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Canonical statistics of trapped ideal and interacting Bose gases
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The mean ground-state occupation number and condensate fluctuations of interacting and noninteracting
Bose gases confined in a harmonic trap are considered by using a canonical ensemble approach. To obtain the
mean ground-state occupation number and the condensate fluctuations, an analytical description for the prob-
ability distribution function of the condensate is provided directly starting from the analysis of the partition
function of the system. For the ideal Bose gas, the probability distribution function is found to be a Gaussian
one for the case of the harmonic trap. For the interacting Bose gas, using a unified approach the condensate
fluctuations are calculated based on the lowest-order perturbation method and on Bogoliubov theory. It is found
that the condensate fluctuations based on the lowest-order perturbation theory follow ¢@éNayw- N, while
the fluctuations based on Bogoliubov theory behavel 43
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I. INTRODUCTION while Giorgini et al. [22] addressed this problem within a
traditional particle-number—nonconserving Bogoliubov ap-

The experimental achievement of Bose-Einstein condenProach. Recently, Kocharovslet al. [26] supported and ex-

sation(BEC) in dilute alkali-metal atom§l], spin-polarized tended the results of the work of Giorgief al. [22] using a

. . article-number—conserving operator formalism.
hydrogen[2], and recently in metastable heliu has P . .
g?/eatls sti[m]ulate d theoretsi/cal researbh—6] on uflﬁt%r]acol d Although the condensate fluctuations are thoroughly in-

vestigated in Refd.22—26, to the best of our knowledge up

bosons. Among the several intriguing questions on the staligy, g,y gn analytical description of the probability distribu-

tical properties of trapped !nter?ctlng Bose gases, the projon function for the interacting Bose gas directly from the
lem of condensate fluctuatios“No) of the mean ground-  microscopic statistics of the system has not been given. Note
state occupation numbéNy) is of central importance. Apart that as soon as the probability distribution function of the
from the intrinsic theoretical interest, it is foreseeable thalsystem is obtained, it is straightforward to get the mean
such fluctuations will become experimentally testable in theground-state occupation number and the condensate fluctua-
near futurg 7]. On the other hand, the calculations(éfNy)  tions. The purpose of the present work is to attempt to pro-
are crucial to investigate the phase collapse time of the convide such an analytical description of the probability distri-

densatd8,9]. bution function of interacting and noninteracting Bose gases
It is well known that within a grand-canonical ensemblebased on the analysis of the partition function of the system.
the fluctuations of the condensate are given WN()) We shall investigate in this paper the condensate fluctua-

=Ng(No+1), implying thatdN, becomes of ordeN when  tions of interacting and noninteracting Bose gases confined
the temperature approaches zero. To avoid this sort of urid @ harmonic trap. The analytical probability distribution
physically large condensate fluctuations, a canonfoala  function of the condensate will be given directly from the
microcanonical ensemble has to be used to investigate théP@rtition function of the system using a canonical ensemble
fluctuations of the condensate. On the other hand, because §PProach. For an ideal Bose gas, we find that the probability

the experiment the trapped atoms are cooled continuousﬁismb“tion of the condensate is a Gaussian function. In par-

; : lar, our method can be easily extended to discuss the
from the surrounding, the system can be taken as being iHC4a": C S . g :
9 y 9 robability distribution function for a weakly interacting

contact with a heat bath but the total number of particles i o o
. L ose gas. A unified way is given to calculate the condensate
the system is conserved. Thus it is necessary to use the ca- ) .
; ; . e . uctuations from the lowest-order perturbation theory and
nonical ensemble to investigate the statistical properties

X . om Bogoliubov theory. We find that different methods of
the trapped weakly interacting Bose gas.

thin th ical I h . ical approximation for the interacting Bose gas give quite differ-
Within the canonical as well as the microcanonical en-gp predictions concerning the condensate fluctuations. We

sembles, the condensate fluctuations have been studied s\g;o,y that the fluctuations based on the lowest-order pertur-
tematically in the case of an ideal Bose gas in aBldx-14  pation theory follow the law 62Ng)~ N, while the fluctua-
and in the presence of a harmonic tdgt—21. Recently,  tions based on the Bogoliubov theory behaveN4s.

the question of how interatomic interactions affect the con-  The paper is organized as follows. Section Il is devoted to
densate fluctuations has been the subject of several theoregutlining the canonical ensemble, which is developed to dis-
cal investigationg22-27. ldziaszeket al. [23] investigated  cuss the probability distribution function of Bose gases. In
the condensate fluctuations of interacting Bose gases usirgc. lll, we investigate the condensate fluctuations of the
the lowest-order perturbation theory and a two-gas modeldeal Bose gas confined in a harmonic trap. In Sec. IV, the
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condensate fluctuations of the weakly interacting Bose gagve have given a simple derivation of EqS) and(6) in the
are calculated based on the lowest-order perturbation theorxs‘ppendm

In Sec. V, the condensate fluctuations due to collective exci- Using the free energi,(N,N,), the partition function of
tations are obtained based on Bogoliubov theory. Finallythe system becomes

Sec. VI contains a discussion and summary of our results.

