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Canonical statistics of trapped ideal and interacting Bose gases
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The mean ground-state occupation number and condensate fluctuations of interacting and noninteracting
Bose gases confined in a harmonic trap are considered by using a canonical ensemble approach. To obtain the
mean ground-state occupation number and the condensate fluctuations, an analytical description for the prob-
ability distribution function of the condensate is provided directly starting from the analysis of the partition
function of the system. For the ideal Bose gas, the probability distribution function is found to be a Gaussian
one for the case of the harmonic trap. For the interacting Bose gas, using a unified approach the condensate
fluctuations are calculated based on the lowest-order perturbation method and on Bogoliubov theory. It is found
that the condensate fluctuations based on the lowest-order perturbation theory follow the law^d2N0&;N, while
the fluctuations based on Bogoliubov theory behave asN4/3.
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I. INTRODUCTION

The experimental achievement of Bose-Einstein cond
sation~BEC! in dilute alkali-metal atoms@1#, spin-polarized
hydrogen @2#, and recently in metastable helium@3# has
greatly stimulated theoretical research@4–6# on ultracold
bosons. Among the several intriguing questions on the sta
tical properties of trapped interacting Bose gases, the p
lem of condensate fluctuations^d2N0& of the mean ground-
state occupation number^N0& is of central importance. Apar
from the intrinsic theoretical interest, it is foreseeable t
such fluctuations will become experimentally testable in
near future@7#. On the other hand, the calculations of^d2N0&
are crucial to investigate the phase collapse time of the c
densate@8,9#.

It is well known that within a grand-canonical ensemb
the fluctuations of the condensate are given by^d2N0&
5N0(N011), implying thatdN0 becomes of orderN when
the temperature approaches zero. To avoid this sort of
physically large condensate fluctuations, a canonical~or a
microcanonical! ensemble has to be used to investigate
fluctuations of the condensate. On the other hand, becau
the experiment the trapped atoms are cooled continuo
from the surrounding, the system can be taken as bein
contact with a heat bath but the total number of particles
the system is conserved. Thus it is necessary to use the
nonical ensemble to investigate the statistical properties
the trapped weakly interacting Bose gas.

Within the canonical as well as the microcanonical e
sembles, the condensate fluctuations have been studied
tematically in the case of an ideal Bose gas in a box@10–14#
and in the presence of a harmonic trap@14–21#. Recently,
the question of how interatomic interactions affect the c
densate fluctuations has been the subject of several theo
cal investigations@22–27#. Idziaszeket al. @23# investigated
the condensate fluctuations of interacting Bose gases u
the lowest-order perturbation theory and a two-gas mo
1050-2947/2002/65~3!/033609~11!/$20.00 65 0336
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while Giorgini et al. @22# addressed this problem within
traditional particle-number–nonconserving Bogoliubov a
proach. Recently, Kocharovskyet al. @26# supported and ex-
tended the results of the work of Giorginiet al. @22# using a
particle-number–conserving operator formalism.

Although the condensate fluctuations are thoroughly
vestigated in Refs.@22–26#, to the best of our knowledge u
to now an analytical description of the probability distrib
tion function for the interacting Bose gas directly from th
microscopic statistics of the system has not been given. N
that as soon as the probability distribution function of t
system is obtained, it is straightforward to get the me
ground-state occupation number and the condensate fluc
tions. The purpose of the present work is to attempt to p
vide such an analytical description of the probability dist
bution function of interacting and noninteracting Bose ga
based on the analysis of the partition function of the syste

We shall investigate in this paper the condensate fluc
tions of interacting and noninteracting Bose gases confi
in a harmonic trap. The analytical probability distributio
function of the condensate will be given directly from th
partition function of the system using a canonical ensem
approach. For an ideal Bose gas, we find that the probab
distribution of the condensate is a Gaussian function. In p
ticular, our method can be easily extended to discuss
probability distribution function for a weakly interactin
Bose gas. A unified way is given to calculate the condens
fluctuations from the lowest-order perturbation theory a
from Bogoliubov theory. We find that different methods
approximation for the interacting Bose gas give quite diff
ent predictions concerning the condensate fluctuations.
show that the fluctuations based on the lowest-order per
bation theory follow the laŵ d2N0&;N, while the fluctua-
tions based on the Bogoliubov theory behave asN4/3.

The paper is organized as follows. Section II is devoted
outlining the canonical ensemble, which is developed to d
cuss the probability distribution function of Bose gases.
Sec. III, we investigate the condensate fluctuations of
ideal Bose gas confined in a harmonic trap. In Sec. IV,
©2002 The American Physical Society09-1
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condensate fluctuations of the weakly interacting Bose
are calculated based on the lowest-order perturbation the
In Sec. V, the condensate fluctuations due to collective e
tations are obtained based on Bogoliubov theory. Fina
Sec. VI contains a discussion and summary of our resul

II. FLUCTUATIONS AND MEAN GROUND-STATE
OCCUPATION NUMBER OF THE CONDENSATE

IN THE CANONICAL ENSEMBLE

According to the canonical ensemble, the partition fun
tion of the system withN trapped interacting bosons is give
by

Z@N#5 (
SnNn5N

exp@2b~SnNn«n1Eint!#, ~1!

whereNn and«n are the occupation number and energy le
of the state n5$nx ,ny ,nz%, respectively. b51/kBT and
$nx ,ny ,nz% are non-negative integers.Eint is the interaction
energy of the system. For convenience, by separating ou
ground-staten50 from the statenÞ0, we have

Z@N#5 (
N050

N

$exp@2b~E01Eint!#Z0~N,N0!%, ~2!

whereZ0(N,N0) stands for the partition function of a ficti
tious system comprisingN2N0 trapped ideal noncondense
bosons:

Z0~N,N0!5 (
(nÞ0Nn5N2N0

expF2b (
nÞ0

Nn«nG . ~3!

