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We make a systematic study of the resonant mode coupling of the collective excitations at zero temperature
in a Bose-Einstein condensatesBECd. sid Based on the Gross-Pitaevskii equation we derive a set of nonlinearly
coupled envelope equations for a three-mode resonant interactionsTMRId by means of a method of multiple
scales.sii d We calculate the coupling matrix elements for the TMRI and show that the divergence appearing in
previous studies can be eliminated completely by using a Fetter-like variational approximation for the ground-
state wave function of the condensate.siii d We provide the selection rules in mode-mode interaction processes
fincluding TMRI and second-harmonic generationsSHGdg according to the symmetry of the excitations.sivd
By solving the nonlinearly coupled envelope equations we obtain divergence-free nonlinear amplitudes for the
TMRI and SHG processes and show that our theoretical results on the shape oscillations of the condensate
agree well with the experimental ones. We suggest also an experiment to check the theoretical prediction of the
present study on the TMRI of collective excitations in a BEC.
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I. INTRODUCTION

Elementary excitations and their interactions are funda-
mental subjects in quantum many-body systemsf1g. In re-
cent years, much attention has been paid to the study of
linear collective excitations in trapping and weakly interact-
ing Bose gasesf2,3g due to the remarkable experimental re-
alization of the Bose-Einstein condensatessBECsd of cold
atomic gasesf4g. The interparticle interaction may result in
dramatic effects and many new nonlinear excitations can ap-
pear in certain experimental conditions. The most spectacular
experimental progress for the nonlinear excitations recently
achieved in BECs are the observation of solitonsf5,6g and
vortices f7g. On the other hand, recently there is growing
interest on the mode-mode resonant interactions of the exci-
tations in trapped condensed Bose gasesf8–17g. The nonlin-
earity, originating from the interatomic interaction, is in-
cluded in the equation of motion of the order parameter
through the mean field proportional to the condensate density
and is expected to give various mode-coupling processes,
such as second-harmonic generationsSHGd, three-mode
resonant interactionsTMRId, and four-wave mixing. This
nonlinearity has an obvious analogy between the mode cou-
pling in BECs and that in other contexts such in nonlinear
optics.

As is well known, to develop a complete and consistent
theoretical description for weakly nonlinear excitations and
their interactions, a satisfactory linear theory is needed. Up
to now nearly all analytical works on the linear excitations in
BECs are based on the Thomas-FermisTFd limit by using the
fact that, for large particle number and repulsive interatomic
interaction, the interacting energy is dominant compared
with the kinetic energysquantum pressured f3g. However, the
use of the TF limit brings many untractable problems.sid At
the boundary of the condensate the Bogoliubov amplitude
varies sharply and hence the kinetic energy of both the con-

densate and the excitations contributed from the boundary
layer can not be neglected. In fact mode couplings mostly
take place in the boundary layer regionsf13g. sii d A singular
point appears in the solution of the Bogoliubov amplitude at
the boundary of the condensatef18,19g which makes the
theory uncontrollable.siii d The existence of the singular
point results in a divergence for the interacting coupling ma-
trix elements f13,20g, which are important quantities for
mode-mode resonant interaction processes.sivd A divergence
occurs also in the calculation of the shape vibration of BECs.
Thus a manageable, consistent theory to obtain divergence-
free wave functions, coupling matrix elements, and shape
vibration of the condensate for mode couplings of the exci-
tations in trapped BECs is required. However, as far as we
know, such a theory is still lacking up to now.

In a recent work we have proposed a method for finding
analytical solutions of the Bogoliubov–de GennessBdGd
equations for the low-lying collective excitations in a har-
monically trapped BEC beyond the TF limit. We showed
that, by using a simple variational wave function for the
condensate ground state, the divergence at the boundary
layer of the condensate appearing in the TF limit can be
eliminated completely. We have also obtained explicit and
divergence-free expressions for the eigenvalues and eigen-
functions of the linear excitations for traps with spherical and
cylindrical symmetriesf20g. The purpose of the present work
is to present a consistent, divergence-free theoretical descrip-
tion for studying mode coupling of the excitations in trapped
BECs. We consider mainly the energy conversion in various
TMRI processessincluding SHG as a particular cased for a
BEC at zero temperature. In this case the Gross-Pitaevskii
sGPd equation for the evolution of order parameter is a good
starting pointf21g. We go beyond the TF limit and provide
explicit formulas for divergence-free coupling matrix ele-
ments, selection rules of the coupling matrix elements, and
the solutions of the nonlinearly coupled envelope equations,
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as well as the shape oscillations for describing SHG and
TMRI processes with spherically and axially symmetric
traps. The arrangement of the paper is as follows. We derive
in Sec. II the nonlinearly coupled envelope equations for
TMRI and SHG based on the time-dependent GP equation by
using the method of multiple scales. In Sec. III we calculate
analytically the coupling matrix elements using an eliminat-
ing divergence technique. In Sec. IV we calculate respec-
tively the average squared widths of the shape oscillations of
the condensate in the radial and the axial directions, which
are divergence-free and compare well with the experimental
results for SHG and TMRI processes. Section V contains a
summary and discussion of our results.