Il. FLUCTUATIONS AND MEAN GROUND-STATE Z[N]—Néo exi q(N,No)], @)
OCCUPATION NUMBER OF THE CONDENSATE
IN THE CANONICAL ENSEMBLE where
According to the canonical ensemble, the partition func- A(N,Ng) = — B(Eg+ Ein) — BA(N,Np). (8)
tion of the system withN trapped interacting bosons is given
by It is obvious that (1Z[ N])exg q(N,Np) ] represents the prob-

ability finding Ny atoms in the condensate.
To obtain the probability distribution function of the sys-
Z[N]=_ > ex{—B(ZiNpentEin], (1) tem, let us first investigate the largest term in the sum of the
*nNn=N partition function Z[N]. Assume the number of the con-
densed atoms iNlf in the largest term of the partition func-
tion. The largest term exp(N,N)] is determined by requir-
ing that (&/aNo)q(N,N0)|N0:N8=O, ie.,

whereN, ande,, are the occupation number and energy level
of the staten={n,,ny,n,}, respectively. 3=1/kgT and
{nx.,ny,n,} are non-negative integerg;y is the interaction
energy of the system. For convenience, by separating out the

round-staten=0 from the staten+0, we have 4
J vl o A0<N N§=0. (9
0

Z[N]= 2, {exd — B(Eot Em)1Zo(N:No},  (2)  Using Eq.(5), we obtain
<

J
whereZo(N,N,) stands for the partition function of a ficti- In 28=BW(E0+ Eint)- (10
tious system comprisindl — N, trapped ideal noncondensed INo
bosons:

In addition, from Eq.(6), the most probable valublf is
determined by

Zo(NNo=_ > exp[—ﬁn;oann. (3)

ZnzoNn=N—Ng

Np=N-> . (11)

AssumingAp(N,Ny) is the free energy of the fictitious sys-

tem, we have In the case of an ideal Bose gas, from EL0) one obtains
InZ8=Bey. ThusN§ is the same as the mean ground-state
Ag(N,Ng)=—KkgT InZy(N,Ny). (4)  occupation number obtained by using a grand-canonical en-

semble approach. For sufficiently larble the sumzmozo in

The calculation of the free energyo(N,Ng) is nontrivial  EQ. (7) may be replaced by the largest term, since the error
because there is a requirement that the number of noncomitted in doing so is statistically negligible. In this situa-
densed bosons iN—N, in the summation of the partition tion, Eq.(11) shows the equivalence between the canonical
function Zo(N,Ng). Using the saddle-point method devel- ensemble and the grand-canonical ensemble for Inrge

oped by Darwin and Fowlef28], it is straightforward to The other terms in the partition functidid) will contrib-
obtain a useful relation between the free enefgyN,N,)  ute to the fluctuations of the condensate, and lead to the
and the fugacityz, of the fictitious N— N, noninteracting deviation of(Ny) from the most probable valuly. If N
bosons #N5, we have §/dNg)q(N,Ng) #0. Assuming

a
“BIN Ao(N No)=Inz,, (5) TM)Q(N.No)=a(N,No), (12

from Egs.(5) and(8) we obtain
where the fugacityz, is determined by

1 Inzy= :8 (E0+ Eint) + @(N,No). (13
No=N-2> ——————. (6)
n70 exd Benlzg " —1 By Egs.(6) and(13), we have
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1
No=N—> . . (14)
n#0
ex;{ﬂsn]ex;{ _B&_NO(EO"_ Eint) - a’(N: NO)) -1
Combining Eqgs(11) and(14), we get the following equation for determinirg(N,Ng) :
1 1
No—Nj=>, - (15
n#0 J n#0 Jd
exp[,Ben]exp( —B—(Eg+Ein) | —1 exp[,Bsn]exp{ BN (Eot Eint) —a(N,Ng) | =1
IN§ 0
|
Once we knowk, and E;,; of the system, it is straightfor- N
ward to obtaina(N,Ng) from Eq.(15). Usinga(N,N), one > N2G(N,Np)
can obtain the probability distribution function of the system. 5 5 , No=0
From Egq. (12, we obtain the following result for (6°Nog)=(Ng) = (N “=—7
A(N,No): > G(N,No)
Ng=0
No p N 2
q(N,Ng)= | a(N,Ng)dNo+a(N,Np). (16)
NG > NG(N,No)
Ng=0
Thus the partition function of the system becomes - N (D)
> G(N,No)
N No=0

ZIN]= 2, {exda(N.NDIG(N.NgL, (A7)

Starting from Eqs(20) and(21), one can calculate the mean
ground-state occupation number and fluctuations for ideal
where and interacting Bose gases.