AssumingA0(N,N0) is the free energy of the fictitious sys
tem, we have

A0~N,N0!52kBT ln Z0~N,N0!. ~4!

The calculation of the free energyA0(N,N0) is nontrivial
because there is a requirement that the number of non
densed bosons isN2N0 in the summation of the partition
function Z0(N,N0). Using the saddle-point method deve
oped by Darwin and Fowler@28#, it is straightforward to
obtain a useful relation between the free energyA0(N,N0)
and the fugacityz0 of the fictitious N2N0 noninteracting
bosons

2b
]

]N0
A0~N,N0!5 ln z0 , ~5!

where the fugacityz0 is determined by

N05N2(
nÞ0

1

exp@b«n#z0
2121

. ~6!
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We have given a simple derivation of Eqs.~5! and~6! in the
Appendix.

Using the free energyA0(N,N0), the partition function of
the system becomes

Z@N#5 (
N050

N

exp@q~N,N0!#, ~7!

where

q~N,N0!52b~E01Eint!2bA0~N,N0!. ~8!

It is obvious that (1/Z@N#)exp@q(N,N0)# represents the prob
ability finding N0 atoms in the condensate.

To obtain the probability distribution function of the sy
tem, let us first investigate the largest term in the sum of
partition function Z@N#. Assume the number of the con
densed atoms isN0

p in the largest term of the partition func
tion. The largest term exp@q(N,N0

p)# is determined by requir-
ing that (]/]N0)q(N,N0)uN05N0

p50, i.e.,

2b
]

]N0
p
~E01Eint!2b

]

]N0
p

A0~N,N0
p!50. ~9!

Using Eq.~5!, we obtain

ln z0
p5b

]

]N0
p
~E01Eint!. ~10!

In addition, from Eq.~6!, the most probable valueN0
p is

determined by

N0
p5N2(

nÞ0

1

exp@b«n#~z0
p!2121

. ~11!

In the case of an ideal Bose gas, from Eq.~10! one obtains
ln z0

p5b«0 . Thus N0
p is the same as the mean ground-st

occupation number obtained by using a grand-canonical
semble approach. For sufficiently largeN, the sum(N050

N in

Eq. ~7! may be replaced by the largest term, since the e
omitted in doing so is statistically negligible. In this situ
tion, Eq. ~11! shows the equivalence between the canon
ensemble and the grand-canonical ensemble for largeN.

The other terms in the partition function~7! will contrib-
ute to the fluctuations of the condensate, and lead to
deviation of ^N0& from the most probable valueN0

p . If N0

ÞN0
p , we have (]/]N0)q(N,N0)Þ0. Assuming

]

]N0
q~N,N0!5a~N,N0!, ~12!

from Eqs.~5! and ~8! we obtain

ln z05b
]

]N0
~E01Eint!1a~N,N0!. ~13!

By Eqs.~6! and ~13!, we have
9-2
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N05N2(
nÞ0

1

exp@b«n#expS 2b
]

]N0
~E01Eint!2a~N,N0! D21

. ~14!

Combining Eqs.~11! and ~14!, we get the following equation for determininga(N,N0) :

N02N0
p5(

nÞ0

1

exp@b«n#expS 2b
]

]N0
p
~E01Eint!D 21

2(
nÞ0

1

exp@b«n#expS 2b
]

]N0
~E01Eint!2a~N,N0! D21

. ~15!
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Once we knowE0 and Eint of the system, it is straightfor
ward to obtaina(N,N0) from Eq.~15!. Usinga(N,N0), one
can obtain the probability distribution function of the syste

From Eq. ~12!, we obtain the following result for
q(N,N0):

q~N,N0!5E
N0

p

N0
a~N,N0!dN01q~N,N0

p!. ~16!

Thus the partition function of the system becomes

Z@N#5 (
N050

N

$exp@q~N,N0
p!#G~N,N0!%, ~17!

where

G~N,N0!5expF E
N0

p

N0
a~N,N0!dN0G . ~18!

AssumingP(N0uN) is the probability to findN0 atoms in the
condensate,G(N,N0) represents the ratio@P(N0uN)#/
@P(N0

puN)#, i.e., the relative probability to findN0 atoms in
the condensate. From Eq.~18!, the normalized probability
distribution function is given by

Gn~N,N0!5A expF E
N0

p

N0
a~N,N0!dN0G , ~19!

whereA is a normalization constant and is given by the co
dition A*G(N,N0)dN051.

As soon as we knowG(N,N0), the statistical properties o
the system can be clearly described. From Eqs.~17! and~18!,
one obtains the mean ground-state occupation number^N0&
and fluctuationŝd2N0& in the canonical ensemble:

^N0&5

(
N050

N

N0 exp@q~N,N0!#

(
N050

N

exp@q~N,N0!#

5

(
N050

N

N0G~N,N0!

