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We propose a general theoretical scheme to investigate the crossover from electromagnetically induced transpar-
ency (EIT) to Autler–Townes splitting (ATS) in open ladder-type atomic and molecular systems with Doppler
broadening. We show that when the wavenumber ratio kc∕kp ≈ −1, EIT, ATS, and EIT-ATS crossover exist for
both ladder-I and ladder-II systems, where kc (kp) is the wavenumber of control (probe) field. Furthermore, when
kc∕kp is far from −1, EIT can occur, but ATS is destroyed if the upper state of the ladder-I system is a Rydberg state.
In addition, ATS exists but EIT is not possible if the control field used to couple the two lower states of the ladder-II
system is a microwave field. The theoretical scheme developed here can be applied to atoms, molecules, and other
systems (including Na2 molecules, and Rydberg atoms), and the results obtained may have practical applications
in optical information processing and transformation. © 2014 Optical Society of America
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1. INTRODUCTION
In recent years, much attention has been paid to the study of
electromagnetically induced transparency (EIT), a quantum
interference effect induced by a strong control field, by which
the optical absorption of a probe field in resonant three-level
atomic systems can be largely suppressed. In addition to the
interest in fundamental research, EIT has many important ap-
plications in slow light and quantum storage, nonlinear optics
at low-light level, precision laser spectroscopy, and so on [1].

The most prominent character of EIT is the opening of a
transparency window in probe-field absorption spectra. How-
ever, the occurrence of transparency window is not neces-
sarily due to the EIT effect. In 1955, Autler and Townes [2]
showed that the absorption spectrum of molecular transition
can split into two Lorentzian lines (doublet) when one of two
levels involved in the transition is coupled to a third one by a
strong microwave field. Such a doublet is now called Autler–
Townes splitting (ATS) and has also been intensively investi-
gated in atomic and molecular spectroscopy [3].

Although both EIT and ATS effects can open transparency
windows in probe absorption spectra, the physical mecha-
nisms behind them are quite different. EIT results from a quan-
tum destructive interference between two competing
transition pathways and is related to the propagation of the
optical beams, whereas ATS is a dynamic Stark shift caused
by a gap between two resonances and related to the modifi-
cation of the atomic levels. Usually, it is not easy to distinguish
EIT and ATS by simply looking at the appearance of absorp-
tion spectra, and the ATS is used to simplify explanation of the

observed effects, in particular EIT. But the effects are very
different.

Because EIT and ATS are two typical phenomena appearing
widely in laser spectroscopy and have many applications, it is
necessary to develop an effective technique to distinguish the
difference between them. In 1997, Agarwal [4] proposed a
spectrum decomposition method, by which the probe-field
absorption spectra of cold three-level atomic systems were de-
composed into two absorptive contributions plus two interfer-
ence contributions. Recently, this method was used to clarify
EIT and ATS in a more general way [5–7]. In a recent work, an
experimental investigation on EIT-ATS crossover was carried
out [8]. Very recently, the spectrum decomposition method
was adopted to investigate the EIT-ATS crossover in Λ- and
V -type molecular systems with Doppler broadening [9,10].

In the study of EIT and ATS, several typical three-level sys-
tems (i.e., Λ, V , and ladder) [11] are widely used. For ladder
systems, there are two typical configurations, with the level
diagrams and excitation schemes shown in Figs. 1(a) and 1(b)
below, called here ladder-I [or upper-level-driven ladder sys-
tem; Fig. 1(a)] and ladder-II [or lower-level-driven ladder sys-
tem; Fig. 1(b)], respectively. The so-called upper-level-driven
(lower-level-driven) means that the control field couples the
two upper (lower) levels of the system. In recent years, much
interest has been focused on the Rydberg excitations in cold
and hot atomic gases, where ladder-type excitation schemes
are widely employed [12–19].

In this article, we propose a general theoretical scheme to
investigate the crossover from EIT to ATS in open ladder-type
atomic and molecular systems with Doppler broadening. We
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show that when the wavenumber ratio kc∕kp ≈ −1, EIT, ATS,
and EIT-ATS crossover exist for both ladder-I and ladder-II
systems, where kc (kp) is the wavenumber of control (probe)
field. Furthermore, when kc∕kp is far from −1, EIT can occur,
but ATS is destroyed if the upper state of the ladder-I system is
a Rydberg state. In addition, ATS exists but EIT is not possible
if the control field used to couple the two lower states of the
ladder-II system is a microwave field. The theoretical scheme
developed and the results obtained here can be applied to
various ladder systems (including hot gases of Rubidium
atoms, Na2 molecules, and Rydberg atoms).

Before proceeding, we note that many studies exist on the
study of ladder systems. Except for EIT and ATS [4,6,12–35],
other related investigations have also been carried out, includ-
ing Rabi oscillations [36,37], coherent population transfer [38],
quantum nonlinear optics at single-photon level [39], fast en-
tanglement generation [40], and microwave electrometry with
Rydberg atoms [41]. However, to the best of our knowledge,
no systematic analysis on the crossover from EIT to ATS in
ladder systems has been carried out up to now; furthermore,
no theory on the EIT-ATS crossover in open ladder systems
with Doppler broadening has been presented. Our theoretical
scheme is valid for both atoms, molecules, and other systems,
and can elucidate various quantum interference characters
(EIT, ATS, and EIT-ATS crossover) in a clear way. The results
obtained here are not only useful for understanding the de-
tailed feature of quantum interference in multilevel systems
and guiding new experimental findings but also may have
promising applications in atomic and molecular spectroscopy,
light and quantum information processing, etc.

The article is arranged as follows. In the next section, we
describe the theoretical model.

In Sections 3 and 4, the quantum interference characters of
the ladder-I and ladder-II systems are analyzed, respectively.
Finally, in the last section we summarize the main results
obtained in this work.

