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Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for

analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting on fluid particles

is modified by adding relative permeability in Nithiarasu’s expression with an additional surface tension term. As a test

of this model, we simulate the phase separation for the case of two immiscible fluids. The numerical results show that

the two coupling relative permeability coefficients Kj2 and K21 have the same magnitude, so the linear flux-forcing

relationships satisfy Onsager reciprocity. Phase separation phenomenon is shown with the time evolution of density

distribution and bears a strong similarity to the results obtained from other numerical models and the flows in sands.

At the same time, the dynamical rules in this model are local, therefore it can be run on massively parallel computers

with well computational efficiency.
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1. Introduction

In the past several decades, the separation of
multi-phase fluids (MPFs) in porous media has at-
tracted considerable attention due to its important
applications in geothermal energy systems, secondary
and tertiary oil recovery, prevention of subsoil water
pollution, and other related fields. The separation of
MPFs exhibits a rich variety of pattern formation, in-
cluding fractal and self-affine growth morphology.!!!
Such diverse behaviours are the consequence of growth
mechanisms that depend on fluid properties (such as
viscosity and surface tension), structures of porous
media, and external driving forces that drive the
fluids.2! The separation phenomenon of MPFs in
porous media is usually observed at various scales: mi-
croscopic scale (pore), macroscopic scale (laboratory,
local), and domain scale, etc.[?l Here, the macroscopic

scale is defined as a representative element,!* and it

is much larger than the microscopic scale but much
smaller than the domain scale. In many situations

two or multiple scales may coexist.

The MPFs in porous media are usually investi-
gated by using classical models which can be reduced
to the Navier-Stokes equations for porosity equal to 1
or to the earlier porous medium models in appropri-
ate parameter ranges./®) However, the MPFs in porous
media require a more sophisticated description than
that provided by a single-phase continuum approach.
Many physical properties, such as the relationship be-
tween the macroscopic transport coefficients of porous
media and their microscopic geometry,l® the geomet-
rical properties of interfaces,”’] and the relationship
between transport coefficients and the morphology of
flow, etc, should be considered carefully.[8] Although
several different approaches have been introduced, in-
cluding x-ray microtomography techniques,®! Laplace

transition method,['®! and lattice gas method, '] etc,
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and can provide many improved results, they meet
with some problems such as computational efficiency,
noise brought by their Boolean nature, non-Galilean
invariance, and so on. In recent years, a new method,
the lattice Boltzmann method (LBM), has been suc-
cessfully set up for fluid flows in porous medial2—%:12l
and proved powerful, due to its simple implementa-
tion, straightforward parallelism, easy grid generation
and the capability in simulating MPF's with a complex
geometry.

In this paper, we report a comprehensive study on
the separation of MPF in a porous medium by com-
bining the LBM with the general principles of porous
flow. As a test of our model, we give an example
for the case of two immiscible fluids. The paper is
2, a model of MPFs

in porous media is introduced and a LBM simulation

organized as follows. In Sec.
frame for the separation of multi-phase immiscible flu-
ids is described. Section 3 is devoted to the analysis
of boundary conditions. In the last section we provide
the calculated results of the separation of MPF in a
porous medium and give a discussion and summary of

our work.

2.The model and lattice-

Boltzmann method
We first give a simple description for a MPF flow

in a porous medium. We take the form proposed by
Nithiarasu et all®) In this model, the velocity fields v
for a single-phase fluid are the solutions of the Navier—
Stokes equation

V-v=0, (1)

v v 1
E + (’U : V) <$) = —;V(¢P) + Vev2’v + F, (2)

where p is the fluid density, ¢ is porosity, P is pres-
sure, v, is an effective viscosity. F represents the total
body force due to the presence of the porous medium

and other external force fields, expressed by

where v is the shear viscosity of the fluid, which is gen-
erally different from v.. G is the body force induced
by an external force, Fy and K are respectively the
geometric function and permeability, which are based
on Ergun’s experimental investigation,'3! and is ex-

pressed by Vafai as follows:[14

1.75
Fy = Wa (4)

3 72
_ 9y 5)