(
N050

N

G~N,N0!

,

~20!
03360
.
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^d2N0&5^N0
2&2^N0&

25

(
N050

N

N0
2G~N,N0!

(
N050

N

G~N,N0!

2F (
N050

N

N0G~N,N0!

(
N050

N

G~N,N0!
G 2

. ~21!

Starting from Eqs.~20! and~21!, one can calculate the mea
ground-state occupation number and fluctuations for id
and interacting Bose gases.

III. IDEAL BOSE GASES

We now study the condensate fluctuations of the sys
with N noninteracting bosons trapped in an external pot
tial. The potential is a harmonic one with the form

Vext~r !5
m

2
~vx

2x21vy
2y21vz

2z2!, ~22!

wherem is the mass of atoms, andvx ,vy , andvz are fre-
quencies of the trap along three coordinate-axis directio
The single-particle energy level has the form

«n5S nx1
1

2D\vx1S ny1
1

2D\vy1S nz1
1

2D\vz .

~23!

From Eq.~11!, one can get easily the most probable val
N0

p , which reads

N0
p5N2NS T

Tc
0D 3

2
3v̄z~2!

2vho@z~3!#2/3S T

Tc
0D 2

N2/3, ~24!

whereTc
05(\vho/kB)@N/z(3)#1/3 is the critical temperature

of the ideal Bose gas in the thermodynamic limit.v̄5(vx
1vy1vz)/3 andvho5(vxvyvz)

1/3 are arithmetic and geo
metric averages of the oscillator frequencies, respectiv
When obtaining Eq.~24!, we have used the following ex
pression of the density of states@30#:
9-3
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r~E!5
1

2

E2

~\vho!
3

1
3v̄E

2vho~\vho!
2

. ~25!

On the basis of the same density of states, a detailed stud
the critical temperature and the ground-state occupa
number was given recently in@31#.

In a thermodynamic equilibrium, the deviation from th
most probable valueN0

p is small, therefore we can use th
approximation exp@2a(N,N0)#'12a(N,N0). From Eq.
~15! and the single-particle energy level~23!, we find the
result fora(N,N0),

a~N,N0!52
z~3!~N02N0

p!

z~2!N~T/Tc
0!3

. ~26!

When obtaininga(N,N0), we have used the expansio
g3(11d)'z(3)1z(2)d @32#, where g3(z) belongs to the
class of functionsga(z)5(n51

` zn/na and z(n) is the Rie-
mann z function. From Eqs.~18! and ~26!, we obtain the
normalized probability distribution function of the harmon
cally trapped ideal Bose gas

Gideal~N,N0!5AidealexpF2
z~3!~N02N0

p!2

2z~2!N~T/Tc
0!3G , ~27!

where Aideal is a normalization constant. It is interesting
note that the expression~27! is a Gaussian distribution func
tion. From the formulas~20!, ~21!, ~24!, and ~27! we can
obtain ^N0& and ^d2N0& for the ideal Bose gas.

In Fig. 1~a! and Fig. 1~b!, we plot^N0&/N as a function of
temperature forN5200 andN5103 ideal bosons confined in
an isotropic harmonic trap. The dashed line displays^N0&/N
in the thermodynamic limit, while the solid line display
^N0&/N within the grand-canonical ensemble~or N0

p within
the canonical ensemble!. The dotted line displayŝN0&/N
within the canonical ensemble. WhenN.103, ^N0&/N from
the canonical ensemble agrees well with that from the gra
canonical ensemble. Obviously, in the case ofN
→`,^N0&/N obtained from the canonical ensemble co
cides with that from the grand-canonical ensemble.

From the formulas~20! and ~21! and the results~24! and
~27!, we can obtain the condensate fluctuations of the id
Bose gas. In Fig. 2, we plot the numerical result ofdN0

5A^d2N0& ~solid line! for N5103 ideal bosons confined in
an isotropic harmonic potential. The dashed line displays
result of Holthauset al. @21#, where the saddle-point metho
is developed to avoid the failure of the standard saddle-p
approximation below the onset of BEC.

In Fig. 2, the dotted line displays the result given in Re
@15,22#. Our results coincide with those of Refs.@15,22#
whenT/Tc

0 is smaller thanTm /Tc
0 , which corresponds to the

maximum fluctuations^d2N0&max. In fact, when T/Tc
0

,Tm /Tc
0 , from Eqs.~20!, ~21!, and~27!, we obtain the ana-

lytical result for the condensate fluctuations:
03360
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^d2N0&5
p2

6z~3!
NS T

Tc
0D 3

, ~28!

which recovers the result given in Refs.@15,22#. This shows
the validity of the probability distribution function~27! for
studying the statistical properties of the system. At the cr
cal temperature, however, our results give

^d2N0&uT5Tc
5S 12

2

p D p2N

6z~3!
, ~29!

which is much smaller than the result of Ref.@22#. This
difference is apprehensible because the analysis of Gior
et al. @22# holds in the canonical ensemble except near a
aboveTc

0 , while our result holds also for the temperatu
nearTc

0 . Near the critical temperature, our result~solid line!
agrees with that of Holthauset al. @21#. The results given by
Eqs.~28! and~29! show a normal behavior of the condensa
fluctuations for the harmonically trapped ideal Bose gas.