2. MODEL
We consider a hot gas consisting of atoms or molecules,
where particles have three resonant levels (i.e., ground state

j1i, intermediate state j2i, and upper state j3i) with a ladder
configuration [Fig. 1(c)] [28]. Especially, the upper state j3i
may be a Rydberg state. Two laser fields with central angular
frequency ωa and ωb couple to the transition j2i↔j3i and
j1i↔j2i, respectively. The electric field vector is E �P

l�a;belEl exp�i�kl · r − ωlt�� � c:c:, where el �kl� is the unit
polarization vector (wavenumber) of the electric field compo-
nent with the envelope El �l � a; b�.

We assume the system is open, i.e., particles occupying the
state j2i (j3i) can follow various relaxation pathways and de-
cay into other states besides j1i (j2i). For simplicity, all these
other states are represented by states j4i and j5i [28]. In the
figure, Δ2 and Δ3 are detunings, Γjl is the population decay
rate from state jli to state jji, and γ is the beam-transit rate
added to account for the rate with which particles escape
the interaction region (significant only for the level j4i since
it cannot radiatively decay).

Under electric-dipole and rotating-wave approximations,
the Hamiltonian of the system reads

ℋ̂ �
X5
j�1

ℏωjjjihjj − ℏ�Ωae
i�ka ·�r�vt�−ωat�j3ih2j

�Ωbe
i�kb·�r�vt�−ωbt�j2ih1j � h:c:�; (1)

where Ωa � μ32 · Ea∕ℏ (Ωb � μ21 · Eb∕ℏ) is the half-Rabi-
frequency of the field a (field b), with μjl being the electric-
dipole matrix element associated with the transition from
the state jli to the state jji. In the interaction picture, density
matrix elements are σjl � ρjl expfi��kl − kj� · �r� vt� − �ωl −

ωj − Δl � Δj�t�g (j, l � 1–5), with Δ1 � 0, Δ2 � ωb − ω2, and
Δ3 � ωa � ωb − ω3 being detunings. k1 � 0, k2 � kb,
k3 � ka � kb, ρjl is the density matrix elements in the Schrö-

dinger picture, and the interaction Hamiltonian is ℋ̂int �
−ℏ�Δ2 − kb · v�j2ih2j − ℏ�Δ3 − �ka � kb� · v��j3ih3j − ℏ�Ωaj3ih2j�
Ωbj2ih1j � h:c:�. Then the optical Bloch equation in the inter-
action picture is

i
∂
∂t
σ11 − iΓ12σ22 − iγσ44 − iΓ15σ55 � Ω�

bσ21 − Ωbσ
�
21 � 0; (2a)

i
∂
∂t
σ22 � iΓ2σ22 − iΓ23σ33�Ωbσ

�
21�Ω�

aσ32 −Ω�
bσ21 −Ωaσ

�
32 � 0;

(2b)

i
∂
∂t
σ33 � iΓ3σ33 � Ωaσ

�
32 − Ω�

aσ32 � 0; (2c)

i
∂
∂t
σ44 � iγσ44 − iΓ42σ22 − iΓ45σ55 � 0; (2d)

i
∂
∂t
σ55 � iΓ5σ55 − iΓ53σ33 � 0; (2e)

�
i
∂
∂t

� d21

�
σ21 � Ω�

aσ31 �Ωb�σ11 − σ22� � 0; (2f)

(a) (b) (c)

Fig. 1. (a) Ladder-I system, where states j3i and j2i are coupled by
the control field with center angular frequency ωc, and states j2i and
j1i are coupled by the probe field with center angular frequency ωp.
(b) Ladder-II system. (c) Open ladder system. The state j2i couples to
the state j3i by field a (with center angular frequency ωa) and the
ground state j1i by field b (with center angular frequency ωb). Δ2
and Δ3 are detunings, Γjl are population decay rates from jli to jji,
and γ is the transit rate. Particles occupying the state j2i (j3i) may
decay to other states besides j1i (j2i). Levels j4i and j5i denote these
other states rendering the system open.
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�
i
∂
∂t

� d31

�
σ31 −Ωbσ32 � Ωaσ21 � 0; (2g)

�
i
∂
∂t

� d32

�
σ32 −Ω�

bσ31 � Ωa�σ22 − σ33� � 0; (2h)

where d21 � −kb · v� Δ2 � iγ21, d31 � −�kb � ka� · v�
Δ3 � iγ31, d32 � −ka · v� Δ3 − Δ2 � iγ32 with γjl �
�Γj � Γl�∕2� γcoljl � j; l � 1; 2; 3�. Here, v is the thermal velocity

of the particles, and Γj denotes the total population decay
rates out of levels jji, defined by Γj �

P
l≠jΓlj . The quantity

γcoljl is the dephasing rate due to processes that are not asso-

ciated with population transfer, such as elastic collisions.
The evolution of the electric field is governed by the

Maxwell equation

∇2E −
1

c2
∂2E
∂t2

� 1

ϵ0c
2

∂2P
∂t2

: (3)

Because of the Doppler effect, the electric polarization inten-
sity of the system reads

P � N
Z

∞

−∞
dvf �v��μ12σ21ei�kbz−ωbt� � μ23σ32ei�kaz−ωat� � c:c:�;

(4)

whereN is particle concentration and f �v� � e−�v∕vT �
2∕� ���

π
p

vT �
is Maxwellian velocity distribution function, where vT �
�2kBT∕M�1∕2 is the most probable speed at temperature T

with kB the Boltzmann constant and M the particle mass.
For simplicity and without loss of generality, we have as-
sumed the two laser fields propagate along the z direction
with a counter-propagating configuration, i.e., ka;b �
�0; 0; ka;b� with kb � −ka in order to suppress the first-order
Doppler effect.

Note that the model given above is valid also for a closed
ladder system, which can be obtained by simply taking
Γ15 � Γ42 � Γ45 � Γ53 � γ � 0; furthermore, if the system is
not only closed but also cold, one has Γ15 � Γ42 � Γ45 �
Γ53 � γ � 0 and f �v� � δ�v�.