150(1 — ¢)?
with ¢ the porosity, and d, the solid particle diameter.
Equations (1)—(5) are well established for single-
phase flows but not suitable for MPF's in porous me-
dia. According to Ref.[15], for a MPF in a porous
medium, relative permeability and surface tension
should be taken into account in dynamic laws. In
this paper, we consider only the case of two immis-
cible phases. This is just for simplicity, and for a
general case one can obtain a similar conclusion as

given below. The Darcy law for multi-phase v, =

K

ZKaﬁ(O)—Xg (X g is the body force acting on
Hor

B

the Sth component, K,3(0) is the relative permeabil-
ity coefficient, depending only on the saturation ) is
commonly concerned with three problems: 1) What
is the domain of validity of the linearity between flux
and body force? 2) The dependence of the perme-
ability coefficients on the change of microgeometry is
of considerable interest. 3) Any symmetry proper-
ties of the matrix K,g are of considerable interest
from the theoretical standpoint. These phenomeno-
logical descriptions form the theory of linear nonequi-
librium thermodynamics. Based on the reversibility of
the microscopic dynamics of atomic motion, Onsager
first described the general theory of such processes
with the reciprocity relations Ky, = Kgl,[G] and it
was recently demonstrated by Flekkgy and Pride.[!
Through a careful analysis as in Refs.[5, 16, 17], we
modify Egs.(1)—(3) for the two-phase flows as

V- v, =0, (6)

— 4+ (v4- V) <v_a> = —iV(QSP) + 1o, Vv + F,
(7)

where the total force acting on fluid particles in the
phase is modified by adding the relative permeability

and surface tension as follows,

_ i Vo vg
Fa="% {me)”“ T K (0) ”4
_ @[;W v
VE [/Kaa(@) © 7
1
+ Niow) U,B'Uﬁ}
+ ¢[Go + Gp] + F,
a,B8=1,2,a#p. (8)

In Eq.(8), the coefficients K3 (o, 8 = 1, 2) are dimen-

sionless relative permeability coefficients. The F! is
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surface tension, which can be modelled by using Shan

and Chen’s method'” and expressed as
F'=-V9o, (9)

where @ is a potential function representing fluid—fluid
interaction, its explicit form is given as follows:

P = Goz(x, 2 )Y (2)y7 (z), (10)

where G,z(x, ') is a Green function. For more de-
tails on the Eq.(10) and connection to multiple phase
flows see Ref.[17].

To obtain the solution of Egs.(6)—(10) is not easy
because the geometries of porous media are usually
complicated. Thanks to lattice Boltzmann computa-
tional techniques, important progress has been made
for the study of fluid flows in porous media.l*4 Some
authors have set up a LBM for multi-phase systems
using colour particles.['®! However, as pointed out
by Chen and Doolen,'?! these LBM schemes have
two shortcomings. First, the procedure of redistri-

bution of the coloured density at each site requires

0

)

(i—1)m (i— 1)

i _ cos ,sin
€a = < 2 2

\/5((705{( 2 4

The equilibrium distribution function is:

%

féeq :Azpa |:1 + e, Uy

RT
(efx : va)(efx Vq) VaVq
+ 26(RT)2 2¢RT}’ (13)

where R is the gas constant, T the temperature of the
fluid. The corresponding weight coefficients are A° =
4/9, A" = 1/9(i = 1,2,3,4),A* = 1/36(i = 5,6,7,8).
Based on Refs.[3, 4], we obtain

. ) 1 e - F
Fio=aip, (1 — ) (& e
a p( 2Ta>< RT

(€4 va)(ey - Fa) _ va

+ - @g“) . (14)

PR2T?
The density and velocity of the fluid are defined as

pa=YFh va=Yich/pat FFa (15)