Ill. IDEAL BOSE GASES

We now study the condensate fluctuations of the system
with N noninteracting bosons trapped in an external poten-
tial. The potential is a harmonic one with the form

No
G(N,N0)=eX[{ JNP a(N,No)dNO:| (18)

AssumingP(Ng|N) is the probability to find\, atoms in the
condensate,G(N,Ny) represents the ratig P(Ng/N)]/

m
[P(NJIN)], i.e., the relative probability to findll, atoms in Vexd 1) = 5(w§X2+ wy?+ wiz?), (22
the condensate. From E(L8), the normalized probability
distribution function is given by wherem is the mass of atoms, and, ,w,, andw, are fre-

quencies of the trap along three coordinate-axis directions.

Ng The single-particle energy level has the form
Go(N.No=Aex] [ (N NodNg|, (19
NG 1 1 1
en= nx+§ hwy+ ny+§ hiwy+ nz+§ hw,.
whereA is a normalization constant and is given by the con- (23

dition AfG(N,Ng)dNg=1. ,

As soon as we know(N,Ny), the statistical properties of From Eqg.(11), one can get easily the most probable value
the system can be clearly described. From Etj§.and(18), NG, which reads
one obtains the mean ground-state occupation nugigr

3 — 2
and fluctuationg 6>°Ng) in the canonical ensemble: NB=N— l) __ 3wl(2) l) NZ3  (24)
) T 200 4(3)17°\ T
S Neexgq(N,Ng)T S NeG(N,No) whereT2= (% wpo/kg)[N/£(3)]*% is the critical temperature
_ No=0 _ No=0 of the ideal Bose gas in the thermodynamic IimTit.=(wx
(No)=— TN ' + oyt w,)l3 andwh0=(wxwywz)l/3 are arithmetic and geo-
> exdq(N,No)] > G(N,Np) metric averages of the oscillator frequencies, respectively.
Np=0 Ng=0 When obtaining Eq(24), we have used the following ex-

(200 pression of the density of statE30]:
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(BE)= L_E + 3wk (25 S I I glrand
P72 (o 20mdfion? P v, canonial

On the basis of the same density of states, a detailed study of > 061 080 7
the critical temperature and the ground-state occupation % |
number was given recently ir81]. T o4 . _
In a thermodynamic equilibrium, the deviation from the - .
most probable valudlf is small, therefore we can use the 021 \ ) \\ i
approximation exp-a(N,Ng)]=~1—a(N,Ng). From Eq. X e N
(15 and the single-particle energy lev&?3), we find the 0.0 . -
result for a(N,Ny), 0.0 0.2 0.4 0.6 0.8 1.0
™’
N~— NP 1.0 === . T . :
a(N,Ng)=— LOOO:); (26) (b) grand
L2IN(TITY) N canonical |

---- Nz

When obtaininga(N,Ng), we have used the expansion
g3(1+8)=~¢(3)+£(2)6 [32], wheregs(z) belongs to the
class of functiongy,(z)==,_,z"/n® and {(n) is the Rie-
mann ¢ function. From Eqs(18) and (26), we obtain the
normalized probability distribution function of the harmoni-
cally trapped ideal Bose gas

{(3)(Ng—Np)?

C20(2N(TITO?) @)

GigealN,Ng) = Aidealexf{

FIG. 1. Relative mean ground-state occupation nurgbigf/N

Vs T/Tg for N=200, 16 noninteracting bosons confined in an iso-
where Ajgeq IS @ normalization constant. It is interesting to tropic harmonic trap. The dashed line shoiig)/N in the thermo-
note that the expressid@7) is a Gaussian distribution func- dynamic limit, the solid line showgNg)/N within the grand-
tion. From the formulag20), (21), (24), and (27) we can  canonical ensemble, while the dotted line displéyg)/N within
obtain{Ng) and{&°Ny) for the ideal Bose gas. the canonical ensemble. Whah—, the mean ground-state occu-