The fluctuations of the condensate can also be evalu
at T50. In the case ofT→0, from Eq. ~27! we get

FIG. 1. Relative mean ground-state occupation number^N0&/N
vs T/Tc

0 for N5200, 103 noninteracting bosons confined in an is
tropic harmonic trap. The dashed line shows^N0&/N in the thermo-
dynamic limit, the solid line showŝN0&/N within the grand-
canonical ensemble, while the dotted line displays^N0&/N within
the canonical ensemble. WhenN→`, the mean ground-state occu
pation number of the canonical ensemble coincides with that of
grand-canonical ensemble.
9-4
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G(N,N0)5Aideal if N05N, while G(N,N0)→0 when N0
ÞN. Therefore, we obtain̂N0&→N and ^d2N0&→0 when
T→0.

Note that our results are reliable although the disputa
saddle-point method is used to investigate the fluctuation
the condensate. It is well known that the applicability of t
saddle-point approximation for the condensed Bose gas
been the subject of a long debate@12,29#. Recently, the
analysis given in Ref.@17# showed that the fluctuations ar
overestimated and do not appear to vanish properly w
temperature using the conventional saddle-point method.
discussions on the condensate fluctuations are reasonabl
to two reasons.~i! As proven in Ref.@21#, the most probable
value Eq.~11! for the noninteracting Bose gas is still correc
even when carefully dealing with the failure of the standa
saddle-point method below the critical temperature.~ii ! In
the usual statistical method,^N0& and ^d2N0& are obtained
through the first and second partial derivatives of the pa
tion function, respectively. When the saddle-point appro
mation is used to calculate the partition function of the s
tem, the error will be overestimated in the second par
derivative of the partition function. Thus one cannot obta
correct condensate fluctuations using the usual meth
However, in our approach here what we used is the relia
result given by Eqs.~11! and ~14!. The probability distribu-
tion function of the ground state occupation number can
obtained directly from Eqs.~11! and ~14!, without resorting
to the second partial derivative of the partition function.^N0&
and ^d2N0& are obtained from the probability distributio
function in our approach. The correct description ofdN0 near
zero temperature and critical temperature also shows the
lidity of our method. Thus our approach has provided
some sense a simple method recovering the applicabilit

FIG. 2. Root-mean-square fluctuationsdN0 for N5103 nonin-
teracting bosons confined in an isotropic harmonic traps. The s
line displaysdN0 obtained from the probability distribution func
tion Eq. ~27!, while the dashed line shows the result of Holtha
et al. @21#. The dotted line displays the result of Giorginiet al. @22#
@Eq. ~28!#. The arrow marks the temperature corresponding to
maximum condensate fluctuations. BelowTm , the solid line coin-
cides with the result of Giorginiet al. @22#. Near Tc , our result
agrees with that of Holthauset al. @21#.
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the saddle-point method through the calculations of the pr
ability distribution function of the system.

IV. INTERACTING BOSE GASES BASED ON THE
LOWEST-ORDER PERTURBATION THEORY

Below the critical temperature, Bose-Einstein conden
tion results in a sharp enhancement of the density in
central region of the trap. This makes the interacting eff
between atoms much more important than aboveTc . The
correction to the condensate fraction and critical tempera
due to the interatomic interaction has been discussed wi
the grand-canonical ensemble@33–36# and the canonical en
semble@37,31#. In this section, we investigate the role o
interaction on the condensate fluctuations of a weakly in
acting Bose gas.

Using the lowest-order perturbation theory, the interact
energy of the system takes the form

Eint52gE n0~r !nT~r !d3r1gE nT
2~r !d3r, ~30!

where g54p\2a/m is the coupling constant fixed by th
s-wave scattering lengtha. n0(r ) and nT(r ) are the density
distributions of the condensate and normal gas, respectiv

Below the critical temperature, by the Thomas-Fermi~TF!
approximation the density distribution of the condens
reads

n0~r !5
m2Vext~r !

g
, ~31!

wherem is the chemical potential of the system. The te
perature dependence of the chemical potential is then fi
by the number of atoms in the condensate,

m~N0 ,T!5
\vho

2 S 15N0a

aho
D 2/5

, ~32!

where aho5(\/mvho)
1/2 is the harmonic oscillator length

Moreover, sincem5]E0 /]N0 , the energy per particle in the
condensate turns out to be

«0
TF5E0 /N05

5

7
m~N0 ,T!. ~33!

As a first-order approximation, omitting the interactio
between condensed and noncondensed atoms, the par
function of the system is given by

Zint@N#5 (
N050

N

$exp@2bN0«0
TF#Z0~N,N0!%. ~34!

From Eq.~11!, the most probable value reads

id

e

9-5
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N0
p5N2(

nÞ0

1

exp$b@«n2m~N0
p ,T!#%21

. ~35!

Using the density of states, i.e., Eq.~25!, one obtains the
result for the most probable valueN0

p ,

N0
p5N~12t3!2

z~2!

z~3!

m~N0
p ,T!t3N

kBT
2

3v̄z~2!

2vho@z~3!#2/3
t2N2/3,

~36!

where t5T/Tc
0 is the reduced temperature. Introducing t

scaling parameterh @4#,

h5
m~T50!

kBTc
0

51.57S N1/6a

aho
D 2/5

, ~37!

Eq. ~36! becomes

N0
p5N~12t3!2

z~2!

z~3!
hNt2S N0

p

N D 2/5

2
3v̄z~2!