II. NONLINEAR AMPLITUDE EQUATIONS FOR THE
TMRIS

A. Model and asymptotic expansion

The grand canonical Hamiltonian of a weakly interacting
Bose gas is given byf1–3g

Ĥ =E d3r ĉ†sr ,tdF−
"2

2M
¹2 + Vextsr d − m

+
g

2
ĉ†sr ,tdĉsr ,tdGĉsr ,td, s1d

whereĉsr ,td is the field operator which annihilates a boson
at location r and time t, g=4p"2asc/M is the atom-atom
interaction constant withM the atomic mass andasc the
s-wave scattering lengthsasc.0 for a repulsive interactiond,
and m is the chemical potential of the system. The aniso-
tropic harmonic trapping potential is of the formVextsr d
= 1

2Mfsvx
2x2+vy

2y2+vz
2z2dg, where v j s j =x,y,zd is the fre-

quency of the trap in thej th direction. The Heisenberg equa-

tion of motion for ĉ reads

i"
]ĉ

]t
= F−

"2

2M
¹2 + Vextsr d − m + gc†ĉGĉ s2d

with the commutation relationfĉsr ,td ,ĉ†sr 8 ,tdg=dsr −r 8d
and other commutators zero. At low temperature the dynam-
ics of a Bose-condensed gas is well described by the time-
dependent GP equation, which can be obtained from Eq.s2d
by taking ĉsr ,td=csr ,td+ĉ8sr ,td, wherecsr ,td and ĉ8sr ,td
describe, respectively, the condensed and thermal compo-
nents and their fluctuations. For a dilute gas at zero tempera-
ture one can neglect the thermal component and its fluctua-
tions. Thus we have

i"
]c

]t
= F−

"2

2M
¹2 + Vextsr d − m + gucu2Gc. s3d

To find the excitations from a static condensate we take

csr ,td = cGsr d + «fsr ,td, s4d

where cGsr d is the ground-state wave function,fsr ,td de-
scribes the excitations generated from the condensate, and«
is a parameter denoting the relative amplitude of the excita-
tions. Then Eq.s3d becomes

i"
]f

]t
= sĤ0 − mdf + gfcG

2 s2f + f*d

+ «cGsf2 + 2f*fd + «2f*f2g, s5d

where Ĥ0=−"2¹2/ s2Md+Vextsr d and cG satisfies the equa-
tion

sĤ0 − m + gcG
2 dcG = 0. s6d

We consider weak nonlinear excitations from a BEC; thus
« is a small parameter characterizing the amplitude of the
excitations. To derive nonlinear amplitude equations we use
the method of multiple scalesf22g. Let f=fs1d+«fs2d+¯
with fs jd=fs jdsr ,t ,td, wheret=«t. Then Eq.s5d becomes

Ôfs jd ; i"
]fs jd

]t
− sĤ0 − mdfs jd − gcG

2 s2fs jd + fs jd*d = Qs jd,

s7d

with Qs1d=0 andQs2d=−i"]fs1d /]t−gcG
2 s2fs1d+fs1d*d. The

higher-orderQs jd s j =3,4, . . .d are not needed and thus are
omitted here.

B. Nonlinear amplitude equations for the TMRI

At the leading orders j =1d Eq. s7d readsÔfs1d=0. To
solve this svariable-coefficientd equation we make the fol-
lowing Bogoliubov decomposition:

fs1dsr ,td = o
n=0

`

funsr dbnstdexps− ivntd + vn
*sr dbn

*stdexpsivntdg,

s8d

wherebn is the amplitude depending on the slowly varying
time t, andunsr d andvnsr d are obtained by sovling the BdG
eigenvalue equations

L̂unsr d + gcG
2 vnsr d = + Enunsr d, s9d

L̂vnsr d + gcG
2 unsr d = − Envnsr d, s10d

whereEn="vn is the eigenvalue and the operatorL̂ is de-

fined by L̂=Ĥ0−m+2gcG
2 . From the BdG equationss9d and

s10d it is easy to show the eigenfunctionsunsr d and vnsr d
satisfy the following orthogonality relations:

