocusing, i.e., g(ξ ′ − ξ ) < 0,
which is crucial for the formation of DSWs.
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TABLE I. Important parameters and characteristic lengths for the generation of DSWs in 87Rb atoms. For more details, see the text.

Parameters R0 Rb τ0 �0 Vg Ldiff Ldisp Lnlin

Values 7.7 (μm) 2.6 (μm) 1.6 (μs) 5.0 (MHz) 1.5 × 10−5 c 0.47 (mm) 2.1 (cm) 0.11 (mm)
Parameters D G σ R ccr

Values 0.02 4.1 0.3 0.1 3.16

B. The envelope equation in weak nonlocality regime

If the nonlocality degree of the Kerr nonlinearity is weak
(σ � 1), the width of the nonlocal response function g(ξ ′ − ξ )
is finite but much narrower than the width of the probe in-
tensity |u(ξ ′, ζ )|2. Hence we can expand |u(ξ ′, ζ )|2 around
ξ ′ = ξ in the integral of Eq. (14), leading to the equation

i
∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
− G|u|2 u − R∂2|u|2

∂ξ 2
u = 0, (17)

with R = −(G/2)
∫

ξ 2g(ξ )dξ (since g(ξ ′ − ξ ) < 0, R > 0),
referred to as the intensity diffraction parameter. The above
equation implies that a weak nonlocality of the Kerr nonlin-
earity (characterized by the last term on the left-hand side of
the equation) plays the role of an intensity diffraction for the
probe beam, which may bring new and interesting phenomena
to DSWs [76]. Since parameters σ , R, and Rb all depend
on Rydberg states through the principal quantum number n,
the Rydberg-EIT system under study is far more controllable
than normal EIT systems. Additionally, Eq. (17) has also been
investigated in the framework of optical fibers, where the
occurrence of wave breaking and multiple shock phenomena
in the propagation of ultrashort laser pulses were predicted
[77–79].

Shown in Fig. 2(a) are σ ,R, and Rb as functions of n, given
by the solid black curve, the solid-dashed blue curve, and the
dashed red curve in the inset, respectively. From the figure we
see that, when n � 40, R takes a small value (say, R � 0.2).
Note that the situation n > 40 is outside the weak nonlocality
regime, given by the dashed-line segment in the curve of R.
Importantly, these data provide an efficient tool to tune the
dynamics of the optical field in different regimes.

By writing Eqs. (14) and (17) into the momentum space, a
relation between the intensity diffraction parameter R and the
nonlocality degree σ can be established in the weak nonlocal-
ity regime, given by

R ≈ Gσ 2/4, (18)

which can be further reduced to R ≈ σ 2 with the system
parameters of 87Rb atomic gas.

We also remark that if the Rydberg atomic medium works
in strong nonlocality regime (σ 
 1), where the width of
the nonlocal response function g(ξ ′ − ξ ) is much wider than
the width of the probe intensity |u(ξ ′, ζ )|2, one can ex-
pand g(ξ ′ − ξ ) around ξ ′ = ξ in the integral of Eq. (14)
and hence the equation can be simplified as i∂u/∂ζ +
(1/2)∂2u/∂ξ 2 + G(S0 + S1ξ + S2ξ

2)u = 0. Here, the param-
eters Sm = dmg(ξ )/dξm|ξ=0 P/m! (m = 0, 1, 2), with P =∫ |u(ξ, ζ )|2dξ the light power of the probe field. This
equation can be solved by using a recently developed tech-
nique based on the time asymmetric quantum mechanics

[24,25,27,33,80]. However, such a technique is not applicable
in the weak (σ � 1) and intermediate (σ ∼ 1) nonlocality
regimes.

C. Sound propagation

To acquire an understanding of shock wave behaviors, it is
helpful to express Eq. (14) in a hydrodynamic form and hence
treat the light field as a classical fluid. This can be done by us-
ing the Madelung transformation u(ξ, ζ ) = √

ρ(ξ, ζ )eiφ(ξ,ζ ),
which results in two Euler-like fluid equations

∂ρ

∂ζ
+ ∂

∂ξ
(ρv) = 0, (19a)

∂v

∂ζ
+ ∂

∂ξ

[
1

2
v2 −G

∫
dξ ′g(ξ ′ − ξ )ρ(ξ ′, ζ ) − 1

2
√

ρ

∂2√ρ

∂ξ 2

]
,

(19b)

FIG. 2. (a) The nonlocality degree σ (thin black line) and the
intensity diffraction parameter R (thick blue line) as functions of
the principal quantum number n of the atoms. The dashed part in
the curve of R means that R is not applicable because the system is
outside the weak nonlocality regime (R � 0.3). Inset: The blockade
radius Rb as a function of the principal quantum number n. (b) Inten-
sity profile ρ of the dark soliton as a function of ξ for (R,Vs ) = (0, 0)
(black solid line), (0.2,0) (cyan dash-dotted line), and (0.2,1) (red
dashed line), respectively.
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where ρ = |u|2 is the intensity and v = ∂φ/∂ξ is the flow
velocity of the light fluid. In the weak nonlocality regime, the
second equation of Eqs. (19) can be written in the form

∂v

∂ζ
+ ∂

∂ξ

[
1

2
v2 + Gρ + R∂2ρ

∂ξ 2
+ 1

8ρ2

(
∂ρ

∂ξ

)2

− 1

4ρ

∂2ρ

∂ξ 2

]
= 0, (20)

where the third term in the brackets on the left-hand side of
Eq. (20) comes from the intensity diffraction (characterized
by the intensity diffraction parameter R); the last two terms
in the bracket originate from the “quantum” pressure. All
these terms govern the formation of oscillatory waves in the
hydrodynamic approach.

For a linear propagation, the probe intensity can be ex-
pressed in the form ρ(ξ, ζ ) = ρb + δρ(ξ, ζ ), where ρb and δρ

(δρ � ρb) stand for the intensities of a uniform background
and a small perturbation (disturbance), respectively. In the
weak nonlocality regime, the equation for the small pertur-
bation is governed by the linear Boussinesq equation

∂2δρ

∂ζ 2
− ρbG

∂2δρ

∂ξ 2
+

(
1

4
− ρbR

)
∂4δρ

∂ξ 4
= 0. (21)

We consider a plane-wave solution δρ = A ei(kξ−ωζ ) + c.c.,
where A is the real amplitude and c.c. means the complex
conjugate. Then we get the linear dispersion relation

ω = k

√
Gρb +

(
1

4
− Rρb

)
k2. (22)

It appears that when R > 1/(4ρb), there always exists a crit-
ical value of k, i.e., kcr = [Gρb/(Rρb − 1/4)]1/2, such that
ω becomes imaginary when k > kcr, corresponding to the
occurrence of modulation instability (MI). Notice that the MI
can emerge not only for focusing media but also for defo-
cusing nonlocal media which can induce the formation of
self-organized structures (see, e.g., Ref. [81] and references
therein). In the long wavelength limit (k → 0), the dispersion
relation takes the form

ω ≈ csk, cs =
√
Gρb, (23)

where cs is called the local sound speed of long waves on
the stationary background ρb. Then, the condition of MI of a
uniform background can be written as

cs > ccr = 1

2

√
G
R

, (24)

where ccr is the critical value of the sound speed. Figure 1(c)
shows the dispersion relation (22) for different values of the
intensity diffraction parameter R. For the system parameters
given in Sec. III A, we have σ = 0.3, R ≈ 0.1, and ccr ≈ 3.16
(see Table I).

When the perturbation (disturbance) increases, the nonlin-
earity must be taken into account, and hence the equation of
δρ can be written in the form of the standard Boussinesq
equation, which supports dark-soliton solutions. A detailed
consideration on how to get exact dark-soliton solutions of the
full model (19) is presented in Appendix B. Figure 2(b) shows
the intensity profile ρ of the soliton with different values of

R and Vs (soliton velocity) as a function of ξ . One sees that
the soliton width decreases with growth of R for the same Vs,
i.e., the increase of nonlocality leads to the narrowing of the
dark soliton. This is because the probe intensity diffraction
contributed by the nonlocality is negative [see Eq. (17)] and
hence it gives an opposite effect against the normal positive
diffraction, which results in an increase of the soliton width.
On the other hand, the soliton depth decreases with growth of
Vs for the same R. We stress that the nonlocal dark solitons
found here have much lower generation power than those
reported before in other systems.