3. QUANTUM INTERFERENCE CHARACTER
OF LADDER-I SYSTEM
A. Linear Dispersion Relation
When the laser field a (field b) is taken as the control (probe)
field, the system is the ladder-I system [i.e., ωa � ωc, ωb � ωp;
see Fig. 1(a)]. In this case, under slowly varying envelope
approximation (SVEA) the Maxwell Eq. (4) is reduced to
the form

i

�
∂
∂z

� 1
c

∂
∂t

�
Ωb � κ12

Z
∞

−∞
dvf �v�σ21�v� � 0; (5)

where κ12 � Nωbjμ21j2∕�2ℏε0c� with c is the light speed in
vacuum.

The base state (zero-order) solution of the system, i.e., the
steady-state solution of the MB Eqs. (3) and (5) for Ωb � 0, is

given by σ�0�11 � 1, σ�0�jl � 0 (j, l ≠ 1). When the probe field is

switched on, the system will evolve into a time-dependent
state. At the first order of Ωb, the population and the coher-
ence between the states j2i and j3i is not changed, but

Ω�1�
b � Feiθ (6a)

σ�1�21 � ω� d31

jΩaj2 − �ω� d21��ω� d31�
Feiθ; (6b)

σ�1�31 � −
Ωa

jΩaj2 − �ω� d21��ω� d31�
Feiθ; (6c)

here F is a constant and θ � K�ω�z − ωt. The linear dispersion
relation K�ω� reads

K�ω� � ω

c
� κ12

Z
∞

−∞
dvf �v� ω� d31

jΩaj2 − �ω� d21��ω� d31�
: (7)

The integrand in the dispersion relation (7) depends on two
factors. The first is the ac Stark effect induced by the control
field, reflected in the denominator, corresponding to the ap-
pearance of dressed states out of states j2i and j3i, by which
two Lorentzian peaks in the probe-field absorption spectrum
are shifted from their original positions. The second is the
Doppler effect, reflected by dij � dij�v� and the velocity dis-
tribution f �v�, which results in an inhomogeneous broadening
in Im�K� (the imaginary part of K).

The lineshape of Im�K� depends strongly on the wavenum-
ber ratio x � ka∕kb. Figure 2 shows the numerical result of
Im�K� as a function of ω and x. The system parameters are
chosen as Γ2 � 6 MHz, Γ3 � 1 MHz, γ � 0.5 MHz, γcolij �
1 MHz, and Ωa � 80 MHz. We see that Im�K� undergoes a
transition from a deep, wide transparency window (doublet)
to a single absorption peak when x changes from −1.4 to −0.4.
Since Fig. 2 is obtained by a numerical calculation, it is not
easy to get a clear and definite conclusion on the quantum
interference characters of the system. Thus we turn to an ana-
lytical approach by using the method developed in [4–7,9,10].

B. EIT-ATS Crossover in Hot Rubidium Atomic Gases
In many experimental studies on EIT or EIT-related effects in
the ladder-I system with Doppler broadening, the excitation
scheme 5S1∕2 → 5P3∕2 → 5D5∕2 of 87Rb atoms was adopted,
such as in [23,30]. In this situation, the wavenumber ratio
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Fig. 2. Probe-field absorption spectrum Im�K� of the ladder-I system
as a function of ω and the wavenumber ratio x.
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x � −1, and the integration in Eq. (7) can be carried out ana-
lytically by using the residue theorem when the Maxwellian
velocity distribution is replaced by the modified Lorentzian
velocity distribution f �v� � vT∕�

���
π

p �v2 � v2T ��. Such a tech-
nique has been widely employed by many authors
[9,10,42–44].

Note that the integrand in the second term of the Eq. (7) has
only one pole kbv � −ikbvT � −iΔωD in the lower half-
complex plane of v. Considering the contour integration
shown in Fig. 3(a) and using the residue theorem, we obtain
the exact result

K�ω� � ω

c
�

���
π

p
κ12�ω� iγ31�

jΩaj2 − �ω� iγ21 � iΔωD��ω� iγ31�
; (8)

with Δ2 � Δ3 � 0. Explicit expression of K�ω� for nonvanish-
ing Δ2 and Δ3 can also be obtained but is lengthy and thus
omitted here.

Figure 3(b) shows the profile of Im�K� as a function of ω.
The dashed (solid) line is for the case of jΩaj � 0
(jΩaj � 500 MHz) for Γ2 � 6 MHz, Γ3 � 1 MHz, γ �
0.5 MHz, γcoljl � 1 MHz, ΔωD � 270 MHz, and κ12 � 1 ×

109 cm−1 s−1, used in [23]. We see that the probe-field absorp-
tion spectrum for jΩaj � 0 has only a single peak. However, a
transparency window is opened for Ωa � 500 MHz. The mini-
mum [Im�K�min], maximum [Im�K�max], and width of transpar-
ency window (ΓTW) are defined in the figure.

Equation (8) can be written as the form

K�ω� � ω

c
−

���
π

p
κ12

ω� iγ31
�ω − ω���ω − ω−�

; (9)

with

ω� � 1
2
f−i�γ21 � γ31 � ΔωD� � 2�jΩaj2 − jΩref j2�1∕2g; (10)

where

Ωref ≡
1
2
�γ21 � ΔωD − γ31�: (11)

In order to illustrate the quantum interference effect in a
simple and clear way, we decompose Im�K� for different
Ωa as follows:

(i) Weak control field region (i.e., jΩaj < Ωref ≈ ΔωD∕2):
Eq. (9) can be written as

K�ω� � ω

c
� ���

π
p

κ12

�
A�

ω − ω�
� A−

ω − ω−

�
; (12)

where A� � ∓�ω� � iγ31�∕�ω� − ω−�. Since in this region
Re�ω�� � Im�A�� � 0, we obtain

Im�K� � ���
π

p
κ12

�
B�

ω2 � δ2�
� B−

ω2 � δ2−

�
≡ L2 � L1 (13)

with δ� � Im�ω��, B� � A�δ�, and L1�2� �
���
π

p
κ12B−���∕

�ω2 � δ2
−����. Thus the probe-field absorption profile com-

prises two Lorentzians centered at ω � 0.
Shown in Fig. 4(a) are the results of L1, which is a positive

single peak (the dashed–dotted line), and L2, which is a neg-
ative single peak (the dashed line). When plotting the figure,
we have taken Ωa � 100 MHz and the other parameters are
the same as those used in Fig. 3(b). The superposition of
L1 and L2 gives Im�K� (the solid line), which displays a
absorption doublet with a transparency window near
ω � 0. Because there exists a destructive interference be-
tween the positive L1 and the negative L2 in the probe-field
absorption spectrum, the phenomenon found here belongs
to EIT based on the criterion given in [5–7].