2vho@z~3!#2/3
t2N2/3.

~38!

Note that the corrections due to the interatomic interact
and finite number of particle of the system can be obtai
simultaneously when Eq.~38! is used to calculatêN0& and
^d2N0& of the system. The second term on the right-ha
side of Eq.~38! accounts for the correction of the interactio
effect. The correction due to the interatomic interaction
incides with the lowest-order thermal depletion obtained
the grand-canonical ensemble approach@4#.

For otherN0 , assuming (]/]N0)q(N,N0)5a(N,N0), we
get

N05N2(
nÞ0

1

exp$b@«n2m~N0 ,T!#%exp@2a~N,N0!#21
.

~39!

Combining Eqs.~35! and ~39!, one obtains the result fo
a(N,N0),

a~N,N0!52
z~3!~N02N0

p!

z~2!Nt3
1

m~N0
p ,T!2m~N0 ,T!

kBT
.

~40!

The probability distribution function of the interacting Bos
gas is then

Gint~N,N0!5Aint expF E
N0

p

N0
a~N,N0!dN0G

5
Aint

Aideal
Gideal~N,N0!Rint~N,N0!, ~41!

where Aint is a normalization constant.Gideal(N,N0) is the
probability distribution function given by the formula~27!
03360
n
d

d

-
n

for the ideal harmonically trapped Bose gas. The correct
Rint(N,N0) originating from the interatomic interaction take
the form

Rint~N,N0!5expH \vho

2kBT S 15a

aho
D 2/5F ~N0

p!2/5~N02N0
p!

2
5

7
@N0

7/52~N0
p!7/5#G J . ~42!

Note thatGint(N,N0) is not a Gaussian distribution functio
because of the existence of the non-Gaussian fa
Rint(N,N0).

From Eqs.~21! and ~41! we can obtain the numerica
result of^d2N0& int . In Fig. 3, we have provided the numer
cal result ofdN0 for N51000 interacting bosons confined
an isotropic harmonic trap witha/aho51024 and a/aho
51023, respectively. The crossover from the interacting
the noninteracting Bose gases is clearly shown. From Fig
we find that the repulsive interaction between atoms res
in a decrease of the condensate fluctuations. For an attra
interaction, we anticipate that the corrections between ato
result in an increase in the condensate fluctuations.

The interaction between condensed and noncondense
oms gives high-order correction to the thermodynamic pr
erties of the system. Near the critical temperature, i
when N0a/aho!1 @4#, we have n0(r )5N0(mvho

2 /

p\)3/2e2m(vxx21vyy21vzz
2)/\. In addition, we can adopt the

semiclassical approximation for the normal gas@4#, i.e.,
nT(r )5lT

23g3/2(e
2bVext(r )) with lT5@2p\2/(mkBT)#1/2 be-

ing the thermal wavelength. From Eqs.~11! and ~30!, it is
straightforward to obtain the most probable valueN0

p near
the critical temperature:

FIG. 3. The numerical result ofdN0 for N51000 interacting
bosons confined in an isotropic harmonic trap witha/aho51024

and a/aho51023, respectively. The dotted and dashed lines sh
condensate fluctuations when interactions between condensed
noncondensed atoms are omitted. The condensate fluctuation
displayed with circles and squares when interactions between
densed and noncondensed atoms are considered. The cros
from the interacting to noninteracting Bose gases is clearly sho
in the figure.
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N0
p

N
5

12t32
z~2!

z~3! F22
S

z~3/2!Gut7/22
3z~2!

2@z~3!#2/3

v̄

vho
t2N21/3

11
z~2!uN1/2t2

@z~3!#1/2z~3/2!

, ~43!
ul
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,
e
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-
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p-
-
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where S5( i , j 51
` 1/z(3)@ i j ( i 1 j )#3/2. When obtaining Eq.

~43!, we have introduced a scaling parameteru5gnT(r
50,Tc

0)/kBTc
052.02(a/aho)N

1/6. u can also be written in the
form of u50.65h5/2. By settingN0

p50, from Eq. ~43! we
obtain the shift of the critical temperature:

dTc
0

Tc
0

521.65
a

aho
N1/62

z~2!

2@z~3!#2/3

v̄

vho
N21/3. ~44!

The first term on the right-hand side of Eq.~44! is the shift
due to the interatomic interaction. It agrees with the res
based on the local-density approximation@33# obtained by
using the grand-canonical ensemble approach. The se
term in Eq.~44! gives exactly the usual results due to effe
of the finite number of particles@4#. Thus in our approach
within the canonical ensemble the corrections due to the
fects of the finite particle number and the interatomic int
actions can be obtained simultaneously.

Below the critical temperature, the most probable value
given by

N0
p

N
512t32

z~2!

z~3!
t3Fhj2/5

t
11.49

ht2

j2/5
F~w!10.14h5/2t1/2G

2
3v̄z~2!

2vho@z~3!#2/3
t2N21/3, ~45!

wherew5(hj2/5/t)1/2. F(w) is defined by

F~w!50.53~120.5e20.23w3
20.5e21.51w3

!. ~46!

Omitting the high-order terms of the parameterh, the ex-
pression~45! gives exactly the lowest-order correction of E
~38!.