In Fig. 1(a) and Fig. 1b), we plot{Ng)/N as a function of  pation number of the canonical ensemble coincides with that of the

temperature foN= 200 andN = 10° ideal bosons confined in grand-canonical ensemble.
an isotropic harmonic trap. The dashed line dispkdyg/N

in the thermodynamic limit, while the solid line displays 2 T7\2
(Ng)/N within the grand-canonical ensembler N§ within <62N0>:WN =l (28
the canonical ensembleThe dotted line display$Ng)/N Te

within the canonical ensemble. What>10%, (Ng)/N from ) . . .
the canonical ensemble agrees well with that from the grandhich recovers the result given in Ref45,22. This shows
canonical ensemble. Obviously, in the case of the valld|ty of thg probablllty qhstrlbutlon functiof7) for N
—,(Ng)/N obtained from the canonical ensemble coin-Studying the statistical properties of the_system. At the criti-
cides with that from the grand-canonical ensemble. cal temperature, however, our results give

From the formulag20) and(21) and the result$24) and
(27), we can obtain the condensate fluctuations of the ideal
Bose gas. In Fig. 2, we plot the numerical result &,
= 52N0) (solid line) for N=10° ideal bosons confined in
an isotropic harmonic potential. The dashed line displays thevhich is much smaller than the result of R¢22]. This
result of Holthauset al.[21], where the saddle-point method difference is apprehensible because the analysis of Giorgini
is developed to avoid the failure of the standard saddle-poingt al. [22] holds in the canonical ensemble except near and
approximation below the onset of BEC. aboveT?, while our result holds also for the temperature

In Fig. 2, the dotted line displays the result given in Refs.nearT?. Near the critical temperature, our res(gdolid line)
[15,22. Our results coincide with those of Refl5,22  agrees with that of Holthauat al. [21]. The results given by
whenT/T{ is smaller tharT,/ T, which corresponds to the Eqgs.(28) and(29) show a normal behavior of the condensate
maximum  fluctuations(6°Ng)max- In fact, when T/TY  fluctuations for the harmonically trapped ideal Bose gas.
<Tm/T8, from Egs.(20), (21), and(27), we obtain the ana- The fluctuations of the condensate can also be evaluated
lytical result for the condensate fluctuations: at T=0. In the case ofT—0, from Eq. (27) we get

N

1= F) 60(3) 29

<52N0>|T:TC:
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40 . - - - the saddle-point method through the calculations of the prob-

our result PN ability distribution function of the system.

30 ¢ Giorgini 4
Holthaus

IV. INTERACTING BOSE GASES BASED ON THE
LOWEST-ORDER PERTURBATION THEORY

Below the critical temperature, Bose-Einstein condensa-
tion results in a sharp enhancement of the density in the
central region of the trap. This makes the interacting effect
between atoms much more important than abdye The
correction to the condensate fraction and critical temperature
due to the interatomic interaction has been discussed within
the grand-canonical ensemtj83—36 and the canonical en-
semble[37,31]. In this section, we investigate the role of

FIG. 2. Root-mean-square fluctuatiodsl, for N=1C° nonin-  interaction on the condensate fluctuations of a weakly inter-
teracting bosons confined in an isotropic harmonic traps. The soli@cting Bose gas.
line displayséN, obtained from the probability distribution func- Using the lowest-order perturbation theory, the interaction
tion Eq. (27), while the dashed line shows the result of Holthausenergy of the system takes the form
et al.[21]. The dotted line displays the result of Giorgeatial.[22]

[Eq. (28)]. The arrow marks the temperature corresponding to the

maximum condensate fluc_tuat_io_ns. Beldy, the solid line coin- Ein= zgf no(r)nT(r)d3r+9f n%(r)d3r, (30
cides with the result of Giorginét al. [22]. Near T, our result

agrees with that of Holthaust al. [21].

where g=4m#2%a/m is the coupling constant fixed by the
s-wave scattering length. ny(r) andn4(r) are the density
N _ - distributions of the condensate and normal gas, respectively.
G(N,No) =Aigea if No=N, while G(N,N0)2—>0 when No Below the critical temperature, by the Thomas-Fe{fif)
#N. Therefore, we obtaigNg—N and (5°Ng)—0 when L : L

approximation the density distribution of the condensate

T-0. reads
Note that our results are reliable although the disputable

saddle-point method is used to investigate the fluctuations of

the condensate. It is well known that the applicability of the no(r)= #~VexdT) ,
saddle-point approximation for the condensed Bose gas has g
been the subject of a long debdi#2,29. Recently, the

analysis given in Refl17] showed that the fluctuations are where 4 is the chemical potential of the system. The tem-
overestimated and do not appear to vanish properly wittherature dependence of the chemical potential is then fixed
temperature using the conventional saddle-point method. Ousy the number of atoms in the condensate,

discussions on the condensate fluctuations are reasonable due

to two reasons(i) As proven in Ref[21], the most probable fiong
value Eq.(11) for the noninteracting Bose gas is still correct, m(Ng,T)= 5
even when carefully dealing with the failure of the standard
saddle-point method below the critical temperatyi®. In

the usual statistical methodNg) and (8%N,) are obtained Where an,=(/mwyy) ™ is the harmonic oscillator length.
through the first and second partial derivatives of the partiMoreover, sinceu=3JEq/INo, the energy per particle in the
tion function, respectively. When the saddle-point approxi-condensate turns out to be

mation is used to calculate the partition function of the sys-

tem, the error will be overestimated in the second partial .

derivative of the partition function. Thus one cannot obtain € =E0/NO:7M(N0,T). (33
correct condensate fluctuations using the usual method.