IV. DISPERSIVE SHOCK WAVES IN TWO-DIMENSIONAL
RYDBERG GASES

A. Wave breaking and shock wave formation

When the nonlinearity overwhelms the diffraction, a large
and smooth perturbation can change its profile since each
point of the perturbation propagates with a local sound speed
(c = √

Gρ), rather than with the background sound speed
(cs = √

Gρb). Consequently, higher-intensity parts of the pro-
file will travel at a faster speed, leading to the wave steepening
and, eventually, wave breaking followed by the formation of
a shock wave. To describe such an event occurring before the
shock wave formation, we let R→ 0 and omit the quantum
pressure in Eqs. (19b) and (20), arriving at the celebrated
shallow-water-like equations for the light fluid of the probe
field

∂ρ

∂ζ
+ ∂

∂ξ
(ρv) = 0, (25a)

∂v

∂ζ
+ ∂

∂ξ

(
1

2
v2 + Gρ

)
= 0. (25b)

To study these equations, it is convenient to cast them into the
diagonal Riemann form

∂r+
∂ζ

+ 1

2
(3r+ + r−)

∂r+
∂ξ

= 0, (26a)

∂r−
∂ζ

+ 1

2
(r+ + 3r−)

∂r−
∂ξ

= 0, (26b)

where the Riemann invariants are given by

r± = v

2
±

√
Gρ. (27)

(see, e.g., Refs. [82,83]). As long as r+ and r− are found, the
light fluid intensity and the flow velocity are found by

ρ = 1

4G
(r+ − r−)2, v = r+ + r−. (28)

In the case of arbitrary initial light intensity and flow veloc-
ity, ρ(ξ, 0) and v(ξ, 0), both Riemann invariants are changing
with the propagation distance ζ and the corresponding solu-
tion of Eqs. (26) can be found by the Riemann method [84].
In the following, we shall confine ourselves to the so-called
simple waves, in which case we are interested in only one
of the left- and right-moving parts since both parts move
independently after separation, and hence only one of the
Riemann invariants is a function of ζ and the other one is a
constant.
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Particularly, we assume r− = const and the flow velocity is
equal to zero in the neighboring undisturbed region. Thus we
have

r− = v

2
−

√
Gρ = −

√
Gρb. (29)

Then the flow velocity can be written as v = 2
√
G(

√
ρ −√

ρb) and the first equation of Eqs. (26) is reduced to the Hopf
equation

∂r+
∂ζ

+ 1

2
(3r+ −

√
Gρb)

∂r+
∂ξ

= 0, (30)

which admits the solution (see, e.g., Refs. [56,82,83])

ξ − 1
2 (3r+ −

√
Gρb)ζ = ξ (r+,0), (31)

with ξ (r+,0) the inverse function to the initial distribution
r+,0 = r+(ξ, 0) of the Riemann invariant r+(ξ, ζ ).

To be concrete, we assume that the initial light fluid inten-
sity and the flow velocity have the form

ρ(ξ, 0) = ρb + ρh e−ξ 2/w2
h , v(ξ, 0) = 0, (32)

which can be easily prepared in a real experiment. Here ρh

and wh characterize, respectively, the peak intensity and the
width of a Gaussian hump added on the uniform background.
From Eqs. (31) and (32), one can readily obtain the solution

ξ (ρ) =
√
G(3

√
ρ − 2

√
ρb)ζ + wh

√
ln[ρh/(ρ − ρb)], (33)

and hence the intensity can be expressed implicitly with the
solution

ρ(ξ, ζ ) = ρb + ρh e−[ξ−√
G(3

√
ρ−2

√
ρb)ζ ]2/w2

h . (34)

Since the flow velocity v depends on the light intensity ρ,
the hump indeed exhibits a self-steepening in the direction of
propagation, resulting in a gradient catastrophe ∂ξρ(ξ, ζ ) =
−∞ at a certain distance ζ = ζwb. This gradient catastro-
phe leads to the well-known wave breaking phenomenon,
followed by the shock wave formation. The distance ζwb is
referred to as the wave-breaking distance, which can be deter-
mined from the conditions

∂ξ (ρ)

∂ρ
= 0,

∂2ξ (ρ)

∂ρ2
= 0, (35)

yielding the solution

ζwb = wh

3
√
G

√
ρs + ρb

ρs − ρb
. (36)

Here ρs is the light fluid intensity corresponding to ∂ξρs →
−∞, which can be obtained from the equation

ln

(
ρh

ρs − ρb

)
= ρs

ρs + ρb
. (37)

Although it is hard to have analytical solutions of the above
equation, one can solve it numerically.

Figure 3(a) shows the result on the light intensity profile ρ

as a function of ξ at different propagation distances ζ . We
see that an obvious self-steepening of the hump occurs in the
direction of propagation, which results in a wave breaking at
a certain distance. Plotted in Fig. 3(b) is the wave-breaking
distance ζwb as a function of the hump’s peak intensity ρh.

FIG. 3. (a) Light intensity profile ρ as a function of ξ for different
distances ζ = 0, 0.5, 1, and 1.5. The hump exhibits an obvious self-
steepening in the direction of propagation. A gradient catastrophe
(wave breaking) occurs at ζ ≈ 0.7. (b) The wave-breaking distance
ζwb as a function of the hump’s peak intensity ρh. Inset: The wave-
breaking distance ζwb as a function of the hump’s width wh. A good
agreement is obtained between the analytical prediction (denoted by
solid black and dash-dotted blue lines) and the numerical calculation
(denoted by symbols + and x, respectively).

In the figure, the analytical result is given by the solid black
and dash-dotted blue lines, and the numerical one is denoted
by the points indicated by symbols red + and blue x, re-
spectively. The dependence of ζwb on the hump’s width wh is
illustrated in the inset of the figure. We see that ζwb decreases
rapidly (slowly) with growth of ρh when ρh is small (large),
and ζwb increases linearly with growth of wh. Thus, there
is good agreement between analytical predictions (denoted
by lines) and numerical calculations (denoted by symbols),
which means that the diffraction indeed has no significant
effect on the occurrence of the wave breaking.

Note that ζwb may depend on the nonlocality degree of the
Kerr nonlinearity if the system works in the strong nonlocality
regime. This issue, however, has been discussed in Ref. [20]
in a different setting and is outside the scope of this paper.

B. DSWs in the weak nonlocality regime

After the occurrence of the wave breaking, the negligible
diffraction approximation is not applicable anymore to such
a problem. Therefore, we have to consider the diffraction,
which can interplay with the Kerr nonlinearity. Indeed, such
an interplay leads to the formation of a DSW instead of a
nonphysical multivalued solution. In practice, one can obtain
global solutions of the Whitham equations if the system under
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consideration belongs to the class of completely integrable
equations. If this is not true, as in our case, we have to resort
to the method developed by El [64], which works very well
for both integrable and nonintegrable equations, providing
limited but very important information about DSWs. More-
over, since the soliton velocity is always smaller than the
long-wave sound speed cs [seen from Eq. (B3)], the front
small-amplitude edge of a DSW must propagate with a group
velocity faster than that of the trailing soliton edge. El’s
method allows us to find the velocities of both edges of DSWs.
Hereafter, we use sDSW

+ (sDSW
− ) to represent the speed of the

small-amplitude (soliton) edge of DSWs.

1. Small-amplitude edge of DSWs

In practice, it is convenient to rewrite the dispersion rela-
tion (22) in the form

ω = k[v + cα(c)], (38)

where c denotes the local sound speed, c = √
Gρ, and

α(c) =
√

1 + 1 − c2/c2
cr

4c2
k2, k = 2c

√
α2 − 1

1 − c2/c2
cr

, (39)

with ccr = √
G/R/2 the critical value of the sound speed

[defined by Eq. (24)]. Following the procedure described in
Refs. [64–66], the equation for the function α(c) can be found
as

dα

dc
= − (α + 1)

[
2α + 1 − (2 + α)c2/c2

cr

]
(2α + 1)(1 − c2/c2

cr )c
. (40)

For a right-moving DSW, its left edge corresponds to the
soliton edge, which moves slowly; its right edge corresponds
to the small-amplitude edge, which moves fast. Then, Eq. (40)
can be solved with the boundary condition α(c = cL ) = 1,
where cL denotes the local sound speed at the left (soliton)
edge of the DSW, given by

cL =
√
GρL, (41)

with ρL the left-edge intensity. Such a boundary condition
means that the small-amplitude edge merges into the soli-
ton edge where the distance between wave crests becomes
infinitely large, i.e., k → 0.