(ii) Intermediate control field region (i.e., jΩaj > Ωref ): In
this region Re�ω�� ≠ 0, we obtain

K�ω� � ω

c
−

���
π

p
κ12

�
ω� iW

�ω� iW − δ��ω� iW � δ�

� i�γ31 −W�
�ω� iW − δ��ω� iW � δ�

�
; (14)

where W ≡ �γ21 � γ31 � ΔωD�∕2 and δ≡�����������������������������������������������������������
4jΩaj2 − �γ21 � ΔωD − γ31�2

p
∕2. The imaginary part of the

Eq. (15) is given by

Im�K� �
���
π

p
κ12
2

�
W

�ω − δ�2 �W2 �
W

�ω� δ�2 �W2

� g

δ

�
ω − δ

�ω − δ�2 �W2 −
ω� δ

�ω� δ�2 �W2

��
(15)

Fig. 3. (a) Pole (0, −ikbvT ) of the integrand in Eq. (7) in the lower half-complex plane of v. The closed curve with arrows is the contour chosen for
calculating the integration in Eq. (7) by using the residue theorem. (b) Probe-field absorption spectrum Im�K� as a function of ω for the hot ladder-I
systemwith wavenumber ratio x � −1. The solid (dashed) line is for jΩaj � 500 MHz (jΩaj � 0). Definitions of Im�K�min, Im�K�max, and the width of
transparency window ΓTW are indicated in the figure.
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with g � W − γ31. The previous two terms (i.e., the two Lorent-
zian terms) in Eq. (16) can be thought of as the net contribu-
tion coming to the absorption from two different channels
corresponding to the two dressed states created by the con-
trol field Ωa [4]. The following terms proportional to g are
clearly interference terms. The interference is controlled by
the parameter g and it is destructive (constructive) if g > 0
(g < 0). Since in the ladder-I system with x � −1, g � �γ21 �
ΔωD − γ31�∕2 is always positive, thus the quantum interference
induced by the control field is always destructive.

Figure 4(b) shows the probe-field absorption spectrum
Im�K� (solid line) as a function of ω for jΩaj > Ωref . The
dashed–dotted (dashed) line denotes the contribution by
the two positive Lorentzians (negative interference terms).
We see that the interference is destructive. The system param-
eters used are the same as those in Fig. 4(a) but with
Ωa � 400 MHz. A transparency window is opened due to
the combined effect of EIT and ATS, which is deeper and
wider than that in Fig. 4(a). We attribute such phenomenon
as EIT-ATS crossover.

(iii) Large control field region (i.e., jΩaj ≫ Ωref ): In this
case, the quantum interference strength g∕δ in Eq. (15) is very
weak (i.e., g∕δ ≈ 0). Im�K� reduces to

Im�K� �
���
π

p
κ12
2

�
W

�ω − δ�2 �W2 �
W

�ω� δ�2 �W2

�
: (16)

Figure 4(c) shows the result of the probe-field ab-
sorption spectrum as a function of ω for jΩaj ≫ Ωref . The

dashed–dotted line represents the contribution by the sum
of the two Lorentzians. For illustration, we have also plotted
the contribution from the small interference terms [neglected
in Eq. (15)], denoted by the dashed line. We see that the
interference is still destructive but very small. The solid line
is the curve of Im�K�, which has two resonances at ω ≈ �Ωa.
Parameters used are the same as those in Figs. 4(a)
and 4(b) but with Ωa � 1.2 GHz. Obviously, the phenomenon
found in this case belongs to ATS because the transparency
window opened is mainly due to the contribution of the two
Lorentzians.

From the results given above, we see that the probe-field
absorption spectrum experiences a transition from EIT to
ATS as the control field is changed from small to large values.
From the above result we can distinguish three different re-
gions, i.e., the EIT (jΩaj < Ωref ), the EIT-ATS crossover
(1 < jΩaj∕Ωref ≤ 4), and ATS �jΩaj∕Ωref > 4). Figure 4(d)
shows a “phase diagram” that illustrates the transition
from the EIT to ATS by plotting Im�K�ω�0∕Im�K�max as a
function of jΩaj∕Ωref . Note that we have defined
Im�K�ω�0∕Im�K�max � 0.01 as the border between EIT-ATS
crossover and ATS regions. Our results on the characters
of the quantum interference effect in the hot Rubidium atomic
gases are consistent with those obtained in the experiments
[23,30]. According to our analysis, the experiments carried
out in [23,30] are mainly in the EIT region. We expect the
EIT-ATS crossover and ATS may be observed experimentally
if Ωa is increased to the intermediate and the large control-
field regions.
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Fig. 4. EIT-ATS crossover for hot ladder-I system. (a) Probe-field absorption spectrum Im�K� (solid line) in the region jΩaj < Ωref is a super-
position of the positive L1 (dashed–dotted line) and the negative L2 (dashed line). (b) Im�K� (solid line) composed by two Lorentzians (dashed–
dotted line) and destructive interference (dashed line) in the region jΩaj > Ωref . (c) Im�K� (solid line) composed by two Lorentzians (dashed–dotted
line) and destructive interference (dashed line) in the region jΩaj > Ωref . Panels (a), (b), and (c) correspond to EIT, EIT-ATS crossover, and ATS,
respectively. (d) The “phase diagram” of Im�K�ω�0∕Im�K�max as a function of jΩaj∕Ωref illustrating the transition from EIT to ATS for the hot
ladder-I system. Three regions (EIT, EIT-ATS crossover, and ATS) are divided by two vertical dashed–dotted lines.
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C. EIT-ATS Crossover in Hot Molecular Gases
In 2008, Lazoudis et al. [20] made an important experimental
observation on EIT and ATS in a hot Na2 molecular ladder-I
system for the wavenumber ratio x � −0.896 and x � −1.08
[45]. Two excitation schemes of Na2 molecules were adopted
in [20]. The first (called system B) is X1

P�
g �1; 19� →

A1
P�

u �3; 18� → 41
P�

g �0; 17�, and the second (called system

A) is X1
P�

g �0; 19� → A1
P�

u �0; 20� → 21Πg�0; 19�. Both of
them correspond to the levels j1i → j2i → j3i in our Fig. 1(b).
We now analyze this system by using the Eq. (8).