However, in our approach here what we used is the reliable ] o o ] .
result given by Eqs(11) and (14). The probability distribu- As a first-order approximation, omitting the interaction
tion function of the ground state occupation number can b&etween condensed and noncondensed atoms, the partition
obtained directly from Eqs(11) and (14), without resorting ~ function of the system is given by

to the second partial derivative of the partition functigNg)

and (8°Ng) are obtained from the probability distribution N

function in our approach. The correct description5bf, near Zi [ N]= Z {exd — BNong]ZO(N,NO)}. (39

zero temperature and critical temperature also shows the va- No=0

lidity of our method. Thus our approach has provided in

some sense a simple method recovering the applicability ofrom Eg.(11), the most probable value reads

(31)

2/5

15Nga
: (32

ano
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1
P_N—
No=N Z’o exp{Blen—w(NB, T} -1

Using the density of states, i.e., E@®5), one obtains the
result for the most probable valud,

(35

__30l2)
204 £(3)17°

{(2) w(N§, DN
£(3) kT

2N 2/3

(36)

NE=N(1-t3)—

wheretzT/Tg is the reduced temperature. Introducing the

scaling parameter [4],

u(T=0) 7(’\'1/63 *
BV
kBTg > Ano , 7
Eqg. (36) becomes
£(2) N%% 3w{(2)
o L2 OINGYT Bwl(2) .
Np=N(1-t°) 7(3) NEI N 2wpd £(3)]%3
(38

PHYSICAL REVIEW A 65 033609

0F e a/a, =10° m A
“““ a/aho=10“' . 74 /. \‘|
ideal _."'. LA Al
20 L N=1000 e "-__ A
o d u' é)
z )
I\.‘A
I
10} ..
0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
[1]
T,

FIG. 3. The numerical result ofN, for N=1000 interacting
bosons confined in an isotropic harmonic trap wétha,,=10*
and a/an,= 103, respectively. The dotted and dashed lines show
condensate fluctuations when interactions between condensed and
noncondensed atoms are omitted. The condensate fluctuations are
displayed with circles and squares when interactions between con-
densed and noncondensed atoms are considered. The crossover
from the interacting to noninteracting Bose gases is clearly shown
in the figure.

Note that the corrections due to the interatomic interactiorfor the ideal harmonically trapped Bose gas. The correction
and finite number of particle of the system can be obtained;,(N,Ng) originating from the interatomic interaction takes

simultaneously when Ed38) is used to calculatéNy) and

the form

(8°Ng) of the system. The second term on the right-hand

side of Eq.(38) accounts for the correction of the interaction
effect. The correction due to the interatomic interaction co-
incides with the lowest-order thermal depletion obtained in

the grand-canonical ensemble appropth
For otherNg, assuming ¢/ INg)q(N,Ng) = a(N,Ng), we
get

1
No= N_rgo exp{Blen—m(No, T)]texd —a(N,Ng)]—-1"
(39

Combining Egs.(35) and (39), one obtains the result for
a(N,No),

{(3)(No—Ng) N p(NG, T)— u(No, T)

«(N.No) =~ {(2)NB keT

(40)

15a
Ano

ﬁwho

Rint( N,NO) = EXF{ m

_ ;[NSB_(NS)WSJH.

2/
To@W%MrN@
(42)

Note thatG;,(N,Ng) is not a Gaussian distribution function
because of the existence of the non-Gaussian factor
Rint(N,No).