When α = α(c) is solved (this can be done numerically),
the velocity of the small-amplitude edge can be obtained,
given by

sDSW
+ = dω

dk

∣∣∣∣
c=cR

= cR

[
2α(cR) − 1

α(cR)

]
, (42)

where cR = √
GρR denotes the local sound speed at the right

(small-amplitude) edge.

2. Soliton edge of DSWs

The speed of the soliton edge of the DSW can be estab-
lished by using the dispersion relation Eq. (B3). From the

correspondence relationship Eq. (B4), we can write ω̃ in the
form

ω̃ = k̃[v + cα̃(c)], (43)

where

α̃ =
√

1 − 1 − c2/c2
cr

4c2
k̃2, k̃ = 2c

√
1 − α̃2

1 − c2/c2
cr

. (44)

Then, the equation for the variable α̃(c) is found to be

dα̃

dc
= − (̃α + 1)

[
2α̃ + 1 − (2 + α̃)c2/c2

cr

]
(2α̃ + 1)

(
1 − c2/c2

cr

)
c

, (45)

which has the same form with Eq. (40) except that in this
case the equation should be solved with the boundary con-
dition α̃(c = cR) = 1. Such a boundary condition means that
the soliton edge merges into the small-amplitude edge where
the amplitude of oscillatory waves vanishes together with the
inverse half-width of the soliton, i.e., k̃ → 0.

The soliton velocity is given by Vs = v + cLα̃(cL ), accord-
ing to Eqs. (B4) and (43), where the flow velocity v is obtained
by Eq. (29). Therefore, the speed of the soliton edge can be
expressed as

sDSW
− = Vs = cL[2 + α̃(cL )] − 2cs. (46)

The intensity of the trailing soliton at the soliton edge can be
found from Eq. (B2), given by

ρb − ρm = (
c2

s − V 2
s

)
/G, (47)

where we have used the relation ρb = c2
s /G.

3. Singular behavior of the DSW edge speeds

In the above discussion, we have found the analytical ex-
pressions of DSW edge speeds, given by Eqs. (42) and (46).
In fact, the edge speeds can be greatly increased with growth
of the local sound speed, and they may exhibit a singular
behavior when the local sound speed is in the vicinity of the
critical value ccr , which is dependent on the nonlocality degree
σ of the Kerr nonlinearity.

To demonstrate this, we solve Eqs. (40) and (45) with
different values of the intensity diffraction parameter R in
the range of cs < cL < ccr [equivalent to the range of ρb <

ρL < ρcr = 1/(4R)]. Plotted in Fig. 4 are the velocities of
the small-amplitude and soliton edges, i.e., sDSW

+ and sDSW
− ,

as functions of the left-edge local sound speed cL for different
intensity diffraction parameter R. From the results illustrated
in the figure, we see that both sDSW

+ and sDSW
− are increasing

functions of cL. Particularly, sDSW
+ and sDSW

− increase more
and more rapidly with growth of cL, and a singular behavior
occurs at the critical point cL = ccr for both edge speeds,
corresponding to a change of the sign of the coefficient be-
fore k2 in Eq. (39). Particularly, the singularity occurs at
cL = ccr ≈ 3.162 (cL = ccr ≈ 2.236) for R = 0.1 (R = 0.2).
However, in the case of vanishing nonlocality (i.e., R = 0),
both sDSW

+ and sDSW
− are linearly increasing functions of cL,

displaying no singular behavior. Generally, sDSW
+ and sDSW

− for
R > 0 are larger than those for R = 0 in the weak nonlocality
regime.
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FIG. 4. The velocities of the small-amplitude (sDSW
+ ) and soliton

(sDSW
− ) edges, as functions of the left-edge local sound speed cL for

different intensity diffraction parameter R. (a) The upper (lower) part
is for sDSW

+ (sDSW
− ); solid red (dashed black) lines are for R = 0.1

(R = 0). (b) The same as (a) but with R = 0.2 and R = 0. Note that
these edge speeds become singular at cL = ccr ≈ 3.162 for R = 0.1
[(a)], and at cL = ccr ≈ 2.236 for R = 0.2 [(b)]; no singular behavior
occurs for the case of R = 0 (local medium limit).

C. Numerical simulations and stability of DSWs

The validity of the analytical results has been confirmed
by carrying out numerical simulations on Eq. (17) by tak-
ing different values of the intensity diffraction parameter R
besides—the results of numerical simulations on the nonre-
duced model (14) are presented in Appendix C). Strictly
speaking, the above formulas are correct for the description
of propagation of the initial steplike discontinuity which is of
the simple-wave type. However, an initial pulse usually splits
to two simple waves propagating in opposite directions, so
these formulas provide asymptotic values of the edge speeds
in a quite general situation (see more details in Ref. [66]). To
be concrete, in our simulations, the initial condition is chosen
as Eq. (32), with ρb = 1, ρh = 2, and wh = 1.

Shown in Figs. 5(a1) and 5(a2) are, respectively, the probe
intensity ρ = |u|2 at ζ = 3 and its propagation result from
ζ = 0 to 3 for R = 0. Figures 5(b1) and 5(b2) show the same
results as in Figs. 5(a1) and 5(a2) but for R = 0.1. From the
first and second columns, we see clearly that in both cases
the DSWs are quite stable during propagation, which is due
to the fact of cL < ccr . Actually, the left-edge intensities in
Figs. 5(a1) and 5(b1) are, respectively, given by ρL ≈ 1.8
and ρL ≈ 2, corresponding to the left-edge local sound speeds
cL ≈ 2.7 and cL ≈ 2.9. Since ccr → ∞ (ccr ≈ 3.162) for R =
0 (R = 0.1), one has cL < ccr in both situations. Moreover, the
increase of velocities of the small-amplitude and soliton edges
with growth of R (cL), found by the analytical approach in the
last subsection, is also observed in the numerical simulation
[see the slope of the lines of sDSW

+ and sDSW
− in Figs. 5(a2) and

5(b2)].
The case with larger intensity diffraction parameter, R =

0.2, is also calculated, with the results presented in Figs. 5(c1)
and 5(c2). In this case, however, the DSW becomes unstable
and the instability emerges at the small-amplitude edge of

FIG. 5. Numerical results of the formation and propagation of a DSW based on the model (17). Snapshots of the intensity profile ρ = |u|2
at ζ ≡ z/Ldiff = 3 (upper panels) and corresponding level plots of the propagation from ζ = 0 to 3 (lower panels) for the intensity diffraction
parameter R = 0 [(a1) and (a2)], 0.1 [(b1) and (b2)], and 0.2 [(c1) and (c2)], respectively. In all columns, the initial condition is given by
Eq. (32), with ρb = 1, ρh = 2, and wh = 1. The slopes of dash-dotted blue (dashed green) lines in the lower panels denote the speeds of the
soliton (small-amplitude) edges of the DSW. The vertical dotted black lines in the lower and upper panels give the positions of the soliton and
small-amplitude edges of the DSW in the transverse (x) direction. The DSW is stable in the first (R = 0) and second (R = 0.1) columns, for
cL ≈ 2.7 < ccr → ∞ and cL ≈ 2.9 < ccr ≈ 3.162, respectively. However, it is unstable in the third column (R = 0.2) for cL > ccr ≈ 2.236.
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FIG. 6. (a) Comparison between the analytical and numerical re-
sults of the small-amplitude (sDSW

+ ) and soliton (sDSW
− ) edge speeds as

functions of the left-edge local sound speed cL . Lines are analytical
results for R = 0.1 (solid black lines) and 0 (dashed black lines);
symbols are numerical results for R = 0.1 (+ for sDSW

− and x for
sDSW
+ ) and 0 (hollow circles for sDSW

− and solid circles for sDSW
+ ).

(b) Stability (instability) diagram of the DSW in the plane of cL

andR. The left-lower (white) and right-upper (cyan) domains denote,
respectively, the stability and instability regions of the DSW. The
solid red, solid blue, and hollow blue stars correspond to the values
of the DSW shown in Figs. 5(a1) and 5(a2), 5(b1) and 5(b2), and
5(c1) and 5(c2), respectively.

the DSW. The reason for the instability comes from the local
sound speed at the left (soliton) edge, cL, being larger than the
critical value ccr , i.e.,

cL > ccr = 1

2

√
G
R

. (48)

Therefore, such an instability originates from the MI of sound
waves. Since solitons are usually rather stable due to the
nonlocality of the Kerr nonlinearity [85], the instability does
not emerge at the soliton edge [86].