From Eq.~30!, we can obtain the probability distributio
function of the condensate when the interaction betw
condensed and noncondensed atoms is considered. Com
ing with the most probable value, one obtains^N0& anddN0
of the interacting Bose gases. In Fig. 4, the experime
parameter by Ensheret al. @38# is used to plot̂ N0&/N within
the canonical ensemble. Our results~solid line! agree well
with the conclusion of Ref.@33# ~circles! where the semiclas
sical approximation is used in the frame of the gran
canonical ensemble. We can also obtain the numerical re
for dN0 in the presence of the interaction between conden
and noncondensed atoms. The numerical result ofdN0 is
displayed in Fig. 3 witha/aho51024 ~circles! and a/aho
51023 ~squares!, respectively. Our calculations show th
03360
ts

nd

f-
-

is

n
in-

al

-
lts
d

the repulsive interaction between the condensed and non
densed atoms lowers the condensate fluctuations further

V. INTERACTING BOSE GASES BASED ON
BOGOLIUBOV THEORY

Condensate fluctuations due to collective excitations h
been recently investigated by Giorginiet al. @22# within the
traditional particle-number–nonconserving Bogoliubov a
proach. In Ref.@22#, the fluctuations from collective excita
tions are shown to follow the laŵd2N0&;N4/3. In this sec-
tion, the Bogoliubov theory will be developed based on o
canonical statistics to discuss the condensate fluctuat
originating from collective excitations. According to the Bo
goliubov theory@39,40#, the total number of particles out o
the condensate is given by

NT5 (
nlÞ0

Nnl5 (
nlÞ0

~unl
2 1vnl

2 ! f nl . ~47!

The real quantitiesunl andvnl satisfy the relations

unl
2 1vnl

2 5
@~«nl

B !21g2n0
2#1/2

2«nl
B

, ~48!

unlvnl52
gn0

2«nl
B

, ~49!

FIG. 4. Displayed iŝ N0&/N of the trapped interacting Bos
gases with the experimental parameters of Ensheret al. @38#. The
dashed-dotted line shows^N0&/N of the ideal Bose gas, while the
circles show the result of Giorginiet al. @33#. The numerical results
of the lowest order and high order^N0&/N within the canonical
ensemble are displayed with dashed and solid lines, respective
9-7
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where f nl is the number of the collective excitations excit
in the system at the thermal equilibrium

f nl5
1

exp@b«nl
B #21

. ~50!

In addition, the energy of the collective excitations enter
Eqs.~48! and ~49! is given by the dispersion law@41#

«nl
B 5\vho~2n212nl13n1 l !1/2. ~51!

These phononlike collective excitations are in excell
agreement with the measurement of experiments. The dis
sion law ~51! is valid if the conditionsN0a/aho@1 and«nl
!m are satisfied. The contribution to the condensate fluc
tions due to these discrete low-energy modes is impor
becausef nl ,unl

2 1vnl
2 ,unlvnl}1/A2n212nl13n1 l at low

excitation energies.
In Eq. ~47!, Nnl can be regarded as the effective occup

tion number of noncondensed atoms, while

Nnl
B 5

Nnl

unl
2 1vnl

2
5 f nl ~52!

is the occupation number of the collective excitations. Fr
the form of f nl , one can construct the partition function
the collective excitations in the frame of the canonical e
semble,

ZB5(
$nl%

expF2b(
nl

Nnl
B «nl

B G . ~53!

From Eq.~52!, ZB becomes

ZB5 (
$SNnl5N%

expF2b(
nl

Nnl«nl
effG , ~54!

where«nl
eff5«nl

B /(unl
2 1vnl

2 ) can be taken as an effective e
ergy level of the thermal atoms. In this case,ZB is the parti-
tion function of a fictitious boson system, which is compos
of N noninteracting bosons whose energy level is determi
by «nl

eff . From Eq.~54!, the most probable valueN0
p is given

by

N0
p5N2 (

nlÞ0

1

exp@b~«nl
eff2«nl50

eff !#21
. ~55!

It is obvious that the occupation number of lown,l in Eq.
~55! coincides with that of Eq.~47!. The otherN0 is deter-
mined by

N05N2 (
nlÞ0

1

exp@b~«nl
eff2«nl50

eff !#exp@2a~N,N0!#21
.

~56!

From Eqs.~55! and ~56!, we obtain
03360
g

t
er-

a-
nt

-

-

d
d

a~N,N0!'2
N02N0

p

(
nlÞ0

~unl
2 1vnl

2 !2f nl
2

. ~57!

When getting Eq.~57!, we have used the approximationf nl

'kBT/«nl
B for low-energy collective excitations. Thus th

probability distribution function of the condensate is giv
by

GB~N,N0!5ABexpF 2
~N02N0

p!2

2 (
nlÞ0

~unl
2 1vnl

2 !2f nl
2 G , ~58!

whereAB is a normalization constant. Therefore, the cond
sate fluctuations due to the collective excitations read

^d2N0&collective5

(
N050

N

N0
2GB~N,N0!

(
N050

N

GB~N,N0!

2F (
N050

N

N0GB~N,N0!

(
N050

N

GB~N,N0!
G 2

. ~59!

Equations~58! and~59! provide the formulas for calculating
the condensate fluctuations originating from the collect
excitations.