When x is different from −1, the approach used in the last
subsection is not easy to implement since the pole of the in-
tegrand in the Eq. (8) is not fixed in the lower (or upper) half-
complex plane of v. In this case, the value of the pole depends
on both x and ω; moreover, it has an intersection with the real
axis for ω � 0. As a result, the residue of the pole is a piece-
wise function, and the spectrum decomposition gives very
complicated expressions not convenient for analyzing the
quantum interference character of the system.

Because of the abovementioned difficulty, we turn to adopt
the fitting method developed from the spectrum decomposi-
tion method, proposed by Anisimov et al. [7]. According to the
spectrum-decomposition formulas (13) and (16), we expect:
(i) if the probe-field absorption spectrum has a good fit to
the function

AEIT � B2�
ω2 � δ2�

−
B2
−

ω2 � δ2−
; (17)

EIT dominates, where B�, δ�, B−, δ− are fitting parameters;
(ii) if the absorption spectrum has a good fit to the function

AATS � C

�
1

�ω − δ�2 �W2 �
1

�ω� δ�2 �W2

�
; (18)

ATS dominates, with C, δ, W being fitting parameters.
Based on such a technique, we find that EIT, ATS, and EIT-

ATS crossover exist in the open molecular ladder-I system for
both x � −1.08 and x � −0.896. Figure 5(a) shows the probe-
field absorption spectrum Im�K� for x � −0.896 and Ωa �
265 MHz (corresponding to system B in [20]). The black solid
line is the experimental result from [20], while the red-dashed
line is given by our theoretical calculation. The system

parameters are given by Γ12 � Γ42 � 4.0 × 107 s−1, Γ23 �
5.6 × 106 s−1, Γ53 � 5.0 × 107 s−1, γ � 2.7 × 105 s−1, γcoljl �
1 × 106 s−1, andΔωD � 5 × 108 s−1. We see that our theoretical
result agrees well with the experimental one. Note that the
value of the reference Rabi frequency Ωref is a function
of the wavenumber ratio x. When x � −0.896, one has
Ωref ≃ 400 MHz. Thus the system is in the weak control field
region and the phenomenon found belongs to the EIT. Note in
passing that here we have plotted the quantity Im�K�, which is
proportional to the fluorescence intensity related to state j2i
because σ22 ≃ 2jΩbj2 Im�K�∕Γ2.

In Fig. 5(b) the absorption spectrum Im�K� for x � −1.08
and Ωa � 242.5 MHz (corresponding to system A in [20])
is shown. The system parameters are the same as that in
Fig. 5(a). We see that our result also agrees well with the ex-
perimental one. Since in this case Ωref ≈ 150 MHz, the system
is in the intermediate control field region and hence the phe-
nomenon found belongs to the EIT-ATS crossover. Note that
there is a small difference for the width of the EIT transpar-
ency window between our result and that in the experiment
[20]. The reason is mainly due to the approximation using the
modified Lorentzian velocity distribution to replace the
Maxwellian velocity distribution.

D. EIT in Hot Rydberg Atomic Gases
Recently, much interest has focused on the EIT in hot Rydberg
atomic gases due to its promising applications for storing,
manipulating quantum information, and precision spectros-
copy [12–30,32–35]. The ladder-I system has been widely
adopted in the experimental study of Rydberg EIT, in which
the transition is 5S1∕2 → 5P3∕2 → nD5∕2 of 85Rb atoms with n

being a large integer number. In this case, the upper state j3i
in Fig. 1(c) is a Rydberg state. If the density (e.g., lower than
108 cm−3) of a Rydberg gas is low, the interaction between
Rydberg atoms can be ignored. Our theory developed in
Sections 2 and 3.A can be applied to study the probe-field
propagation in such system.

Shown in Fig. 6(a) is the numerical result of the probe-field
absorption spectrum Im�K� as a function of ω for the hot lad-
der-I system with wavenumber ratio x � −1.63, which corre-
sponds to the experiment carried out in 2007 [15] by
Mohapatra et al. The red-dashed (blue solid) line is for the
case of jΩaj � 0 (jΩaj � 10 MHz) for the system parameters
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Fig. 5. Probe absorption spectrum Im�K� as a function of ω for (a) x � −0.896 and Ωa � 265 MHz (corresponding to system B of [20]), and
(b) x � −1.08 and Ωa � 242.5 MHz (corresponding to system A of [20]). The red-dashed lines are our theoretical results, and the black-solid lines
are the experimental ones from [20].
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Γ2 � 6 MHz, Γ3 � 1 kHz, γcoljl � 1 MHz, ΔωD � 270 MHz, and
κ12 � 1 × 109 cm−1 s−1. We find that the line shape of Im�K�
displays enhanced absorption on both sides of the transpar-
ency window. This effect arises due to the wavelength mis-
match between the control and probe fields combined with
the effect of Doppler broadening. We now analyze the quan-
tum interference character of such system.

Since the spectrum decomposition method is not conven-
ient for the analysis for the case x ≠ −1, we employ the fitting
method as done in the last subsection. Shown in Figs. 6(b)
and 6(c) are the results of Im�K� (blue solid line),
AEIT�B�; δ�; B−; δ−� (red–dashed line), and AATS�C; δ; W�
(black dashed–dotted line) as a function of ω for
Ωa � 3 MHz and 15 MHz, respectively. The expressions of
AEIT and AATS have been given by Eqs. (17) and (18). From
Fig. 6(b) we see that Im�K� has a good fit to AEIT�3.04; 1.58;
0.0381; 0.208� and a poor fit to AATS�0.237; 0.686; 0.513�. Thus
EIT occurs in this weak control field region. However, for in-
termediate and large control field one cannot find out the fit-
ting parameters by which AEIT and AATS can have a good fit to
Im�K� [Fig. 6(c) shows the result for Ωa � 15 MHz]. Conse-
quently, based on the criterion of [7], neither EIT nor ATS
dominates in the intermediate large control field regions.