In Fig. 6(a), we provide a comparison between the
analytical predictions and numerical calculations of the small-
amplitude (sDSW

+ ) and soliton(sDSW
− ) edge speeds, which are

taken as functions of the left-edge local sound speed cL. Good
agreement is achieved between the analytical and numerical
results, implying the effectiveness of our theoretical analysis
presented in the last subsection. Figure 6(b) shows the sta-
bility (instability) diagram of DSWs in the plane of (cL,R).
It is seen that the instability of DSWs occurs in the region
where both cL and R have large values [denoted by the right-
upper (cyan) domain]. Otherwise, if cL and/or R have small
values, DSWs are stable. This tells us that it is possible to

FIG. 7. Formation and propagation of DSWs in the intermedi-
ate nonlocality regime, obtained by solving the model (11). (a1)
Snapshot of intensity profile ρ = |u|2 at ζ = z/Ldiff = 3 for the non-
locality degree σ = 0.8. (a2) Level plot for the propagation of ρ from
ζ = 0 to 3 for σ = 0.8, with the initial condition being the same with
that used in Fig. 5. (b) Velocities of the small-amplitude and soliton
edges, sDSW

+ and sDSW
− , as functions of the left-edge local sound speed

cL for σ = 0.8 and 0. Dashed lines: Analytical results for σ = 0;
solid lines: fitting curves for σ = 0.8. Symbols + and x: numerical
results for σ = 0.8 (+ for sDSW

− and x for sDSW
+ ), and 0 (hollow circles

for sDSW
− and solid circles for sDSW

+ ).

control the stability (instability) of DSWs in an active way by
changing either cL (or the left-edge intensity ρL) and R (or the
nonlocality degree σ ) in the present Rydberg-EIT system.

D. DSWs for a moderate degree of nonlocality

When the nonlocality degree of the Kerr nonlinearity is
increased so σ ∼ 1, the system works in the intermediate
nonlocality regime. In this situation, the reduced model (17)
is not applicable and we have to solve the nonreduced model
(14) by using numerical methods.

Shown in Figs. 7(a1) and 7(a2) are the probe-field intensity
ρ at ζ = 3 and its propagation from ζ = 0 to 3 for σ = 0.8,
respectively. The initial condition is the same with that used
in Fig. 5. As one can see, the left-edge local sound speed cL,
and hence the left-edge intensity ρL, is increased significantly
due to growth of the nonlocality degree σ . To be specific,
one has cL ≈ 3.5 (ρL ≈ 3.0) for σ = 0.8. Fig. 7(b) shows the
velocity of the small-amplitude edge, sDSW

+ , and the one of the
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soliton edge, sDSW
− , as functions of the left-edge local sound

speed cL for σ = 0.8. In contrast with the DSW edge speeds
in the weak nonlocality regime, they increase more and more
slowly with growth of cL and are slower than those for σ = 0
in the intermediate nonlocality regime. Moreover, the DSW
edge speeds show no singular behavior in this regime and no
instability is observed, i.e., the increment of nonlocality can
suppress the instability of DSWs.

V. DISPERSIVE SHOCK WAVES IN
THREE-DIMENSIONAL RYDBERG GASES

We now turn to the investigation on DSWs in a 3D Rydberg
gas. Because in this situation the analytical approach em-
ployed in the last section is not applicable, we have to resort to
numerical simulations. It is well-known that high-dimensional
localized nonlinear excitations are usually unstable in Kerr
media, thus the suppression of such instability is one of the
great challenges. Nevertheless, here we show that the insta-
bility of DSWs in a 3D Rydberg gas can be arrested by the
giant nonlocal Kerr nonlinearity contributed by the Rydberg-
Rydberg interaction; the active control over DSWs can also be
effectively realized by using the Rydberg-EIT system.

A. DSWs for the case of weak dispersion (D = 0)

We look for DSWs in the form

U (ζ , τ, ξ , η) = p(ζ , τ ) u(ζ , ξ , η), (49)

where the wave packet p(ζ , τ ) is still given by Eq. (13), but u
is governed by the (3 + 1)D wave equation

i
∂u

∂ζ
+D ∂2u

∂τ 2
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u

+ G
∫∫

dξ ′dη′g(ξ ′ − ξ, η′ − η)|u(ξ ′, η′, ζ )|2 u = 0,

(50)

with ζ , τ , ξ , and η as independent variables. Here,
η = y/R0 is the other transverse coordinate; the nonlocal
response function g(ξ ′ − ξ, η′ − η) = (1/G0)

∫
dζ G(ξ ′ −

ξ, η′ − η, ζ ), obeying
∫∫

dξdη |g(ξ, η)| = 1; and other pa-
rameters in Eq. (50) are the same as those used in Eq. (11).
For the parameters of cold 87Rb atoms, the expression of the
nonlocal response function in Eq. (50) can be simplified in the
form

g(�ξ,�η) ≈ −g0

∫
dζ

{
g1 + g2

σ 6

[
�ξ 2 +�η2 + z2

R2
0

]3
}−1

,

(51)

with �ξ = ξ ′ − ξ , �η = η′ − η, and g0,1,2 being the same
with those used in Eq. (15).

Following the line of the above two sections, under
the condition of negligible group-velocity dispersion (i.e.,
D ≈ 0; see the discussion given in Sec. III A) and in the weak
nonlocality regime (i.e. σ � 1), Eq. (50) can be reduced
to a simple model: i∂u/∂ζ + (1/2)(∂2/∂ξ 2 + ∂2/∂η2)u −
G|u|2 u − [Rx∂

2|u|2/∂ξ 2 + Ry∂
2|u|2/∂η2]u = 0, where

Rx=−(G/2)
∫

ξ 2g(ξ, η) dξ and Ry=−(G/2)
∫

η2g(ξ, η) dη

are intensity diffraction parameters in the x and y directions,

respectively. However, we find that such a reduced model
cannot support stable DSWs for any values of Rx and Ry, i.e.,
the weak nonlocality of the Kerr nonlinearity cannot prevent
the occurrence of instability in two transverse directions.

This fact tells us that, to suppress the occurrence of the
instability of DSWs in 3D gas, one must increase the nonlo-
cality degree σ [87], and hence the system must work in the
intermediate nonlocality regime (σ ∼ 1) and we need to solve
Eq. (50) instead of the reduced model. Figure 8 shows the
results on the formation and propagation of DSWs in 3D gas
for σ = 0.4, obtained by numerically solving Eq. (50) under
the condition of negligible group-velocity dispersion (D ≈ 0).
Compared with DSWs in 2D gas, DSWs in 3D gases allow
diverse profiles of the probe-field intensity and exhibit richer
physical phenomena.

Figures 8(a1) and 8(a2) present the surface plot of an
isotropic DSW, by taking the probe-field intensity ρ = |u|2
as a function of x/R0 and y/R0 at ζ = z/Ldiff = 4 (its level
plot is shown in the inset on the upper right) and the corre-
sponding profile on the cross-sectional plane y = 0 (x = 0),
respectively. When implementing the calculation, we have
used the transformation u(ξ, η, ζ ) = √

ρ(ξ, η, ζ )eiφ(ξ,η,ζ ) and
the following initial condition:

ρ(ξ, η, 0) = ρb + ρh e−ξ 2/w2
h,x−η2/w2

h,y ,

v(ξ, η, 0) = 0. (52)

Here ρb and ρh are, respectively, the uniform background
and the Gaussian peak intensity of the probe field; wh,x and
wh,y are, respectively, hump’s widths along the x and y di-
rections. In the example, we have taken ρb = ρh = 1 and
wh,x = wh,y = 2. In this case, the DSW obtained is isotropic
in both transverse (i.e., x and y) directions and it is quite stable
during propagation.