Below the temperatureTm which corresponds to the
maximum fluctuations, we obtain the analytical result for t
condensate fluctuations,

^d2N0&collective5
p2

12z~2!
BS ma2kBTc

\2 D 2/5

N4/3

5
1

2
BS ma2kBTc

\2 D 2/5

N4/3, ~60!

whereB is a dimensionless parameter, which is the same
that obtained in Ref.@22#. Note that compared with the resu
obtained by Ref.@22#, the coefficient in Eq.~60! differs by a
factor 1

2 . The expression~60! shows clearly that the conden
sate fluctuations due to the collective excitations are ano
lous, i.e., proportional toN4/3. Note that GB(N,N0) is a
Gaussian distribution function. The anomalous behavior
the condensate fluctuations comes from the fac
2(nlÞ0(unl

2 1vnl
2 )2f nl

2 , which is proportional toN4/3.
At the critical temperatureGB(T5Tc)5exp@2N0

2/g#,
where g52(nl(unl

2 1vnl
2 )2f nl

2 . In this case, we obtain the
analytical result of the condensate fluctuations,

^d2N0&uT5Tc
50.18g50.18BS ma2kBTc

\2 D 2/5

N4/3. ~61!
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From Eqs.~60! and ~61!, we find that the behavior of the
condensate fluctuations based on the Bogoliubov theor
rather different from that of the lowest-order perturbati
theory.

VI. DISCUSSION AND CONCLUSION

In this paper, a canonical ensemble approach has b
developed to investigate the mean ground-state occupa
number and condensate fluctuations for interacting and n
interacting Bose gases. Different from the conventio
methods, the analytical probability distribution function
the condensate has been obtained directly from the part
function of the system. Based on the probability distributi
function, we have calculated the thermodynamic proper
of the Bose gas, such as the condensate fraction and
fluctuations. Through the calculations of the probability d
tribution function, we have provided a simple method to
cover the applicability of the saddle-point method for stud
ing the condensate fluctuations. In fact, the theory of
improved saddle-point method developed in this work can
applied straightforwardly to consider the condensate fluc
tions in other physical systems, such as the interacting B
gas confined in a box@42#, the interacting Bose gas in low
dimensions, etc. The probability distribution function c
also be used to discuss other interesting problems, suc
the phase diffusion of the condensate.

For the harmonically trapped interacting Bose gas,
found that different approximations for weakly interactin
Bose gases give quite different theoretical predictions c
cerning the condensate fluctuations. In our opinion,
lowest-order perturbation theory gives in some sense
condensate fluctuations due to normal thermal atoms, w
the Bogoliubov theory gives the condensate fluctuati
originating from the collective excitations. The contributio
to the condensate fluctuations due to the collective exc
tions mainly come from the low-energy modes, and it
obvious that the condensate fluctuations based on the low
order perturbation theory miss the contributions coming fr
the collective excitations. Considering the fact that the c
tributions due to low-energy thermal atoms in the lowe
order perturbation theory are relatively small, the over
condensate fluctuations may be written as

^d2N0&all5^d2N0& int1^d2N0&collective, ~62!

where ^d2N0& int and ^d2N0&collective are condensate fluctua
tions due to the normal thermal atoms and the collec
excitations, respectively.

ACKNOWLEDGMENTS

This work was supported by the Science Foundation
Zhijiang College, Zhejiang University of Technology, an
Natural Science Foundation of Zhejiang Province. G.X
was supported by the National Natural Science Founda
of China, the Trans-Century Training Program Foundat
for Talents, and the University Key Teacher Foundation
Chinese Ministry of Education. S. J. Liu and H. W. Xion
03360
is

en
on
n-
l

n

s
the
-
-
-
e
e
a-
se

as

e

-
e
e

ile
s

a-

st-

-
-
ll

e

f

.
n

n
f

thank Professor G. S. Jia and Professor J. F. Shen for
enormous encouragement.

APPENDIX

In this appendix, the method of saddle-point integrati
described by Darwin and Fowler@28# is used to investigate
the partition function of the fictitiousN2N0 noninteracting
bosons. The partition function of the fictitious system
given by

Z0~NT!5 (
(
nÞ0

Nn5NT

expF2b(
nÞ0

Nn«nG , ~A1!

whereNT5N2N0 is the number of particles out of the con
densate.

Because of the restriction(nÞ0Nn5NT in the summation
of Eq. ~A1!, Z0(NT) cannot be explicitly evaluated. To pro
ceed, we define a generating function forZ0(NT) in the fol-
lowing manner. For any complex numberz, we take

G0~T,z!5 (
NT50

`

zNTZ0~NT!. ~A2!

The generating function can be evaluated easily. The re
of G0(T,z) is given by

G0~T,z!5)
nÞ0

1

12z exp@2b«n#
. ~A3!

To obtainZ0(NT), we note that by definitionZ0(NT) is
the coefficient ofzNT in the expansion ofG0(T,z) in powers
of z. Therefore, we have

Z0~NT!5
1

2p i R dz
G0~T,z!

zNT11
, ~A4!

where the contour of integration is a closed path in the co
plex z plane aboutz50. Let g(z) be defined by

exp@g~z!#5
G0~T,z!

zNT11
; ~A5!

thenZ0(NT) becomes

Z0~NT!5
1

2p i R dzexp@g~z!#. ~A6!

The saddle pointz0 is determined by

]g~z0!

]z0
50. ~A7!

From Eq.~A5! we obtain

NT5z0

]

]z0
ln G0~T,z0!21. ~A8!
9-9
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By Eq. ~A3!, one gets

NT5(
nÞ0

1

exp@b«n#z0
2121

. ~A9!