To recover macroscopic equations for ath phase flows

a time-consuming calculation on local maxima; sec-
ond, the perturbation step with the redistribution of
coloured distribution function causes an anisotropic
surface tension that induces unphysical vortices near
interfaces. The second point is crucial since the pro-
cedure adopted is more or less artificial. In this pa-
per, we consider the drag effects of the medium and
present the multi-phase LBM equation in the form of

statistical average

fZ(m + eidht + 5t)
i) - Jal® ) S

Ta
a=1,2,

+ Foié(;ta

(11)

where §; is the time increment, fi(z,t) and fi*9(z,t)
are respectively the volume-averaged distribution
function and the equilibrium distribution function of
ath phase at the representative elementary volume
scale (in the following, the overbars will be omitted
for the sake of convenience), 7, is the relaxation time,
F! is the force for ith particle of ath phase. In the
D2Q9 model?® the discrete velocities are given by:

for ¢ = 0;

fori =1 —4;

l—_5>7f+z},sm{w+z]>, forie 5 _ 8.

2 4

in the porous medium, we use the multi-scale expan-

sion
fé:féo+€f(i1 + € i2+o(€3)a (16)
F* = eF§ + 0(%), (17)
0 0 5 0 3
I — 1
ot Eatl te Oty +0(<7), (18)
0 0 9

Letting f9=f? and ignoring the terms of O(e?), we

obtain
ap™

WWLV'(P"):Q (20)
ot TV < 5

= VP + V- [p*v¥(Vo* +v°V)] + F, (21)

where v = (7 — 0.5)RT6;. Note that when ¢ = 1,
Eq.(21) reduces to the standard lattice Boltzmann

equation for the ath phase flow in the absence of the
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porous medium. Another interesting character is that
Eq.(21) is reduced to Darcy’s law!?! when the ath

phase flow in the porous medium is very slow.
3. The interfacial boundary con-

ditions

The interfacial boundary conditions are extremely
important for obtaining an accurate result for the nu-
merical simulation. In the fluid-solid interfacial re-
gions, bouncing-back boundary condition?!l is a pri-
mary method in the lattice-Boltzmann simulation and
has been proven to have first-order accuracy. More ac-
curate boundary conditions have been proposed in the

(22] Tn this paper we use the scheme for

past few years.
the treatment of the boundary condition by consider-
ing a curved boundary lying between the nodes of the
equidistant lattice of space Adzx for a two-dimensional

model, as shown in Fig.1.

ff
FN K’B
TF et
Abz )
€
- I D Uu
b
T BN
Sz

!

Layout of the regularly spaced lattice and

G

Fig.1.
curved wall boundary, BN represents boundary node,
PB represents physical boundary, and FN represents
fluid node.

The lattice nodes on the solid and fluid sides
are denoted by x; and x; respectively. We assume

‘= xp — x5 and e’ = —e'. The filled small cir-

e
cle at @, is the intersection of the physical boundary
with the link between x; and xs. The fraction of an
intersected link in the fluid is ©, defined as

_ T — Ty

6 0< o<1 (22)

n \mf—a:b|’

After a collision step, the distribution functions at x

and t are known as the following streaming step

fi(mfat+5t):fi(wffat)v (23)
while f¥(z) can be obtained by
Fi(mp,t+ 6t) = f¥ (s, 1). (24)

However, the distribution function fi’(:rb,t) at the

boundary node is unknown. According to Ref. [22],

we assume that fi’(a:b,t) satisfies the following linear

interpolation formula

fi’(a:bv t) = (1 - X)fi(wfv t) +Xfi* (wlht) +6aieil *Vw),

(25)
where v,, = v(@,,t) is the velocity at the physical
boundary and x is a parameter. f* is a fictitious

equilibrium distribution function given by
F (2, 1) thp{l + € vapy
Vof -V < :
+ = (e e - &m)}’ (26)

where vo; = va(wp,t) and vgy = vg(xy,t) are the

fluid velocities near the solid and vsy. In Ref.[23],
Fillipova and Hanel proposed
Vpf = (9 — 1)vf/@ +’Uw/9;
1
x=(20-1)/t for 6 > 1 (27)
and
’Ubf = ’Uf;
1
x=(20-1)/(r-1) for 9§§, (28)

to obtain a second-order scheme for the “slow flow”.
Mei et all?*! improved the stability of the scheme by
replacing Eq.(27) by