The system also supports other kinds of DSWs, which can
be obtained by considering wh,x �= wh,y. Figures 8(b1) and
8(b2) show, respectively, the surface plot and profile of the
DSW for σ = 0.4, with the initial condition the same as that
used in Figs. 8(a1) and 8(a2) except that wh,y = 2

√
10; the

solid (dashed) line in Fig. 8(b2) illustrates ρ on the cross-
sectional plane y = 0 (x = 0). We see that, since wh,x < wh,y,
the wave breaking occurs first in the x direction, where a fast
oscillation structure appears; in this case, the DSW obtained
has a symmetric intensity profile in the x or y direction, but
they are different from each other. We call such a DSW the
type-I anisotropic DSW for convenience.

A different type of anisotropic DSWs from the one given
in Figs. 8(b1) and 8(b2) can also be found. Illustrated in
Figs. 8(c1) and 8(c2) is an anisotropic DSW for σ = 8, ob-
tained by using the following initial condition:

ρ(ξ, η, 0) = ρb − ρh ξ e−ξ 2/w2
h,x−η2/w2

h,y ,

v(ξ, η, 0) = 0, (53)

where ρh = 1 and wh,x = wh,y = 2. From the figure, we see
that the intensity of the DSW is symmetric in one transverse
direction and antisymmetric in the other transverse direction
[33]. We call such a DSW the type-II anisotropic DSW.
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FIG. 8. DSWs obtained by numerically solving NNLSE (50) in the intermediate nonlocality regime for dimensionless dispersion parameter
D ≈ 0. (a1), (a2) Surface plot and profile of the probe-field intensity of an isotropic DSW for the nonlocality degree σ = 0.4, by taking ρ = |u|2
as a function of x/R0 and y/R0 at z = 4Ldiff . Inset: Level plot of the isotropic DSW. The initial condition is given by Eq. (52), with ρb = ρh = 1
and wh,x = wh,y = 2. (b1), (b2) Surface plot and profile of the probe-field intensity of a type-I anisotropic DSW for σ = 0.4. The initial
condition is the same as that used in (a1) and (a2) but with wh,y = 2

√
10. (c1), (c2) Surface plot and profile of the probe-field intensity of a

type-II anisotropic DSW for σ = 8. The initial condition is given by Eq. (53), with ρb = ρh = 1 and wh,x = wh,y = 1. In (b2) and (c2), the
solid (dashed) line illustrates ρ on the cross-sectional plane y = 0 (x = 0).

B. DSWs for the case of large dispersion (D = 0.5)

In the above discussion, the group-velocity dispersion of
the system has been disregarded, which is valid only for
cases where the time duration of the probe field τ0 is large
enough (and hence the dimensionless parameter D ≈ 0). If
τ0 is shortened so the dispersion length Ldisp of the system is
decreased, the group-velocity dispersion effect of the system
will play a significant role for the formation and propagation
of DSWs. For example, when τ0 = 0.33μs, one has Ldisp ≈
0.94 mm, and hence D = 0.5. In such a situation, the terms
of the dispersion and diffraction in Eq. (4) must be treated at
the same footing, and the dimensionless half Rabi frequency
of the probe field cannot be factorized anymore. Then, the
dimensionless form of the (3 + 1)D NNLSE (4) can be written
in the form

i
∂U

∂ζ
+ 1

2

(
∂2

∂T 2
+ ∂2

∂ξ 2
+ ∂2

∂η2

)
U

+ G
∫∫

dξ ′dη′g(ξ ′ − ξ, η′ − η)|U (ξ ′, η′, ζ , T )|2U = 0,

(54)

where T = τ − ζ/λ, with definitions of other dimensionless
quantities being the same as those given in Eq. (50).

Shown in Fig. 9 is the result of a DSW obtained by nu-
merically solving (3 + 1)D equation (54) in the intermediate
nonlocality regime, σ = 0.4. Since the wave breaking and
the oscillatory structure appear in both two transversal spatial
dimensions and the time dimension, such DSW is indeed a
spatiotemporal one. Figure 9(a) shows the surface plot of the
probe-field intensity of an isotropic spatiotemporal DSW at

FIG. 9. Spatiotemporal DSWs obtained by solving (3 + 1)D
equation (54) in the intermediate nonlocality regime (σ = 0.4) for
dimensionless dispersion parameter D = 0.5. (a) Surface plot of the
probe-field intensity of an isotropic DSW at z = 3Ldiff by taking
ρ = |U |2 as a function of x/R0, y/R0, and t/τ0. Inset: Level plots
of the isotropic DSW on the cross-sectional planes y = 0 (upper
part) and t = 0 (lower part), respectively. The initial condition used
is given by Eq. (55), with ρb = ρh = 1 and wh,x = wh,y = wh,t = 2.
(b) Similar to (a) but for an anisotropic DSW. The initial condition is
the same as that used in (a) but with wh,t = 2

√
10.
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FIG. 10. Stability diagram of DSWs in the 3D gas in the plane
of the nonlocality degree σ and the nonlinearity strength G. The
lower-right (white) and upper-left (cyan and dark cyan) domains
denote the stability and instability regions of DSWs, respectively.
The dark cyan domain is the instability region of the DSW for the
case of weak dispersion (i.e. D = 0); both the cyan and dark cyan
domains consist of the instability region of the DSW for the case
of strong dispersion (i.e. D = 0.5). The hollow blue star in the in-
stability region corresponds to the value of (σ,G) = (0.03, 4.1); the
solid blue and solid red stars in the stability region give the values of
(σ,G) = (0.1, 4.1) and those for DSWs shown in Figs. 8(a1)–8(b2)
and Fig. 9, respectively. Inset: Level plots of the unstable DSW
(upper part) and the stable DSW (lower part), corresponding to the
values for hollow blue and solid blue stars, respectively.

z = 3Ldiff , by taking ρ = |U |2 as a function of x/R0, y/R0, and
t/τ0. The insets present level plots of this isotropic DSW on
the cross-sectional planes y = 0 (upper part) and t = 0 (lower
part), respectively. The initial condition is given by

ρ(ξ, η, τ, 0) = ρb + ρh e−ξ 2/w2
h,x−η2/w2

h,y−τ 2/w2
h,t ,

v(ξ, η, τ, 0) = 0, (55)

where wh, j ( j = x, y) and wh,t denote, respectively, the pulse’s
spatial and time widths, with other parameters the same as
those used in Eq. (52). In the numerical calculation, we have
taken ρb = ρh = 1 and wh,x = wh,y = wh,t = 2.

Shown in Fig. 9(b) is the surface plot of the probe-field
intensity of an DSW by taking the initial condition basically
the same as that used in Fig. 9(a), but with wh,t = 2

√
10. In

this case, the intensity profile of the DSW is not isotropic and
the result obtained is an anisotropic spatiotemporal DSW. It
should be stressed that the spatiotemporal DSW found here
are quite stable during propagation, which is due to the contri-
bution of the giant nonlocal Kerr nonlinearity that can balance
the effects of the dispersion and diffraction in the system.

The stability diagram of DSWs in the 3D Rydberg gas is
illustrated in Fig. 10, plotted in the plane of the nonlocal-
ity degree σ and the nonlinearity strength G. In the figure,
the lower-right (white) and upper-left (cyan plus dark cyan)
domains in the figure represent the stability and instability
regions of DSWs, respectively. The dark cyan domain denotes
the instability region of DSWs for the case of negligible dis-
persion (i.e., D ≈ 0); both the cyan and dark cyan domains
consist of the instability region of DSWs for the case of strong
dispersion (i.e., D = 0.5). The hollow blue star in the insta-
bility region corresponds to the value of (σ,G) = (0.03, 4.1);

the solid blue and solid red stars in the stability region give
the values of (σ,G) = (0.1, 4.1) and (0.4,4.1), corresponding
to those for the DSWs shown in Figs. 8(a1)–8(b2) and Fig. 9.
From the stability diagram, one can find DSWs are unstable
for small σ and large G; nevertheless, they are stable for large
σ and small G. Further, the instability region of DSWs for
the case of strong dispersion (D = 0.5) is much lager than
that for the case of negligible dispersion (D ≈ 0). Thus, for a
fixed value ofG, the DSWs with the group-velocity dispersion
require a larger value of σ for arresting instability than that
required by the DSWs without the group-velocity dispersion.
For example, when G ≈ 4.1, a stable DSW in the 3D gas can
be obtained if σ � 0.04 forD ≈ 0 and σ � 0.09 forD ≈ 0.5.