From Egs.(21) and (41) we can obtain the numerical
result of (8°Ng)in. In Fig. 3, we have provided the numeri-
cal result of 6N, for N=1000 interacting bosons confined in
an isotropic harmonic trap witla/a,,=10"* and a/ay,
=103, respectively. The crossover from the interacting to
the noninteracting Bose gases is clearly shown. From Fig. 3,
we find that the repulsive interaction between atoms results
in a decrease of the condensate fluctuations. For an attractive
interaction, we anticipate that the corrections between atoms

The probability distribution function of the interacting Bose result in an increase in the condensate fluctuations.

gas is then

No
CZ(N,No)d N0:|
NG

&MNN&=NmW%f

Aint
= __Gidea(NaNO) Rint(N,No), (41)
Aldeal
where A, is a normalization constanG,ye.a(N,Ng) is the
probability distribution function given by the formul@7)

The interaction between condensed and noncondensed at-
oms gives high-order correction to the thermodynamic prop-
erties of the system. Near the critical temperature, i.e.,
when Nga/a,<1 [4], we have no(r)=NO(mwﬁC/

h) 3% Me toyy? o2 |n addition, we can adopt the
semiclassical approximation for the normal ga, i.e.,
nt(r) =\73gs (e #Ved) with \y=[ 2742/ (mksT) "2 be-
ing the thermal wavelength. From Eg4.1) and (30), it is
straightforward to obtain the most probable vaNg near
the critical temperature:
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_3_@{ _i} w32,
N N E)] R E I Ky e .
N N 5(2)9N1/2t2 ’ ( )
14—
[£3)1V2(312)

where S=37"_;1/Z(3)[ij(i+])]¥% When obtaining Eq. the repulsive interaction between the condensed and noncon-
(43), we have introduced a scaling parametes gn.(r densed atoms lowers the condensate fluctuations further.
=0,TY)/kgT2=2.02(@@/ap) N*®. ¢ can also be written in the

form of §=0.657°2 By settingN§=0, from Eq.(43) we V. INTERACTING BOSE GASES BASED ON
obtain the shift of the critical temperature: BOGOLIUBOV THEORY

ST a £(2) - Condensate_ fluctu_ations due to C(_)Ilective exc_ita_tions have
¢ 1.65—NY6— ——=—_ N~ (44) been recently investigated by Giorgiei al. [22] within the
T? no 2[4(3)]?" @no traditional particle-number—nonconserving Bogoliubov ap-
proach. In Ref[22], the fluctuations from collective excita-
The first term on the right-hand side of E@4) is the shift  tions are shown to follow the layi$?Ng)~N*2. In this sec-
due to the interatomic interaction. It agrees with the resultsion, the Bogoliubov theory will be developed based on our
based on the local-density approximati88] obtained by canonical statistics to discuss the condensate fluctuations
using the grand-canonical ensemble approach. The secowdiginating from collective excitations. According to the Bo-
term in Eq.(44) gives exactly the usual results due to effectsgoliubov theory{39,40, the total number of particles out of
of the finite number of particleg4]. Thus in our approach, the condensate is given by
within the canonical ensemble the corrections due to the ef-
fects of the finite particle number and the interatomic inter-

actions can be obtained simultaneously. Nr= > Npy= > (ud+vd)fa. (47)
Below the critical temperature, the most probable value is N0 n#0
given by » ) )
The real quantitiesi,, andv,, satisfy the relations
N§ 5 6(2) , 7E*® nt? 5/2.1/2 B\2 ~2n271/2
g1t g(s)t ; +1.49§75F(w)+o.1477 t u§|+u§.=[(8”') +g n3] | s
o 28n|
o Sed®) 2N, (45)
20pd £(3)]7° 9Mo
Unon == 5 (49)
wherew= (7&?%t)2. F(w) is defined by Enl
_ 3 _ 3 1.0 =
F(w)=0.531-0.5e %#V' —0.5e 15" (4e [ T =TTl ] T mhorder
"\\\ - -!owest order
Omitting the high-order terms of the parameter the ex- ) S T e T
pression(45) gives exactly the lowest-order correction of Eq. os
(398). ad ]
From Eq.(30), we can obtain the probability distribution Eno
function of the condensate when the interaction between % 04f T
condensed and noncondensed atoms is considered. Combin-
ing with the most probable value, one obta{iNg) and SNg 0.2 .
of the interacting Bose gases. In Fig. 4, the experimental
parameter by Enshet al.[38] is used to plofNg)/N within 00~ v v o v 1‘0
the canonical ensemble. Our resulsslid line) agree well ’ ) ) " ) ’ ’
with the conclusion of Ref.33] (circles where the semiclas- ¢

sical approximation is used in the frame of the grand- kg 4. Displayed is(Ng)/N of the trapped interacting Bose
canonical ensemble. We can also obtain the numerical resulfgses with the experimental parameters of Ensha. [38]. The

for 6Ny in the presence of the interaction between condensegashed-dotted line show#o)/N of the ideal Bose gas, while the
and noncondensed atoms. The numerical resulsN§ is  circles show the result of Giorgimit al.[33]. The numerical results
displayed in Fig. 3 witha/a,,=10 * (circles and a/a,,  of the lowest order and high ordéNg)/N within the canonical
=103 (squarey respectively. Our calculations show that ensemble are displayed with dashed and solid lines, respectively.