Note that in the system discussed here the probe-field ab-
sorption spectrum Im�K� doesn’t possess standard Lorentzian
lineshape for large control field, which is due to the enhanced
absorption by the Doppler effect and by the large wave-
number mismatch between the probe and control fields. Ex-
perimentally, EIT in hot Rydberg atomic gases has been
observed in [15]. Our theoretical result given above agrees
with the experimental one. We hope that the theoretical result
for the intermediate and large control field region predicted
here may be verified experimentally in near future.

4. QUANTUM INTERFERENCE CHARACTER
OF LADDER-II SYSTEM
If the probe field and the control field in the ladder-I system
are exchanged, we obtain the ladder-II system [Fig. 1(b) with
ωb � ωc, ωa � ωp]. In this case, the Maxwell Eq. (3) under the
SVEA is reduced to

i

�
∂
∂z

� 1
c

∂
∂t

�
Ωa � κ23

Z
∞

−∞
dvf �v�σ32�v� � 0; (19)

with κ23 � Nωajμ32j2∕�2ℏε0c�.

A. Linear Dispersion Relation
The base state solution of the MB Eqs. (2) and (19) of the
ladder-II system reads

σ�0�11 � �γΓ2jd21j2 � 2γγ21jΩbj2�
1
D1

; (20a)

σ�0�22 � 2γγ21jΩbj2
1
D1

; (20b)

σ�0�44 � 2γ21Γ42jΩbj2
1
D1

; (20c)

σ�0�21 � −γΓ2Ωbd
�
21

1
D1

; (20d)

and σ�0�31 � σ�0�32 � σ�0�33 � σ�0�55 � 0, with D1 ≡ γΓ2jd21j2 �
2γ21�2γ � Γ42�jΩbj2.

By using the same method as in Section 3.A, one can obtain
the solution of the MB Eqs. (2) and (19) in linear regime, with
the linear dispersion relation given by

K�ω� � ω

c
� κ23

Z
∞

−∞
dvf �v� �ω� d31�2γγ21jΩbj2 − γΓ2jΩbj2d�21

D1�jΩbj2 − �ω� d31��ω� d32��
:

(21)

Figure 7 shows the probe-field absorption spectrum Im�K� as
a function of ω and the wavenumber ratio x. We see that, sim-
ilar to the ladder-I system (Fig. 2), Im�K� undergoes also a
transition from a wide transparency window in the line center
to a single absorption peak when x changes from −1.2 to −0.8.
The system parameters have been chosen as Γ2 � 6 MHz,
Γ3 � 1 MHz, γ � 0.5 MHz, γcolij � 1 MHz, and Ωb � 100 MHz.

B. EIT-ATS Crossover in Hot Sodium Atomic Gases
In 1978, Gray and Stroud [46] made an experimental observa-
tion on ATS in a ladder-II type hot sodium atomic system with
j1i � j3S1∕2; F � 2; MF � 2i, j2i � j3P3∕2; F � 3; MF � 3i,
j3i � 4D5∕2; F � 4; MF � 4i, and the wavenumber ratio
x ≈ −1. Such system can be described by the MB Eqs. (2)
and (19), and hence the linear dispersion relation (21) can be
used to describe the probe-field propagation.
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Fig. 6. (a) Probe-field absorption spectrum Im�K� as a function of ω. The blue solid (red dashed) line is for jΩaj � 10 MHz (jΩaj � 0). (b) Im�K�
(blue solid line), AEIT (red-dashed line) and AATS (black dashed–dotted line) as a function of ω for the weak control-field Ωa � 3 MHz where
AEIT has a good fit. (c) The case for the intermediate control field Ωa � 15 MHz, where both AEIT and AATS have poor fit.
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To get an analytical insight, we replace the Maxwellian
velocity distribution by the modified Lorentzian velocity dis-
tribution and calculate the integration (21) using the residue
theorem. We find two poles of the integrand in the lower
half-complex plane of v, which are kav � −ikavT � −iΔωD

and kav � −iC � −i�γ221 � 2γ21�2γ � Γ42�jΩbj2∕γΓ2�1∕2. By tak-
ing the contour consisting of the lower half-complex plane of v
and its real axis, we can calculate the integration exactly, with
the result given by

K�ω� � ω∕c�K1 �K2 (22)

with

K1 �
2

���
π

p
κ23γ21jΩbj2fω� i�γ31 � Γ2�ΔωD � γ21�∕�2γ21��g

Γ2�C2 − Δω2
D��jΩbj2 − �ω� iγ31��ω� iγ32 � iΔωD��

;

(23a)

K2 �
2

���
π

p
κ23γ21ΔωDjΩbj2fω� i�γ31 � Γ2�C � γ21�∕�2γ21��g

Γ2C�Δω2
D − C2��jΩbj2 − �ω� iγ31��ω� iγ32 � iC�� :

(23b)

We can also carry out a spectrum decomposition for Kj

(j � 1, 2), like that done in Section 3.B). The explicit expres-
sions of the decomposition have been given in Appendix A.
Similarly, three different control field regions (i.e., the weak

control field region jΩbj < Ωref , the intermediate control field
region jΩbj > Ωref , and the strong control field region
jΩbj ≫ Ωref ; Ωref ≡ ΔωD∕2) can also be obtained.