C. Generation power of DSWs

The generation power of DSWs described above can be
estimated by computing the corresponding Poynting’s vector
integrated over the cross-sectional area of the probe beam,
i.e., P = ∫

dS(Ep × Hp) · ez, where ez is the unit vector in
the propagation direction (i.e., the z direction) [48]. Assuming
that the directions of the electric and magnetic fields are along
the x and y directions, respectively, i.e., Ep = (Ep, 0, 0) and
Hp = (0, Hp, 0), with the relation Hp = ε0cnpEp (np is the
refractive index), one can obtain

Pgen = 2ε0cnpS0|Ep|2max = 2ε0cnpS0

(
2h̄

p13

)2

|�p|2max, (56)

where S0 denotes the cross-sectional area of the probe beam,
i.e., S0 ≈ w2

h (≈wh,xwh,y) for DSWs in 2D (3D) gas.
Based on Eq. (56) with the system parameters of Rydberg

87Rb atomic gas, we obtain

Pgen ≈
{

3.5 nW, DSWs in 2D gas
7.0 nW, DSWs in 3D gas. (57)

Note that in the above calculation, the power of the uniform
background of light is excluded. In contrast with other sys-
tems, the generation power of DSWs in the present system is
extremely weak. The physical reason is that the present sys-
tem possesses giant Kerr nonlinearity attributed to the strong
Rydberg-Rydberg interaction. Such low generation power is
important not only for the generation of quantum DSWs [88]
but also for the applications of DSWs in fields of optical
information transmission at very-weak-light level.

VI. STORAGE AND RETRIEVAL OF DSWS

Another challenging problem in the research of DSWs is
how to realize their active manipulations. Here we show that
DSWs found in the present Rydberg-EIT system can be ac-
tively controlled; especially, the control field in the model may
be taken as a knob to realize their storage and retrieval, similar
to the photonic memory realized in conventional EIT-based
systems [42,89–100].

TO realize the switching off and switching on of the control
field, we assume that the half Rabi frequency of the control
field �c is not a constant but a slowly varying function of
time. Particularly, for t < Toff , �c is switched on; at the time
interval Ton − Toff , it is switched off; then, at time t = Ton

it is switched on again. For the convenience of numerical
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FIG. 11. Storage and retrieval of a DSW in a 2D Rydberg gas.
(a) Evolution of probe-field intensity ρ = |U |2 as a function of
x/(9R0) and t/τ0 in the course of the storage and retrieval of the
DSW. The time intervals of 0 < t = 0.6τ0, 0.6τ0 < t < 1.2τ0, and
t > 1.2τ0 are ones before the storage, during the storage, and after
the storage (retrieval), respectively. The corresponding |�c|τ0 as a
function of t/τ0 is shown by the blue solid line on the right part of the
figure. The lower and upper white dashed lines denote the times of
switching off and switching on of �c (i.e., Toff and Ton), respectively.
(b) The same as (a) but for the matrix element ρ13 ≡ 〈Ŝ13〉.

simulations, we model such a time sequence of the control
field by the following function:

�c(t ) = �c0

[
1 − 1

2
tanh

(
t − Toff

Ts

)
+ 1

2
tanh

(
t − Ton

Ts

)]
,

(58)

where �c0 is the amplitude; Toff and Ton are, respectively,
times of switching off and switching on; Ts is the time char-
acterizing the switching duration. The time sequence of the
control field is depicted in Fig. 11 (blue curves).

Due to the time dependence of �c, some system param-
eters (e.g., group velocity Vg, group-velocity dispersion K2,
absorption coefficient A, etc.) also become slowly varying
functions of time. Table II lists the expressions of Vg, K2, and
A when �c is switched off and on under the conditions of
large one-photon detuning (|�2| 
 γ21) and zero two-photon
detuning (�3 = 0). We see that, when the control field is
switched off (�c ≈ 0), Vg is decreased from |�c|2/κ12 to
nearly zero (which corresponds to the slowing down and halt
of the probe field in the atomic medium), K2 is changed from
2κ12�2/|�c|4 to −2κ12/�

3
2, and A is increased from zero to

κ12�2/�
2
2 (which corresponds to a strong absorption of the

probe field in the atomic medium). Based on these results,

we have the following conclusions: (i) the absorption term
on the right-hand side of Eq. (4) cannot be neglected due to
the increase of A when the control field is switched of and
(ii) the group-velocity dispersion is weak as long as the time
duration τ0 of the probe field is large enough (say, τ0 � 5μs)
soD = Ldisp/Ldiff � 1 always holds (see Table II).

A. Storage and retrieval of DSWs in 2D Rydberg gas

We first consider the storage and retrieval of DSWs in a 2D
Rydberg gas. The pulse solution of Eq. (11) can be found by
using the factorization

U (ζ , τ, ξ ) = p(ζ , τ )q(τ, ξ ), (59)

where the wave packet p(ζ , τ ) is given by Eq. (13) and q(τ, ξ )
is governed by the (1 + 1)D equation:

i

λ

∂q

∂τ
+ 1

2

∂2q

∂ξ 2
+ G

∫
dξ ′g(ξ ′ − ξ )|q(ξ ′, τ )|2q = −iAq.

(60)
Here, the coefficient A = Ldiff/Labso, with Labso = 1/A the
characteristic absorption length. When obtaining Eq. (60), we
have assumed that the group-velocity dispersion in the system
is negligible (i.e., D ≈ 0), and integrated over the variable ζ .
Note that, in contrast with the function u in Eq. (14), which
is only space dependent, q in the above equation is time
dependent and hence describes the time evolution of the probe
field.

To simulate the whole process of storage and retrieval
of DSWs, we must solve the original model, i.e., the MB
Eqs. (2) and (3), numerically. Shown in Fig. 11(a) is the
spatial-temporal evolution of probe-field intensity ρ = |U |2
as a function of x and t in the course of the storage and
retrieval of a DSW. From the figure, we see that the DSW
propagates in the gas when t < 0.6τ0, where the control field
�c is switched on. Then, the DSW disappears in the time
interval of 0.6τ0 < t < 1.2τ0, where �c is switched off, which
means that the DSW is stored in the atomic medium in this
time interval. Lastly, it reappears at t > 1.2τ0, which means
that the DSW is retrieved when the control field is switched
on again. The retrieved profile has nearly the same shape as
the one before the storage, except a slight attenuation due to
the weak dissipation contributed by the spontaneous emission
and dephasing in the system.

Drawn in Fig. 11(b) is the same as Fig. 11(a) but for the
matrix element ρ13 ≡ 〈Ŝ13〉 (called atomic spin wave). One
sees that, before t = 0.6τ0 and after t = τ0, ρ13 has a similar
wave shape with |U |2; however, it becomes a constant in the
time interval of 0.6τ0 < t < 1.2τ0. Since the probe field is
stored in the form of spin wave ρ13 when the control field is
switched off and is retained until the control field is switched

TABLE II. Some system parameters and characteristic lengths for the switching on and switching off of the control field under the
conditions |�2| 
 γ21 and �3 = 0. For more details, see the text.

Parameters Vg K2 A Ldisp Labso

Switching on (|�c| ∼ �2) |�c|2/κ12 2κ12�2/|�c|4 0 τ 2
0 |�c|4/(κ12�2) ∞

Switching off (�c ≈ 0) 0 −2κ12/�
3
2 κ12�2/�

2
2 τ 2

0 �3
2/κ12 �2

2/(κ12�2)
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FIG. 12. Storage and retrieval of DSWs in a 3D Rydberg gas.
(a) Level plots describing the evolution of the probe-field intensity
in the course of the storage and retrieval of a DSW with negli-
gible group-velocity dispersion (D ≈ 0) by taking ρ = |q|2 as a
function of x/(9R0) and y/(9R0 ), at times t = 0.3τ0 (before the
storage), t = 0.9τ0 (during the storage), and t = 1.5τ0 [after the
storage (retrieval)], respectively. (b) Surface plots on the evolution
of the probe-field intensity in the course of the storage and re-
trieval of a DSW with large group-velocity dispersion (D ≈ 0.5)
by taking ρ = |U |2 as a function of x/R0, y/R0, and t/τ0, at posi-
tions z = 0 (before the storage), z = 2Ldiff ≈ 0.94 mm (during the
storage), and z = 4Ldiff ≈ 1.88 mm [after the storage (retrieval)],
respectively.

on again, ρ13 can be taken as the intermediary for the storage
and retrieval of the probe DSW.