E d3r fun
*sr dun8sr d − vn

*sr dvn8sr dg = dnn8, s11d

E d3r funsr dvn8sr d − un8sr dvnsr dg = 0. s12d

By choosing the zero modessi.e., the modes with zero eigen-
valuesd suitably one can obtain a complete set of eigenfunc-
tions, which is the key for diagonalizing a Bogoliubovsqua-
draticd Hamiltonian and studying the interaction of the
collective excitations in the high-order approximationf20g.
Here we are interested in a TMRI of excitations in the BEC
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and thus the first-order approximated solution should be cho-
sen as

fs1d = o
n=1

3

funsr dbnstdexps− ivntd + vn
*sr dbn

*stdexpsivntdg,

s13d

wherev1, v2, andv3 are selected to satisfy the three-mode

resonant conditionv3=v2+v1+D̃3 with D̃3=«D3 a possible
frequency mismatch in the TMRI process.

At the second orders j =2d the solvability conditions of the

equationÔfs2d=Qs2d yield the nonlinearly coupled envelope
equations controlling the evolution ofbn sn=1,2,3d:

i"
db1

dt
= sA132+ B123db2b3 exps− iD3td, s14d

i"
db2

dt
= sA231+ B213db3b1 exps− iD3td, s15d

i"
db3

dt
= sD312+ D321db1b2 expsiD3td, s16d

where the coefficients are given by

Ann1n2
= gN0E d3r cGfun

*sun1
+ vn1

dvn2

* + vn1
svn2

* + un2

* dvn
*

+ vn1
svn

* + un
*dvn2

* g, s17d

Bnn1n2
= gN0E d3r cGfun1

* sun2
+ vn2

dvn
* + un1

* svn
* + un

*dun2

+ un
*svn1

* + un1

* dun2
g, s18d

Cnn1n2
= gN0E d3r cGfun

*svn1

* + un1

* dvn2

* + un1

* svn
* + un

*dvn2

*

+ un1

* svn2

* + un2

* dvn
*g, s19d

Dnn1n2
= gN0E d3r cGfun

*sun1
+ vn1

dun2
+ vn1

sun2
+ vn2

dvn
*

+ vn1
svn

* + un
*dun2

g. s20d

It is easy to show that one has the relationA132+B123=A231
+B213=2sD312+D321d* =gN0M3, where the coupling matrix
elementM3 for the TMRI process is given by

M3 =E d3r cGfu3
*su1 + v1du2 + v1su2 + v2dv3

*

+ v2sv3
* + u3

*du1g. s21d

As a special case, the envelope equations for a SHG read

i"
db1

dt
= sA121+ B112db1b2 exps− iD2td, s22d

i"
db2

dt
= D211b1b1 expsiD2td, s23d

where «D2=v2−2v1 is a frequency mismatch. The coeffi-
cients in Eqs. s22d and s23d satisfy A121+B112=2D211

*

=gN0M2 with

M2 =E d3r cGfu2
*su1 + v1du1 + v1su1 + v1dv2

*

+ v1sv2
* + u2

*du1g, s24d

which is the coupling matrix element for the SHG process
f23,24g.

III. CALCULATION OF THE COUPLING MATRIX
ELEMENTS FOR SPHERICALLY AND AXIALLY

HARMONIC TRAPS

A. Solutions of the BdG equations

In order to investigate the TMRI and SHG of the collec-
tive excitations, we must make a detailed calculation of the
important physical quantities, i.e., the coupling matrix ele-
mentsM3 and M2. This requires solving BdG equationss9d
and s10d to get the related eigenfunctions. Previous studies
f13g show that one cannot avoid a divergence when calculat-
ing the coupling matrix elements if using the the BdG eigen-
functions obtained under the TF limitf18g. Here we employ
results obtained beyond the TF limitf20g fi.e., the TF re-
gime; we designate the TF regime asP@1 and the TF limit
asP→`, whereP;N0asc/aHO is the atom-atom interaction
strength,N0 is the particle number in the condensate, and
aHO;s" /Mv'd1/2 is the characteristic oscillator length of
the trapping potentialg to study the TMRI and the SHG of the
excitations in a BEC with a harmonic trap. In that work we
obtained all possible eigensolutions of Eqs.s9d and s10d in
spherically and axially symmetric harmonic potentials by us-
ing an exactly solvable model in the TF regime. The key for
getting these divergence-free results is the use of a properly
chosen trial wave function for the condensate ground state,
thereby avoiding the appearance of a singularity at the
boundary layer of the condensate as is often encountered in
the TF limit. In the following we give a simple description of
some results related to the ground-state wave function and
the eigenfunctions of the BdG equations obtained in Ref.
f20g.