Figure 8(a) shows the absorption spectrum Im�K� in the
weak control field region (jΩbj � 100 MHz, which is smaller
than Ωref � 150 MHz). The dashed–dotted line is the contribu-
tion by positive L1, and the dashed line is by negative L2. The
superposition (sum) of L1 and L2 gives Im�K� (solid line). The
expressions of L1 and L2 have been presented in Appendix 6.
System parameters are chosen as Γ2 � 10 MHz, Γ3 �
3.15 MHz, ΔωD � 300 MHz [47], with other parameters the
same as those in the last section. We see that in the curve
of Im�K� a deep transparency window is opened, resulting
from the destructive quantum interference (because L1 is pos-
itive and L2 is negative). Hence in this region EIT exists.

Figure 8(b) shows Im�K� (solid line) in the intermediate
control field region (jΩbj � 200 MHz), which is the sum of
the two Lorentzians (dashed–dotted line) and the destructive
interference (dashed line). In this region, a large dip appears
in Im�K� due to the contribution of the destructive interfer-
ence. This region belongs to an EIT-ATS crossover.

Figure 8(c) illustrates Im�K� (solid line), the two Lorent-
zians (dashed–dotted line), and the destructive interference
(dashed line) in the large control field region (jΩbj �
800 MHz). We see that in this region the contribution of the
quantum interference is too small to be neglected. Obviously,
the phenomenon found in this situation belongs to ATS be-
cause the transparency window opened is mainly due to
the contribution by the two Lorentzians.

From the above analysis, we see that EIT, EIT-ATS cross-
over, and ATS exist in the ladder-II system with the Doppler
broadening for the wavenumber ratio x � −1. This is different
from cold ladder-II systems, where no EIT and thus EIT-ATS
crossover exist [6]. Although the experiment on ATS in a hot
atomic system with the ladder-II configuration for x � −1 has
been realized [46,47], it seems that up to now no experimental
study has been carried out on EIT, and EIT-ATS crossover in
the ladder-II system with Doppler broadening. We hope new
experiments can be designed to verify our predictions
given here.

C. Microwave Induced Transparency
We now discuss the case when the control field in the
ladder-II system is a microwave field, i.e. x → 0. The relevant

−0.4
−0.2

0
0.2

0.4 −1.2

−1

−0.8

0

0.5

1

Th
e 

ra
tio

 x

ω (GHz)

Im
(K

) 
(a

.u
.)

Fig. 7. Probe-field absorption spectrum Im�K� of the ladder-II sys-
tem as a function of ω and the wavenumber ratio x � ka∕kb.
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Fig. 8. EIT-ATS crossover for the hot atoms in the ladder-II system for the wavenumber ratio x � −1. (a) Probe-field absorption spectrum Im�K� in
the weak control field region (jΩaj < Ωref ). The dashed–dotted line is the contribution by positive L1, the dashed line is by negative L2. The sum of
L1 and L2 gives Im�K� (solid line). (b) Probe-field absorption spectrum Im�K� (solid line) composed by two Lorentzians (dashed–dotted line) and
the destructive interference (dashed line) in the intermediate control field region jΩaj > Ωref . (c) Probe-field absorption spectrum Im�K� (solid line)
composed by two Lorentzians (dashed–dotted line) and the destructive interference (dashed line) in the strong control field region jΩaj ≫ Ωref .
Panels (a), (b), and (c) correspond to EIT, EIT-ATS crossover, and ATS, respectively.
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experimental result, named by Zhao et al. [21] as microwave
induced transparency, was first reported in 1997.

In this case, the level diagram and excitation scheme is
given by Fig. 9, in which the optical transition between the
two lower states j1i and j2i is forbidden, but the optical tran-
sitions between the highest state j3i and the two lower states
j1i, j2i are allowed, so Γ12 � Γ42 � 0. All spontaneous emis-
sion decay rates Γ31, Γ32, and Γ34 (corresponding to the decay
pathways j3i → j1i, j3i → j2i, and j3i → j4i, respectively), and
the transit rate γ from j4i → j3i have been indicated in the
figure.

The base state solution of the MB equations for the present
case reads σ�0�11 � σ�0�22 � 1∕2 and other σ�0�jl � 0. The linear
dispersion relation of the system is given by

K�ω� � ω

c
� κ23

2

Z
∞

−∞
dvf �v� ω� d31

jΩbj2 − �ω� d31��ω� d32�
; (24)

with d31 � −kav� Δ3 � iγ31. Because γ31 � γ32, the integrand
in Eq. (24) has only one pole in the lower half-complex plane
of v, given by kav � −ikavT � −iΔωD. When replacing the
Maxwellian distribution by the modified Lorentzian distribu-
tion, the integration can be calculated exactly by using the
residue theorem. One obtains

K�ω� � ω

c
�

���
π

p
κ23
2

ω� iγ31 � iΔωD

jΩbj2 − �ω� iγ31 � iΔωD�2
: (25)

It is easy to get the probe-field absorption spectrum Im�K�
from Eq. (25), which reads

Im�K� �
���
π

p
κ23
2

�
W

�ω − δ�2 �W2 �
W

�ω� δ�2 �W2

�
; (26)

with W � γ31 � ΔωD and δ � jΩbj. Equation (26) consists of
two pure Lorentzians, which means that there is no quantum
interference occurring in the system and the phenomenon
found is an ATS one. Consequently, we conclude that there
is no EIT and EIT-ATS crossover in the ladder-II system when
the control field used is a microwave one.

5. SUMMARY
In Sections 3 and 4, we have analyzed the quantum interfer-
ence characters in the hot ladder-I and ladder-II systems with
Doppler broadening for many different cases. For clearness
and for comparison, in Table 1 we have summarized the main
results obtained for different ladder configurations with differ-
ent wavenumver ratio x. The first four lines are for the hot
ladder-I system; the next two lines are for the hot ladder-II
system. The seventh and eighth lines are for cold ladder-I sys-
tem and cold ladder-II system, for which relevant theoretical
analysis has been given in [4,6] and related experiments were
made in [17,25,48,49]. If in the table there is “Yes” in the same
line for both EIT and ATS, an EIT-ATS crossover also exists in
the system. The last column of the table gives some references
in which related experimental results were reported.