033609-7



HONGWEI XIONG et al. PHYSICAL REVIEW A 65 033609

wheref, is the number of the collective excitations excited No—NB
in the system at the thermal equilibrium a(N,Ng)~ — o . (57)
> (uh+of)?fh
1 nl#0
fm:—B . (50) ) . .
exd Bey]—1 When getting Eq(57), we have used the approximatifg

N ) o ~ ~kgT/eB for low-energy collective excitations. Thus the
In addition, the energy of the collective excitations enteringpropability distribution function of the condensate is given

Egs.(48) and(49) is given by the dispersion laj#1] by
ep=hwp2n?+2n1+3n+1)Y2 (51) (Ng—NB)?2
Gg(N,Ng) =Agexp — , (58
These phononlike collective excitations are in excellent 2> (U3 +v2)2f?
agreement with the measurement of experiments. The disper- nl=0

sion law (51) is valid if the conditionsNga/a,>1 andey, _ o
< are satisfied. The contribution to the condensate fluctua/N€réAs is a normalization constant. Therefore, the conden-

tions due to these discrete low-energy modes is importarﬁate fluctuations due to the collective excitations read

becausef, ,u2,+v?2 ,Unvm*1/\2n2+2nl+3n+1 at low N
excitation energies. > N2Gg(N,No)
In Eq. (47), N,,; can be regarded as the effective occupa- X Ng=0
tion number of noncondensed atoms, while (0°No) collective™
N 2 Ga(N.No)
NEIZ 2 . > =fnl (52 o
unl_{—vnl N 2

. . . . >, NgGs(N,No)
is the occupation number of the collective excitations. From Ng=0
the form of f,;, one can construct the partition function of - N . (59
the collective excitations in the frame of the canonical en-
>, Gg(N,No)
semble, Ng=0

24=3 ex;{—ﬁz NS,
nl

{ni}

Equations(58) and(59) provide the formulas for calculating
the condensate fluctuations originating from the collective
excitations.

From Eq.(52), Zg becomes Bglow the temperatureTm v_vhich corresponds to the
maximum fluctuations, we obtain the analytical result for the
condensate fluctuations,

. (53

z , (54

> exp[—ﬂ; Nl

B:
{SNp =N}

(&8°N

> 2 ( maszTc> Z/SN s
0/ collective™

wheree®=¢8/(u2,+v2) can be taken as an effective en- 124(2) h?

ergy level of the thermal atoms. In this caZgg, is the parti- 1 [ mak.T.\ 28

tion function of a fictitious boson system, which is composed ——B( &) N43 (60)
of N noninteracting bosons whose energy level is determined 2 h?

by 2. From Eq.(54), the most probable valus} is given

by whereB is a dimensionless parameter, which is the same as

that obtained in Ref.22]. Note that compared with the result
1 obtained by Ref[22], the coefficient in Eq(60) differs by a
NE=N-— > . (55) factor 3. The expressiol60) shows clearly that the conden-
nl#0 ex;{ﬁ(sﬁf—sﬁfzo)]— 1 sate fluctuations due to the collective excitations are anoma-
lous, i.e., proportional taN*3. Note thatGg(N,No) is a
It is obvious that the occupation number of lowl in Eq.  Gaussian distribution function. The anomalous behavior of
(55) coincides with that of Eq(47). The otherNy is deter- the condensate fluctuations comes from the factor

mined by 23 i2o(U +v3)%f2,, which is proportional taN*~.
At the critical temperatureGB(TzTC)=exp[—N§/ v,
NN S 1 where y=23,(u?+v2)?f2,. In this case, we obtain the
0 “o exr[ﬁ(sﬁf—sﬁf,fzo)]exd—a(N.No)]— 1 analytical result of the condensate fluctuations,
(56)

5 2/5
5 ma‘kgT, 3

, (8°Ng)|7_7 =0.18y=0.18B| ———=| N*3. (61)

From Eqs.(55) and(56), we obtain c 72
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From Egs.(60) and (61), we find that the behavior of the thank Professor G. S. Jia and Professor J. F. Shen for their
condensate fluctuations based on the Bogoliubov theory isnormous encouragement.
rather different from that of the lowest-order perturbation

theory. APPENDIX

In this appendix, the method of saddle-point integration
described by Darwin and Fowl¢R28] is used to investigate

the partition function of the fictitioutN — Ny noninteracting

In this paper, a canonical ensemble approach has begpysong The partition function of the fictitious system is
developed to investigate the mean ground-state occupati