Noting that Eq.~A9! is exactly the equation to determine th
number of condensed atoms within the grand-canonical
semble, the saddle pointz0 can also be regarded as the fuga
ity of the fictitiousN2N0 noninteracting bosons.

Expanding the integrand of Eq.~A6! about z5z0, we
have

Z0~NT!5
1

2p i R dzexpFg~z0!1
1

2
~z2z0!2

]2

]z0
2

g~z0!

1•••G , ~A10!

where

]2

]z0
2

g~z0!5
G09~T,z0!

G0~T,z0!
2

NT
22NT

z0
2

. ~A11!

By settingz2z05 iy , we obtain

Z0~NT!'
exp@g~z0!#

2p E
2`

`

expF2
1

2

]2

]z0
2

g~z0!y2Gdy.

~A12!
an

M.

.

,

D

a
an

v.

A

tt
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Thus we have

Z0~NT!5
G0~T,z0!

z0
NT11

@2pg9~z0!#1/2
. ~A13!

With these results, the free energyA0(N,N0) of the fictitious
system is then given by

A0~N,N0!52kBTH ln G0~T,z0!2NT ln z02 ln z0

2
1

2
ln@2pg9~z0!#J . ~A14!

In the case ofNT@1, the last two terms in Eq.~A14! can be
omitted. Therefore,

A0~N,N0!52kBT@ ln G0~T,z0!2NT ln z0#. ~A15!

From Eq. ~A3!, we obtain the relation betweenA0(N,N0)
andz0 of the fictitious system:

2b
]

]N0
A0~N,N0!5 ln z0 . ~A16!

Equations~A9! and ~A16! are useful relations used in th
text.
.
ys.

tt.

a-
@1# M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wiem
and E.A. Cornell, Science269, 198~1995!; K.B. Davis, M.-O.
Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.
Kurn, and W. Ketterle, Phys. Rev. Lett.75, 3969~1995!; C.C.
Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet,ibid. 75,
1687 ~1995!.

@2# T.C. Killian, D.G. Fried, L. Willmann, D. Landhuis, S.C
Moss, T.J. Greytak, and D. Kleppner, Phys. Rev. Lett.81, 3807
~1998!; D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis
S.C. Moss, D. Kleppner, and T.J. Greytak,ibid. 81, 3811
~1998!.

@3# A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak,
Boiron, C.I. Westbrook, and A. Aspect, Science292, 461
~2001!; F. Pereira Dos Santos, J. Leonard, J. Wang, C.J. B
relet, F. Perales, E. Rasel, C.S. Unnikrishnan, M. Leduc,
C. Cohen-Tannoudji, Phys. Rev. Lett.86, 3459~2001!.

@4# F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Re
Mod. Phys.71, 463 ~1999!.

@5# A.S. Parkin and D.F. Walls, Phys. Rep.303, 1 ~1998!.
@6# A.J. Leggett, Rev. Mod. Phys.73, 307 ~2001!.
@7# Z. Idziaszek, K. Rzaz˙ewski, and M. Lewenstein, Phys. Rev.

61, 053608~2000!.
@8# J. Javanainen and S.M. Yoo, Phys. Rev. Lett.76, 161~1996!; J.

Javanainen and M. Wilkens,ibid. 78, 4675~1997!.
@9# E.M. Wright, D.F. Walls, and J.C. Garrison, Phys. Rev. Le

77, 2158 ~1996!; E.M. Wright, T. Wong, M.J. Collett, S.M.
,

.

r-
d

.

Tan, and D.F. Walls, Phys. Rev. A56, 591 ~1997!.
@10# E.H. Hauge, Phys. Norv.4, 19 ~1969!.
@11# I. Fujiwara, D. ter Haar, and H. Wergeland, J. Stat. Phys.2,

329 ~1970!.
@12# R.M. Ziff, G.E. Uhlenbeck, and M. Kac, Phys. Rep.32, 169

~1977!.
@13# P. Borrmann, J. Harting, O. Mu¨lken, and E.R. Hilf, Phys. Rev

A 60, 1519~1999!; P. Borrmann and G. Franke, J. Chem. Ph
98, 2484~1993!.

@14# M. Wilkens and C. Weiss, J. Mod. Opt.44, 1801~1997!.
@15# H.D. Politzer, Phys. Rev. A54, 5048~1996!.
@16# M. Gajda and K. Rzaz˙ewski, Phys. Rev. Lett.78, 2686~1997!.
@17# S. Grossmann and M. Holthaus, Phys. Rev. Lett.79, 3557

~1997!.
@18# P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, and K. Rzaz˙e-

wski, Phys. Rev. Lett.79, 1789~1997!.
@19# N.L. Balazs and T. Bergeman, Phys. Rev. A58, 2359~1998!.
@20# M. Holthaus, E. Kalinowski, and K. Kirsten, Ann. Phys.~N.Y.!

270, 198 ~1998!.
@21# M. Holthaus and E. Kalinowski, Ann. Phys.~N.Y.! 276, 321

~1999!.
@22# S. Giorgini, L.P. Pitaevskii, and S. Stringari, Phys. Rev. Le

80, 5040~1998!.
@23# Z. Idziaszek, M. Gajda, P. Navez, M. Wilkens, and K. Rz
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