Vof = Vffs

x=0260-1)/(t—-2) for 6 <

DN | =

. (29)

They have used this improved technique to study sev-
eral flow problems such as the fully developed flow in
a square duct, lid-driven cavity flows, fully developed
flows inside a circular pipe and a uniform flow over a
sphere to demonstrate its accuracy and robustness.
Periodic boundary conditions are chosen, and so
it is ensured that escaping particles at the end of the

flow domain can be reintroduced at its beginning.
4. Example

As a test of this method, we simulate the separa-
tion in the case of two immiscible fluids. Potentially,
one of the most commercially rewarding applications
of such a case is its use in enhanced oil recovery. In oil
field flows, oil is displaced and carried to the surface
by water. We perform simulations so as to reproduce
such oil field extraction flows. To the whole two-phase

system, the total density p satisfies:

p=p1+p2, (30)
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and the local velocity must satisfy
pv = fieh = ficsh

To demonstrate the application of our model, we

(31)

take a square two-phase fluid domain with the sides of
length L and divide it into 512 x 512 lattice. The ini-
tial density of the 1st phase at every site is randomly
produced between 0.5 and 0.55, while the 2nd phase

1.0

Relative permeability /lattice units

Saturation/lattice units

Fig.2. Relative permeability corresponding to our model.

is determined by the condition: p1+ps = 1. Other pa-
rameters are chosen to be ¢ = 0.1, K =5 x 10~ m?,
ve =1x 1073kgm~'s~!, and Ay = 0.105.

Figure 2 shows that the relative permeability coef-
ficients agree well with the theoretical prediction. The
two coupling coefficients K15 and K3; have the same
magnitude, so the linear flux-force relationships sat-
isfy the Onsager reciprocity. Thus we may conclude
that our model is reliable.

Figure 3 illustrates the separation of the two-
phase fluid in porous media. Phase separation phe-
nomenon is shown with the time evolution of density
distribution. For all pictures in Fig.3, the white re-
gions represent one phase, black ones represent the
other phase, and grey points that are in both white re-
gions and black regions, generated by the smoothing of
random white-noise images,/?®! represent solid media.
All the results are in complete agreement with those
numerical results obtained in two dimensions by Mail-

26,27 and experimental results.[28] At

let and Coveney!
the same time, the dynamical rules of our model are lo-
cal, so it is more physical and can be run on massively

parallel computers with well computational efficiency.

Fig.3. Separation of a two-phase fluid in porous media on a 512 X 512 lattice. Shown are
the time evolutions of the density distribution at (a) ¢t = 10, (b) ¢ = 900, (c) t = 5600.

5. Conclusion

A new LBM scheme has been extended to sim-
ulate the multiphase flow in porous media. The de-
scription of macroscopic behaviour of two-immiscible-
fluid flows by modifying the Navier-Stokes equations
of Nithiarasu et al with an explicit viscous coupling
between species has been verified. In the test, the de-
pendence of the relative permeability for the forced
fluid bears a strong similarity to the results obtained
from other numerical models and flows in sands. The

two cross coupling coefficients Ki5 and K31 have the

statistical magnitude of the LBM. This linear flux-
force relationship satisfies the Onsager reciprocity, as
expected. Such a study could elucidate which be-
haviours for the separation of multiphase fluids are
due to the modification of Navier-Stokes equations
and which are due to other factors, such as modifi-

cation of the interfacial boundary conditions.
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