B. Storage and retrieval of DSWs in 3D Rydberg gas

For a 3D Rydberg gas with negligible group-velocity dis-
persion (D = 0), the solution of Eq. (11) can be found with
the form

U (ζ , τ, ξ , η) = p(ζ , τ )q(τ, ξ , η), (61)

where the function q(τ, ξ , η) is governed by the (2 + 1)D
equation

i

λ

∂q

∂τ
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
q + G

∫∫
dξ ′dη′g2D(ξ ′ − ξ, η′ − η)

× |q(ξ ′, η′, τ )|2q = −iAq. (62)

For a 3D gas with non-negligible group-velocity disper-
sion (i.e., D �= 0), one cannot factorize U similar to (61)
anymore. In this case, the evolution of U is governed
by an equation similar to Eq. (54), where the absorption
term −iAU should be added on the right-hand side of the
equation.

Figure 12 shows the result of numerical simulation on the
storage and retrieval of a DSW in a 3D Rydberg gas. For
simplicity, we have carried out simulations only on isotropic
DSWs (anisotropic DSWs give similar results). Illustrated in
Fig. 12(a) are level plots for the evolution of the probe-field
intensity ρ = |q|2 in the course of the storage and retrieval of
a DSW withD ≈ 0, by taking |q|2 as a function of x and y, at

times t = 0.3τ0 ≈ 0.48 μs (before the storage), t = 0.9τ0 ≈
1.44 μs (during the storage), and t = 1.5τ0 ≈ 2.4 μs [after
the storage (retrieval)], respectively. We see that at t = 0.9τ0

the DSW disappears, which is due to the switching off of
the control field and hence the DSW is stored in the atomic
medium. Then, at t = 1.5τ0, the DSW reappears, which is
due to switching on of the control field and thus the DSW
is retrieved from the atomic medium.

Shown in Fig. 12(b) are surface plots for the evolution of
the probe-field intensity ρ = |U |2 in the course of the storage
and retrieval of a DSW with D ≈ 0.5, by taking |U |2 as a
function of x/R0, y/R0, and t/τ0, at positions z = 0 (before the
storage), z = 2Ldiff ≈ 0.94 mm (during the storage), and z =
4Ldiff ≈ 1.88 mm [after the storage (retrieval)], respectively.
One sees that, because of the switching off and switching
on of the control field, the DSW disappears at z = 2Ldiff and
reappears at z = 4Ldiff , corresponding to the DSW storage and
retrieval in the atomic medium.

The physical reason for the realization of the DSW mem-
ory can be understood as an information conversion between
the probe pulse and the atomic medium. During the storage,
the information carried by the DSW is converted into the
atomic spin wave. Then, during the retrieval the information
carried by the atomic spin wave is converted back into the
DSW. Mathematically, the success of such DSW memory is
due to the existence of dark-state polariton allowed by the
MB Eqs. (2) and (3) [39,89]. If the system starts from the
dark state |D〉 = �∗

c |1〉 − �p|3〉 = �∗
c [|1〉 − (�p/�

∗
c )|3〉], it

approximately remains in this dark state, even when �∗
c and

�p are approaching zero but their ratio �p/�
∗
c keeps nearly

to be a constant in the course of the storage and retrieval
process [99].

C. Efficiency and fidelity of the DSW memory

The quality of the storage and retrieval of DSWs can be
characterized by efficiency η and fidelity ηJ , where η and J
are, respectively, defined by

η =
∫ ∞

Ton
dt

∫∫
dxdy

∣∣�retr
p (x, y, t )

∣∣2∫ Toff

−∞ dt
∫∫

dxdy
∣∣�stor

p (x, y, t )
∣∣2 , (63a)

J =
∣∣ ∫ ∞

−∞ dt
∫∫

dxdy�retr
p (x, y, t − �T )�stor

p (x, y, t )
∣∣2∫ Toff

−∞ dt
∫∫

dxdy
∣∣�stor

p

∣∣2 ∫ ∞
Ton

dt
∫∫

dxdy
∣∣�retr

p

∣∣2 ,

(63b)

Here, �stor
p and �retr

p are the stored and retrieved half
Rabi frequencies of the probe field, respectively. Based on
the results given in Figs. 10 and 11, we estimate the max-
imum efficiency and fidelity of the DSW memory, which
can reach (η, ηJ ) ≈ (93%, 90%) [(η, ηJ ) ≈ (90%, 87%) in
the 2D (3D) Rydberg gas. We would like to point out that
in realistic experiments, because of the decoherence induced
by the inhomogeneous broadening due to residual magnetic
fields, spin-wave dephasing, and atomic motions [100], the
maximum efficiency and fidelity of the DSW memory might
be lower than the values predicted above.
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FIG. 13. Effects of the strength and nonlocality degree of the
Kerr nonlinearity on the quality of the DSW memory in 2D and 3D
Rydberg gases. (a) The fidelity ηJ of DSW memory as a function
of the probe-field amplitude |�pτ0| (dashed blue line) and the nonlo-
cality degree σ (solid black line) in a 2D Rydberg gas. The symbols
(squares and circles) are numerical results, and the dashed and solid
curves are the fitting ones. (b) The same as in (a), but for the DSWs
in a 3D Rydberg gas.

We stress that quality of the DSW memory depends on var-
ious physical factors of the system. The first one is the strength
of the Kerr nonlinearity. Figure 13(a) shows the fidelity ηJ
as a function of the probe-field amplitude |�pτ0| (given by
the dashed blue line) for a 2D Rydberg gas. The symbols
(squares) are numerical results and the dashed curve is the
fitting one. It is seen that for moderate amplitudes, |�pτ0| ≈ 8,
the fidelity reaches its maximum, with the retrieved DSW
having nearly the same wave shape as the original one prior
to the storage. For small and large amplitudes, the fidelity
features small values, implying that the retrieved DSW suffers
evident distortion. This happens because, for the weak and
strong probe-field amplitudes, the Kerr nonlinearity is either
too weak or too strong to interplay with the diffraction of
the DSW. The fidelity ηJ as a function of |�pτ0| for the
DSW in a 3D gas is also calculated, given by the dashed
blue line in Fig. 13(b), which has the similar features depicted
above.

The nonlocality degree of the Kerr nonlinearity can also
lead to a significant effect on the quality of the DSW memory.
The solid black line in Fig. 13(a) is the fidelity ηJ as a
function of the nonlocality degree σ for the DSW in the 2D

gas (the circles are numerical results and the solid curve is the
fitting one). One sees that ηJ decreases when σ increases.
The dependence of ηJ on σ for the DSW in a 3D gas is also
obtained [given by the solid black line in Fig. 13(b)], which
is sharply different from the case of the DSW in the 2D gas.
In particular, ηJ for the DSW memory in the 3D gas reaches
its maximum at a moderate value of the nonlocality degree,
i.e., σ ≈ 1. However, when σ is deviated from this moderate
value, ηJ is reduced rapidly. The physical reason for such
phenomenon is the following. For small σ , the system works
in the weak nonlocality regime where the DSW in the 3D
gas is unstable; on the other hand, for large σ , the Rydberg
blockade effect can take effect, leading to the deterioration of
EIT and hence a large absorption of the DSW.

VII. SUMMARY

In this paper, we have proposed and analyzed in detail a
scheme for generating weak-light DSWs and realizing their
active manipulations by means of the giant nonlocal Kerr
nonlinearity in cold Rydberg atomic gases working under the
condition of EIT. We have shown that in 2D Rydberg gases,
even a very weak nonlocality of the Kerr nonlinearity can sig-
nificantly change the edge speeds of DSWs, which display a
singular behavior when the local sound speed (cs) approaches
a critical value (ccr). Moreover, the weak nonlocality may
induce the instability of DSWs when cs reaches or overpasses
ccr . However, as the local sound speed increases, the increase
of the edge speeds of DSWs becomes much slower in the
intermediate nonlocality regime, where the singular behavior
of edge speeds disappears and the instability of DSWs is
thoroughly suppressed.