For an axially symmetric trap, we definer̄2= s̄2+l2z̄2 sl
=1 is only a special case for a spherical trapd; a Fetter-like
trial wave functioncG=CG

Îls1−r̄2dsq+1d/2Qs1−r̄d is care-
fully chosen, whereCG=flN0/2pR'

3 Bs3/2,2+qdg1/2 is a
normalization constant andBsp,qd is the beta functionf25g.
The ratio R' /aHO and the chemical potential take the
simple forms R' /aHO=f4lP/Bs3/2,2+qdg1/5 and m

. 1
2"v'f4lP/Bs3/2,2+qdg2/5 in the TF regime. The varia-

tion parameterq is selected by minimizing the ground-state
energy and hence satisfies a constraint condition, i.e.,s2
+l2dsAR'

−2d8+3sBR'
2 d8+4l2PsCR'

−3d8=0, whereA, B, andC
are functions ofq and the prime denotes the derivative with
respect toq f20g.
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By introducing the parameterz="v' /2m!1, the BdG
equationss9d ands10d are solved analytically by defining the
new functionsw±sr d;usr d±vsr d. For l=1 si.e., spherical
trapd, good quantum numbers are the principal quantum
number nr s=0,1,2, . . .d, the angular quantum numberl
s=0,1,2, . . .d, and the magnetic quantum numberm
s=0, ±1, ±2, . . . , ±ld. Since the excitation spectra are inde-
pendent ofm, the entire excitation modes are labeled by two
quantum numbersnr and l, called thesnrld modes. The nor-
malized solutions of the BdG equations under the normaliza-
tion conditioned3r sun

2−vn
2d=1 aref20g

w±sr d = f2/sInrl
R'

3 dg1/2szv̄nrl
s0dd±1/2s1 − r̄2dsq71d/2Wsr d,

s25d

with Wsr d; r̄ lPnrl
sr̄2dYlmsu ,wd, whereYlmsu ,wd are spherical

harmonic functions.Pnrl
are special hypergeometric series or

classicalnr th-order Jacobi polynomials defined by

Pnrl
sxd = Fs− nr,nr + l + q + 1/2,r̄2d

= nrBfnr,l + 3/2gPnr

sl+1/2,qds1 − 2xd,

which form a complete set of orthonormal functions in the
interval 0øxø1 with weight xl+1/2s1−xdq. The normaliza-
tion integral in the radial direction is

Inrl
; E

0

1

dx xl+1/2s1 − xdqPnrl
2 sxd

= sl + 1/2d2/s2nr + l + q + 3/2dBsnr + 1,l + 1
2d

3Bsnr + 1 +q,l + 1
2d .

The eigenfrequenciesv̄nrl
including the first-order correction

have been given explicitly in Eq.s10d of Ref. f20g. In the
leading order one hassv̄nrl

s0dd2=sv̄nrl
TFd2+s2nr + ldq with sv̄nrl

TFd2

=2nr
2+2nrl +3nr + l s the result in the TF limitd. Here we have

definedv̄n;vn/v'.
For l¹1 saxially harmonic trapd, a good principal quan-

tum numbernp s=0,1,2, . . .still existsd f26g. Let m be an
azimuthal quantum numbersm=0, ±1, ±2, . . .d, ns the radial
quantum numbersns=0,1,2, . . . , intfnp/2gd, andnz the axial
quantum numbersnz=np−2nsd. The entire excitation modes
can be labeled by three quantum numbersnz, ns, and m,
called thesnznsmd modes. The normalized eigenfunctions are
given by

w±sr d =
szv̄nznsm

s0d d±1/2

Î2pR'
3 Inznsm

s1 − s̄2 − l2z̄2dsq71d/2Wsr d s26d

with function Wsr d; s̄mPnp

s2nsdss̄, z̄deimw. The polynomials

Pnp

s2nsdsz̄, s̄d=ok=0
np on=0

intfk/2gbk,nz̄
k−2ns̄2n form an orthonormal

function set in the interval 0ø r̄ ø1 with the weight
s̄ms1−r̄2dq. The squares of the zero-order eigenvalues
sv̄nznsm

s0d d2 are the solutions of a standard continued fraction
equation f20,26g. The normalization integral readsInznsm

;2e0
1s̄ ds̄e0

Î1−s̄2/ldz̄s̄2ms1−s̄2−l2z̄2dqfPnp

s2nsdsz̄, s̄dg2. The ei-

genvalues including the first-order correction are expressed
explicitly in Eq. 16 in Ref.f20g.