In summary, in this work we have proposed a general theo-
retical scheme for studying the crossover from EIT to ATS in
the open systems of ladder-type level configuration with
Doppler broadening. We have elucidated various mechanisms
of the EIT, ATS, and their crossover in such systems in a clear
and unified way. We have obtained the following conclusions.
First, when the wavenumber ratio x ≈ −1, EIT, ATS, and EIT-
ATS crossover exist for both ladder-I and ladder-II systems.
Second, when x is far from −1, EIT can occur but ATS is de-
stroyed if the upper state of the ladder-I system is a Rydberg
state. Third, ATS exists but EIT is not possible if the control
field that couples the two lower states of the ladder-II system
is a microwave field. Our theoretical analysis have applied to
various ladder systems (including hot gases of Rubidium
atoms, molecules, and Rydberg atoms, and so on), and the re-
sults obtained on the quantum interference characters agree
well with experimental ones reported up to now. The results
obtained here may have practical applications in optical infor-
mation processing and transmission.

APPENDIX A: Spectrum Decomposition of the
Ladder-II System for the Wavenumber Ratio
x � −1
Kj �j � 1; 2� in Eq. (23) can be decomposed as the form

Kj � ηj

�
Aj�

ω − δj�
� Aj−

ω − δj−

�
; (A1)

where ηj , Aj� are constants, δj� and δj− are two spectrum
poles of Kj , given by

Fig. 9. Microwave field driven ladder-II configuration. All notations
are given in the text.

Table 1. Quantum Interference Characters for
Various Ladder Systems with Different

Wavenumber Ratio xa

System Wavenumber Ratio x EIT ATS Reference

Ladder-I (Hot) −0.896 Yes Yes [20]
−1 Yes Yes [23,30]

−1.08 Yes Yes [20]
−1.63 Yes No [15]

Ladder-II (Hot) −1 Yes Yes [46]
0 No Yes [21]

Ladder-I (Cold) Any Yes Yes [17,25]
Ladder-II(Cold) Any No Yes [48,49]

a
“Hot” (“Cold”) means Hot (Cold) atoms or molecules. “Any” means any

value of x. The last column gives some references in which related
experiments have been carried out.
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η1 �
2

���
π

p
κ23γ21jΩbj2

Γ2�C2 − Δω2
D�

; (A2a)

η2 �
2

���
π

p
κ23γ21ΔωDjΩbj2

Γ2C�Δω2
D − C2� ; (A2b)

δ1� � 1
2

�
−i�γ32 �ΔωD � γ31��

���������������������������������������������������������
4jΩbj2 − �γ32 �ΔωD − γ31�2

q �
;

(A2c)

δ2� � 1
2

�
−i�γ32 � C � γ31� �

����������������������������������������������������
4jΩbj2 − �γ32 � C − γ31�2

q �
;

(A2d)

A1� � ∓

�
δ1� −

�
γ31 �

Γ2

2γ21
�ΔωD � γ21�

��
∕�δ1� − δ1−�;

(A2e)

A2� � ∓

�
δ2� −

�
γ31 �

Γ2

2γ21
�C � γ21�

��
∕�δ2� − δ2−�: (A2f)

In order to illustrate the quantum interference effect in a sim-
ple and clear way, we decompose Im�Kj� in different control
field regions as follows:

(i) Weak control field region (i.e., jΩbj < Ωref ≈ ΔωD∕2): In
this region, one has Re�δj�� � 0, Im�Aj�� � 0, and hence

Im�K� �
X2
j�1

Im�Kj� �
X2
j�1

ηj

�
Bj�

ω2 �W2
j�

� Bj−

ω2 �W2
j−

�

� L1 � L2; (A3)

where L1 and L2 are defined by

L1 �
η1B1−

ω2 �W2
1−

� η2B2−

ω2 �W2
2−

(A4a)

L2 �
η1B1�

ω2 �W2
1�

� η2B2�
ω2 �W2

2�
(A4b)

with the real constants

Cj� � −Wj��Wj� � Γw
j �∕�Wj� −Wj−�; (A5a)

Cj− � Wj−�Wj− � Γw
j �∕�Wj� −Wj−�; (A5b)

W1� � 1
2

�
γ32 � γ31 � ΔωD �

���������������������������������������������������������
�γ32 � ΔωD − γ31�2 − 4jΩbj2

q �
;

(A5c)

W2� � 1
2

�
γ32 � γ31 � C �

���������������������������������������������������
�γ32 � C − γ31�2 − 4jΩbj2

q �
; (A5d)

Γw
1 � γ31 �

Γ2

2γ21
�ΔωD � γ21�; (A5e)

Γw
2 � γ31 �

Γ2

2γ21
�C � γ21�: (A5f)

(ii) Intermediate control field region (i.e., jΩbj > Ωref ): By
extending the approach by Agarwal [4], we can decompose
Im�Kj� (j � 1, 2) as the form

Im�Kj� � ηj

�
1
2

�
Wj

�ω − δrj �2 �W2
j

� Wj

�ω� δrj �2 �W2
j

�

� gj

2δrj

�
ω − δrj

�ω − δrj �2 �W2
j

−
ω� δrj

�ω� δrj �2 �W2
j

��
; (A6)

where

W1 � �γ31 � γ32 � ΔωD�∕2; (A7a)

W2 � �γ31 � γ32 � C�∕2; (A7b)

δr1 �
�����������������������������������������������������������
4jΩbj2 − �γ32 � ΔωD − γ31�2

q
∕2; (A7c)

δr2 �
����������������������������������������������������
4jΩbj2 − �γ32 � C − γ31�2

q
∕2; (A7d)

g1 � −
Γ2

4
� γ21 − Γ2

2γ21
ΔωD; (A7e)

g2 � −
Γ2

4
� γ21 − Γ2

2γ21
C: (A7f)

(iii) Large control field region (i.e., jΩbj ≫ Ωref ): In this
case, the quantum interference strength gj∕δrj in Eq. (A6) is
very weak and negligible. We have

Im�Kj� ≈
ηj
2

�
Wj

�ω − δrj �2 �W2
j

� Wj

�ω� δrj �2 �W2
j

�
: (A8)
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