We have also shown that in a 3D Rydberg gas, DSWs can
also be generated, which are stable during propagation when
the system works in the intermediate nonlocality regime.
Based on the EIT effect and the giant nonlocal Kerr nonlin-
earity due to the Rydberg-Rydberg interaction, DSWs found
here have extremely low generation power (� 10 nanowatts).
In addition, we have demonstrated that the active control of
such DSWs can be effectively implemented; especially, they
can be stored and retrieved with high efficiency and fidelity
through switching off and switching on the control laser field.
Our analytical and numerical study paves a route to create,
manipulate, store, and retrieve DSWs in strongly interacting
Rydberg gases. Such active controllability in this setting may
be useful for exploring intriguing physics of DSWs [80,88]
and developing optical technologies based on nonlinear and
nonlocal Rydberg media [101].
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APPENDIX A: OPTICAL BLOCH EQUATIONS

The optical Bloch equation describing the time evolution
of the density-matrix elements ραβ ≡ 〈Ŝβα〉 reads

i
∂

∂t
ρ11 − i�12ρ22 + �∗

pρ21 − �pρ12 = 0, (A1a)

i
∂

∂t
ρ22 + i�12ρ22 − i�23ρ33 + �∗

cρ32 − �cρ23

−�∗
pρ21 + �pρ12 = 0, (A1b)

i
∂

∂t
ρ33 + i�23ρ33 − �∗

cρ32 + �cρ23 = 0, (A1c)(
i
∂

∂t
+ d21

)
ρ21 + �∗

cρ31 − �p(ρ22 − ρ11) = 0,

(A1d)(
i
∂

∂t
+ d31

)
ρ31 − �pρ32 + �cρ21

−Na

∫
d3r′V (r′ − r)ρ33,31(r′, r, t ) = 0, (A1e)(

i
∂

∂t
+ d32

)
ρ32 − �∗

pρ31 − �c(ρ33 − ρ22)

−Na

∫
d3r′V (r′ − r)ρ33,32(r′, r, t ) = 0, (A1f)

where ραβ = 〈Ŝαβ〉 is one-body density matrix element, d21 =
�2 + iγ21, d31 = �3 + iγ31, d31 = �3 + iγ31, d32 = �3 −
�2 + iγ32, γαβ = (�α + �β )/2 + γ

dep
αβ (α �= β; �1 = 0), and

�β = ∑
α<β �αβ , with �αβ the spontaneous emission decay

rate and γ
dep
αβ the dephasing rate from |β〉 to |α〉. For cold

atoms, γ
dep
αβ is usually much less than �αβ and hence is negli-

gible.
The last terms on the left-hand side of Eqs. (A1e) and

(A1f)] include the two-body correlators ρ33,3α (r′, r, t ) ≡
〈Ŝ33(r′, t )Ŝ3α (r, t )〉 (α = 1, 2), which are contributed by the
Rydberg-Rydberg interaction.

APPENDIX B: DARK-SOLITON SOLUTIONS

If the diffraction is significant enough to balance the Kerr
nonlinearity, it is possible to have dark solitons in the present
system since the Kerr nonlinearity is strong and defocusing.
The dark soliton solutions of Eqs. (19) in the weak nonlocality
regime can be found by using the traveling-wave method, i.e.,
via the combination ξ − Vsζ , with Vs the velocity of solitons.

We assume that far from the soliton location, the flow
velocity of the light fluid vanishes and the light intensity
approaches to the value of background ρb. Equations (19a)
and (20) support the following dark soliton solution:

ξ = 2

√
R
G

arccot

(
1

2

√
G(1 − 4Rρ)

R(Gρ − V 2
s )

)
− 1

2

√
1 − 4Rρb

Gρb − V 2
s

× ln

√
�/� − 1√
�/� + 1

, (B1)

where � = (Gρb − V 2
s )(1 − 4Rρ) and � = (Gρ − V 2

s )(1 −
4Rρb). The intensity at the center of the soliton is ρ(ξ = 0) =

FIG. 14. Results of the numerical simulation on a DSW based on
the model (11). (a1), (a2) Snapshot of the intensity profile ρ = |u|2 at
ζ ≡ z/Ldiff = 3 [(a1)] and the corresponding level plot of the propa-
gation from ζ = 0 to 3 [(a2)] for the intensity diffraction parameter
σ = 0.3. (b1), (b2) The same as (a1) and (a2) but for σ = 0.44. The
slopes of dash-dotted blue (dashed green) lines in the lower panels
denote the speeds of the soliton (small-amplitude) edges of the DSW.
The vertical dotted black lines in the lower and upper panels give the
positions of the soliton and small-amplitude edges of the DSW in the
transverse (x) direction.

ρm = V 2
s /G, and the depth of the dark soliton reads

ρb − ρm = ρb − V 2
s /G, (B2)

which depends on the soliton velocity Vs. When the soliton is
stationary (Vs = 0), it has zero intensity at the soliton center,
corresponding to the largest depth. Far from the soliton lo-
cation, |ξ | → ∞, the soliton follows the asymptotic behavior
ρb − ρ ∝ e−k̃|ξ |, with k̃ = 2

√
(Gρb − V 2

s )/(1 − 4Rρb), which
determines the inverse half-width of the soliton. As a result,
the soliton velocity can be expressed as

Vs =
√
Gρb −

(
1

4
− Rρb

)
k̃2, (B3)
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which is related to the dispersion relation of linear wave (22)
by

Vs = ω(ik)

ik
= ω̃(̃k)

k̃
, (B4)

with

ω̃ = k̃

√
Gρb −

(
1

4
− Rρb

)
k̃2. (B5)

This is a consequence of Stokes’ remark [102] that the soliton
tails are described by the corresponding linear equation and
propagate with the same velocity as the soliton itself; hence
Eq. (B5) can also be obtained from the dispersion relation (22)
by means of the replacements k → ik and ω → iω.

Shown in Fig. 2(b) of the main text is the soliton intensity
profile ρ with different values of (R,Vs) as a function of ξ . We
stress that, though a model similar to (17) and related solutions
have been considered in Refs. [103,104], the nonlocal dark
solitons presented here have much lower generation power
and are more flexible for controls because, in the present,
the system the Kerr nonlinearity is extremely large and its
nonlocality degree can be manipulated actively.

APPENDIX C: SIMULATIONS OF THE NONREDUCED
MODEL (14)

The results shown in Fig. 5 are obtained from the reduced
model (17) in the regime of the weak nonlocality, where some
analytically tractable results can be extracted. To confirm the
validity of these results, we carry out numerical simulations
on the nonreduced model (14) and the results are illustrated in
Fig. 14.

Figure 14 shows results of a numerical simulation on the
formation and propagation of a DSW based on the model

(11). Figures 14(a1) and 14(a2) are snapshots of the inten-
sity profile ρ = |u|2 at ζ ≡ z/Ldiff = 3 [Fig. 14(a1)] and the
corresponding level plot of the propagation from ζ = 0 to 3
[Fig. 14(a2)], for the intensity diffraction parameter σ = 0.3
(corresponding to R = 0.1). Figures 14(b1) and 14(b2) are the
same as those in Figs. 14(a1) and 14(a2) but for σ = 0.44
(corresponding to R = 0.2). The initial condition used in the
simulation is given by Eq. (32), with ρb = 1, ρh = 2 and
wh = 1. The results for σ = 0 are the same as those given in
Figs. 5(a1) and 5(a2) for R = 0 and hence are neglected; the
results shown in Figs. 14(a1) and 14(a2) for σ = 0.3 agree
well with those given in Figs. 5(b1) and 5(b2) for R = 0.1,
confirming the validity of the reduced model (17) as well as
the related analytical results.

The results presented in Figs. 14(b1) and 14(b2) for σ =
0.44, however, are sharply different from those displayed in
Figs. 5(c1) and 5(c2) for R = 0.2. It is seen that in Figs. 5(c1)
and 5(c2), the DSW is unstable, stemming from the MI of
sound waves, but the DSW is stable in of Figs. 14(b1) and
14(b2). This contradiction can be explained as follows. In
deriving the reduced model (17), we have made the expansion
of the probe intensity ρ = |u|2 and used the assumption that
Gρ > R∂2

ξ ρ, which can be rewritten as

G > Rk2, (C1)
in the k space. On the other hand, from the linear dispersion
(22), we get that MI occurs when Gρb + (1/4 − Rρb)k2 < 0,
i.e.,

G < [R− 1/(4ρb)]k2. (C2)

Clearly, the above two conditions are contradictory. Hence,
in the region of parameters where MI occurs, the weak non-
locality approximation breaks down. However, it should be
stressed that the appearance of MI is a valid result in the
situation when the reduced Eq. (17) is a model in its own right
[105].
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