B. Expressions for the coupling matrix elements

Since the characteristic time scale for the energy transfer
among different exciting modes is inversely proportional to
the absolute value of the matrix element, we define the di-

mensionless coupling matrix elementsM̄k=MkaHO
3 sk=2,3d.

This definition ofM̄k differs both fromf13g and from f27g
since the dependence ofMk on the atom-atom interaction
strengthP and trap anisotropyl is also contained in the
quantity R'

−3z−1/2. Therefore we look for the dependence of

M̄k on P andl by introducing an independent volumeaHO
3 .

We first recapitulate the case of a spherically symmetric
trap si.e., l=1d. According to the solutions25d, the coupling
matrix elements21d for the TMRI reads

M̄3 =
f4P/Bs3/2,2 +qdg1/10

4pÎI1I2I3v̄1v̄2v̄3

3ÎN0

P
E d3r̄ s1 − r̄2d2qW1W2W3

*

3F3z2v̄1v̄2v̄3

1 − r̄2 − D̄3s1 − r̄2dG . s27d

The coupling matrix elements24d for the SHG is given by

M̄2 =
f4P/Bs3/2,2 +qdg1/10

4pI1v̄1
ÎI2v̄2

3ÎN0

P
E d3r̄ s1 − r̄2d2qW1

2W2
*

3F3z2 v̄1
2v̄2

1 − r̄2 − D̄2s1 − r̄2dG . s28d

In Eqs. s27d and s28d, In= Inrl
for n=1,2,3 and theintegral

range is in the sphere 0ø r̄ ø1. We note that the term pro-
portional toz2 make the integralss27d ands28d divergent in
the TF limit si.e., q=0d. However, in the TF regimesi.e., q
!1d, the factors1−xd2q makes the integrals finite. We also

note that in the case on resonancesD̄k=0,k=2,3d, the only

contribution toM̄k comes from this term, although the value
is small due toz2!1. In such a case the coupling is strongest
at the boundary of the condensate due to the radial integrand
factor s1−r̄2d2q−1.

For the case of an axially symmetric trapsi.e., l¹1d, we
define x= s̄2 and y=lz̄/Î1−x. Then by using Eq.s26d we
obtain the divergence-free coupling matrix elements for the
TMRI as

M̄3 =
f4P/Bs3/2,2 +qdg1/10

16p2l9/10ÎI1I2I3v̄1v̄2v̄3

3ÎN0

P
E

0

1

dxE
0

1

dyE
0

2p

dw W1W2W3
*

3 f3z2v̄1v̄2v̄3s1 − xd2q−1/2s1 − y2d2q−1
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− D̄3s1 − xd2q+3/2s1 − y2d2q+1g, s29d

the coupled matrix elements for the SHG as

M̄2 =
f4P/Bs3/2,2 +qdg1/10

16p2l9/10I1v̄1
ÎI2v̄2

ÎN0

P
E

0

1

dxE
0

1

dyE
0

2p

dw W1
2W2

*

3 f3z2v̄1
2v̄2s1 − xd2q−1/2s1 − y2d2q−1

− D̄2s1 − xd2q+3/2s1 − y2d2q+1g s30d

with In= Inznsm
for n=1,2,3.

C. Selection rules for the coupling matrix elements

To get an efficient energy transfer among different modes
in the TMRI and SHG processes, on the one hand the
frequency-matching sphase-matchingd conditions v3=v2
+v1 sfor the TMRId and v2=2v1 sfor the SHGd should be
satisfied. On the other hand we note that, in order to have an
effective mode mixing, the coupling matrix elements must be
nonzero, which imposes also another requirement of an over-
lap among the corresponding spatial wave functions, i.e., the
symmetry arguments of the excited states select the certain
modes at or close to the resonant conditions, which makes
M2Þ0 for the SHG andM3Þ0 for the TMRI.