VI. DISCUSSION AND CONCLUSION

number and condensate fluctuations for interacting and no Jven by

interacting Bose gases. Different from the conventional

methods, the analytical probability distribution function of Zo(Np)=_ 2 eXF{—BE Npen|, (A1)
the condensate has been obtained directly from the partition > Np=Ng n+o

function of the system. Based on the probability distribution n#o

function, we have calculated the thermodynamic properties _ . .
of the Bose gas, such as the condensate fraction and tr\é\%fsrgt'\leT_N_No is the number of particles out of the con-
fluctuations. Through the calculations of the probability dis- Becal.Jse of the restriction... N = N~ in the summation
tribution function, we have provided a simple method to re- f Eq.(AL). Z-(N i b”*O ”I. 'tIT luated. T i
cover the applicability of the saddle-point method for study-O g. (AD), .0( 7 cannot be explicitly evaluated. 10 pro
ing the condensate fluctuations. In fact, the theory of th geed, we define a generating function By(Ny) in the fol-

improved saddle-point method developed in this work can b owing manner. For any complex numbzrwe take

applied straightforwardly to consider the condensate fluctua- P
tions in other physical systems, such as the interacting Bose Go(T,2)= 2 NTZo(Ny). (A2)
gas confined in a boj42], the interacting Bose gas in low NT=0

dimensions, etc. The probability distribution function can . ) .
also be used to discuss other interesting problems, such d§1€ generating function can be evaluated easily. The result

the phase diffusion of the condensate. of Go(T,2) is given by
For the harmonically trapped interacting Bose gas, we
found that different approximations for weakly interacting _ 1
erent appr . Ints Go(T.2)=11 : (A3)
Bose gases give quite different theoretical predictions con- nzo 1—zexd — Bey]

cerning the condensate fluctuations. In our opinion, the

lowest-order perturbation theory gives in some sense the To obtainZ,(Ny), we note that by definitiorZy(Ny) is
condensate fluctuations due to normal thermal atoms, whilthe coefficient oz"T in the expansion 06y(T,z) in powers
the Bogoliubov theory gives the condensate fluctuation®f z. Therefore, we have

originating from the collective excitations. The contributions

to the condensate fluctuations due to the collective excita- 1 Go(T,2)
tions mainly come from the low-energy modes, and it is ZO(NT):ﬁ § dz N+l
obvious that the condensate fluctuations based on the lowest-

order perturbation theory miss the contributions coming fromyhere the contour of integration is a closed path in the com-
the collective excitations. Considering the fact that the conpjex 7 plane abouz=0. Letg(z) be defined by

tributions due to low-energy thermal atoms in the lowest-

(Ad)

order perturbation theory are relatively small, the overall Go(T,2)
condensate fluctuations may be written as exdg(z)]= N +’1 ; (A5)
zZ'T
< 52NO>aII: < 52N0>int+ < 52No>collectivei (62)

thenZy,(N1) becomes

where (5°No)int and { 82No)colieciive ar¢ condensate fluctua- 1
tions due to the normal thermal atoms and the collective Zo(N7)= =— fﬁ dzexdg(2)]. (A6)
excitations, respectively. 2i

The saddle poing, is determined by
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By Eg. (A3), one gets Thus we have

1
_ Go(T,2o)
N,= . (A9) _ olT.Zo
n#0 ex;{ﬁsn]zal—l ZO(NT) Z’(\)ITJrl[ZWgH(ZO)]l/Z'

(A13)

Noting that Eq.(A9) is exactly the equation to determine the

number of condensed atoms within the grand-canonical enWith these results, the free energy(N,No) of the fictitious
semble, the saddle poigg can also be regarded as the fugac-system is then given by

ity of the fictitiousN— Ny noninteracting bosons.

Expanding the integrand of EqA6) aboutz=z,, we
Ao(N,No):_kBT InG()(T,Zo)_NTanO_InZO

have
1 1 2 > - 1| 27g" Al4
Zo(Nr) = 5— é dzexp g(2o) + 5 (2~ 20) ﬁ_zég(z()) >In[279"(20) ] (Al4)
In the case ofN>1, the last two terms in EqA14) can be
Tl (A10)  omitted. Therefore,
where Ap(N,Ng)=—KkgT[InGo(T,zo) —NtInzp]. (A15)
9 _ Gy(T.zo) N?—Ny From Eq.(A3), we obtain the relation betweef(N,N)
a_zgg(zo TGoTz) 2 (A1l andz, of the fictitious system:
By settingz—zy=iy, we obtain d
0 —Ba—M)AO(N,NO)zln Zp. (A16)
exdg(zo)] (= 1
2o(Np)~ ZETER [ ey - 2 gz)y? . | | |
2 —o 2 azg Equations(A9) and (A16) are useful relations used in the
(A12) text.
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