For the axial symmetry trapsl¹1d, nonzero azimuthal
angular integrals for some quantum numbersmn select a cer-
tain transition and give a set of correspondingmn for the

nth modes sn=1,2,3d. For the SHG, becauseM̄2

~e0
2peis2m1−m2dwdw, a nonzeroM̄2 results in the selection rule

for the quantum number

m2 = 2m1. s31d

Similarly, for the TMRI becauseM̄3~e0
2peism1+m2−m3dwdw, a

nonzeroM̄3 requires

m3 = m2 + m1. s32d

In the case of the spherical symmetry trapsl=1d, since
the excitation spectra are independent ofm, we can takem
=0 in Eqs.s27d and s28d. Selection on the angular quantum
numberslk is from the integral in theu direction. For the

SHG, M̄2~e0
pW1

2W2
* sinudu~e−1

+1Pl1
2 sxdPl2

sxddx sx=cosud.
Thus the selection rule is

l2 = 2lsl = 0,1,2, . . . ,l1d, s33d

where l1 and l2 are the angular quantum numbers for the
lower- and higher-lying modes, respectively. In obtaining
this selection rule, we have used one property of the Leg-
endre polynomialPlsxd so that the integratione−1

+1xkPlsxddx
has a nonzero value fork= l +2j and vanishes fork, l or k
= l +2j +1, where j =0,1,2, . . .. For theTMRI, without loss
of generality we take the order of 0ø l1ø l2ø l3 for the given
three modes, where modessnrk

lkd satisfy the frequency-

matching condition. Since M̄3~e0
pW1W2W3

* sinudu
~e−1

+1Pl1
sxdPl2

sxdPl3
sxddx, by using the property of the Leg-

endre polynomial we have the general selection rule

l3 = l1 + l2 − 2l sl = 0,1,2, . . . ,l0,2l0 ø l1d. s34d

Obviously, we have nonzero matrix elements in the follow-
ing particular cases:sid l3=0 if l1= l2=0; sii d l3= l2 if l1=0;
siii d l3= l1+ l2; sivd l1= l2= l3=2l for l =0,1,2, . . .; andsvd l3
=2sl1− ld for l =0,1,2, . . . , intfl1/2g if l1= l2.0.

D. Calculation of the coupling matrix elements

For the given modes close to the frequency-matching con-
ditions and satisfying the selection rules presented above,
one can make a calculation for thesdimensionlessd coupling
matrix elements based on Eqs.s27d–s30d. The concrete ex-
pressions for the radial and axial integrands of the matrix
elements can be obtained easily. In this subsection we take
some examples to provide the dimensionless matrix elements
for the TMRI and the SHG after carrying out the radial and
axial integrals explicitly.

For the spherically symmetric trapsl=1d, we first choose
threenrl modes 10, 05, and 15 for the TMRI. Their functions
are W1=f1−s5+2qd /3r̄2gY00, W2= r̄5Y50 and W3=f1−s15
+2qd /13r̄2gr̄5Y50. The corresponding normalization integrals
are given byI1=f2s5+2qd /3s7+2qdgBs 3

2 ,2+qd, I2=Bs 13
2 ,1

+qd, andI3=f2s15+2qd /13s17+2qdgBs 13
2 ,2+qd. The explicit

expression for the dimensionless coupling matrix elements
then becomes

M̄3 =
f4P/Bs3/2,2 +qdg1/10

8pÎI1I2I3v̄1v̄2v̄3

ÎN0

P

3 H3z2v̄1v̄2v̄3FBS13

2
,2qD −

2

39
s55 + 16qdBS15

2
,2qD

+
1

39
s75 + 40q + 4q2dBS17

2
,2qDG − D̄3FBS13

2
,2 + 2qD

−
2

39
s55 + 16qdBS15

2
,2 + 2qD +

1

39
s75 + 40q + 4q2d

3BS17

2
,2 + 2qDGJ . s35d

Substituting the expressions forz, v̄k sk=1,2,3d, and the
function qsPd into Eq. s35d, we obtain the theoretical curve

M̄3sPd, plotted in Fig. 1, by takingN0=106. Note that due to
the weight factors1−xd2q the divergence in the integrals27d
is eliminated completely. This point can also be seen clearly

from the z2 term in Eq.s35d for the resonant casesD̄3=0d:
M̄3~z2/q andz2/q~ P−2/5→0 in the TF limit si.e., P→` or
q→0d. AlthoughBsp,qd has a singularity as 1/q at q=0, the
result for the matrix elements is divergence-free. Figure 1

shows thatM̄3sPd is a decreasing function with increasing

atom-atom interaction strengthP. M̄3sPd.0 means a nega-
tive initial population amplitude. The numerical results show
that the term proportional toz2 in Eq. s35d dominates the
TMRI process even far from resonance or at large enoughP
closing on the TF limit, where the contribution from the term

proportional toD̄3 still remains small.
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We next choose twonrl modes 01 and 10 for the SHG.
Their functions areW1= r̄Y10 and W2=f1−s5+2qd /3r̄2gY00.
The corresponding normalization integrals are given byI1

=Bs 5
2 ,1+qd and I2=f2s5+2qd /3s7+2qdgBs 3

2 ,2+qd. We get

M̄2 =
f4P/Bs3/2,2 +qdg1/10

8pI1v̄1
ÎI2v̄2

ÎN0

P
Hz2v̄1

2v̄2F3BS5

2
,2qD

− s5 + 2qdBS7

2
,2qDG − D̄2FBS5

2
,2 + 2qD

−
5 + 2q

3
BS7

2
,2 + 2qDGJ . s36d

Figure 2 shows theM̄2sPd curve with N0=106. It is shown
that the z2 term in Eq. s36d dominates the SHG process.
There is a resonant nonlinear coupling between the lower-
lying s01d and higher-lyings10d modes. The resonance is
determined by 2v1=v2 and it is most efficient forP,400.

For the case of axial symmetrysl¹1d, we takeN0=106

and P=100 swhich means takingaHO/asc=104 for most ex-
perimentsd and study the geometric effect of the trap on the
dimensionless coupling matrix elements. We first choose
three nznsm modes 001, 002, and 103 in the TMRI. Their
excitation spectra at leading-order approximation arev̄1

s0d

=Î1+q, v̄2
s0d=Î2+2q, and v̄3

s0d=Îs3+l2ds1+qd. The func-
tions are given byW1= s̄eiw, W2= s̄2ei2w, andW3= s̄3z̄ei3w. The
corresponding normalization integrals readI1=s1/2ldBs2, 3

2

+qdBs 1
2 ,1+qd, I2=s1/2ldBs3, 3

2 +qdBs 1
2 ,1+qd, and I3

=s1/2l3dBs4, 5
2 +qdBs 3

2 ,1+qd. The explicit expression for the
dimensionless coupling matrix element then becomes

M̄3 =
f4P/Bs3/2,2 +qdg1/10

8pl19/10ÎI1I2I3v̄1v̄2v̄3

ÎN0

P

3F3
z2

q
v̄1v̄2v̄3Bs4,1 + 2qd −

D̄3

1 + q
Bs4,3 + 2qdG .

s37d

The theoretical curveM̄3sld is plotted in Fig. 3. It is impor-

tant to note thatM̄3 is dominated by the mismatching term

si.e., the term proportional toD̄3d and affected a little by the
contribution fromz2 term.

We then choose threenznsm modes 001, 010, and 101 in
the TMRI. Their excitation spectra in the leading-order ap-
proximation are given byv̄1

s0d=Î1+q, v̄2
s0d=h2+ 3

2l2+q−f4
−4l2+ 9

4l4+s4−3l2+qdqg1/2j1/2, and v̄3
s0d=Îs1+l2ds1+qd.

The functions areW1= s̄eiw, W2=1+bz̄2+cs̄2, andW3= s̄z̄eiw.
The corresponding normalization integrals read

I1 = s1/2ldBs2,3
2 + qdBs 1

2,1 +qd ,

I2 = s1/2ldf1/s3/2 +qd + 2cBs2,3
2 + qd

+ c2Bs3,3
2 + qdgBs 1

2,1 +qd + s2b/l2df1/s5/2 +qd

+ cBs2,5
2 + qdgBs 3

2,1 +qd + sb2/l4d

3fBs5/2,1 +qd/s7/2 +qdg,

and I3=s1/2l3dBs2, 5
2 +qdBs 3

2 ,1+qd. In mode 2, the conden-
sate oscillates along thez axis, and the axial and radial os-
cillations have relative amplitudeb/c=v̄2

2−4−2q with c
; v̄2

2/ s2+2q−v̄2
2d. Note that atv̄2=Î2+2q the axial and ra-

dial amplitudes are divergent. Figure 4 shows such diver-
gence behavior atlc=1.303 by plottingc against the trap
anisotropyl with P=100. In thel,lc regionc is positive,
while in the l.lc region c is negative.I2 displays a very

sharp peak atl=lc. Figure 5 shows theM̄3sld curve for this
three-mode coupling. Atl, s.dlc the positivesnegatived

FIG. 1. The TWRI dimensionless coupling matrix element

M̄3sPd as a function ofP satom-atom interaction strengthd for N0

sparticle number in the condensated of 106 with a spherical symme-
try trap. The threenrl modes are 10, 05, and 15, respectively.

FIG. 2. The SHG dimensionless coupling matrix elementM̄2sPd
as a function ofP for N0=106 in a spherical symmetry trap. Twonrl
modes are 01 and 10.

FIG. 3. The TWRI dimensionless coupling matrix element

M̄3sld as a function of the trap anisotropyl for P=100 andN0

=106 with a axially symmetric trap. The threenznsm modes are 001,
002, and 103.
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M̄3 increases slightly on increasingl due to the jump of

M̄3~c/ÎI2 at l=lc where the strongest resonance arises. It

was shown that theD̄3 term dominates the coupling process.
We finally calculate the coupling matrix element for a

SHG. We choose twonznsm modes 010 and 200. The exci-
tation spectra arev̄1,2

s0d =h2+ 3
2l2+q7f4−4l2+ 9

4l4+s4−3l2

+qdqg1/2j1/2 and the functions are given byWn=1+bnz̄
2

+cns̄
2 with the corresponding axial and radial amplitudesbn

and cn sn=1,2d. Figure 6 shows theM̄2sld curve for this

two-mode coupling. It was shown that theD̄2 term dominates
the coupling process. The integrand contained inW1

2 as a
function of the trap anisotropyl has a peak atlc. The com-
bination of the peaks contained inW1

2 and the zero points

contained in 1/I1 makeM̄2 a continuous function ofl with
two maxima atl=lc

7. The strongest resonances occur atlc
7,

determined by 2v̄1=v̄2, which has roots oflc
7= 1

6h77
+51q75f145+3s74+27qdqg1/2j1/2 in the leading order of
v̄1,2

s0d. By taking P=100 andN0=106 we getlc
−=0.924 forq

=0.7, andlc
+=2.022 forq=0.1. As a special case, in the TF

limit sq=0d one haslc
−=0.683 andlc

+=1.952, which have
been obtained already in Refs.f2,13g.

IV. NONLINEAR AMPLITUDES FOR TMRI AND SHG

A. Solutions of the TMRI and SHG envelope equations

With the dissipation-free coupling matrix elements in
hand we now turn to look for the nonlinear amplitudesbj for

the TWRI and SHG processes. Note that the solutions of
Eqs.s14d–s16d, s22d, ands23d have been studied in nonlinear
optics f28g with the forms ofbnstd= ubnstduexpfiwnstdg for n
=1,2,3. Thegeneral solutions can be expressed by the ellip-
tic integrals snfx,yg. For the SHG with initial amplitude
b10=b1s0d the solutions of Eqs.s22d and s23d read

b2std =
1
Î2

A−b10snft/t2,A−/A+gexpF− iS2w10 +
p

2
+

1

2
D2tDG ,

s38d

b1std = ± Îb10
2 − 2ub2stdu2 expF− iSw10 +

p

4
+

3

4
D2t

−
1

2
cos−1 D̄2ub2stdu

4pPM̄2ub1stdu2
DG , s39d

whereA±
2=1+1

2e2±Îe2s1+e2/4d si.e., the amplitudes are on

the order of 1d, ek=sÎ2D̄k/8pPM̄kd2 are the relative fre-
quency mismatches fork=2 s3d in the SHGsTMRId process,

tk= u2Î2pA+b10PM̄kv'u−1 are the time scales, and we note
that t2.10 ms for most experiments. We see that the ampli-
tudes change periodically fore2Þ0, with a period Tk

;Fs1/2,1/2,1,A−
2 /A+

2d / uÎ2pA+b10PM̄kv'u sk=2,3d. In the

case on resonancesD̄2=0d, the solutions become monotonic
with respect to timet: b1std= ±b10 sechst / t2dexps−iw10d and
b2std=sb10/Î2dtanhst / t2dexpf−is2w10+p /2dg. Note that the
phase difference betweenb2 andb1 is w10+p /2.

For the TMRI with initial amplitudesb10 andb20 the so-
lutions Eqs.s14d–s16d are

b3std =
1
Î2

A−b10snft/t3,A−/A+g

3expF− iSw10 + w20 +
p

2
+

1

2
D3tDG , s40d

FIG. 4. The radial amplitudec sincluding the axial amplitude
b~cd against the trap anisotropyl for the 101 quadrupole mode. A
divergence appears atlc=1.303.

FIG. 5. Same as Fig. 3 for the three 001, 010, and 101 modes.
The strongest resonant coupling occurs atlc=1.303.

FIG. 6. The dimensionless SHG coupling matrix elementM̄2sld
as a function of the trap anisotropyl for P=100,N0=106, and fixed
q=0.7 with an axially symmetric trap. The twonznsm modes are
100 and 010. The maximal resonant coupling is located atlc

−

=0.924 andlc
+=2.022.
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bnstd = ± Îbn0
2 − 2ub3stdu2 expf− iwnstdg sn = 1,2d,

s41d

where A±
2= 1

2f1+s+e3±Îs1+s+e3d2−4sg, s= ub20/b10u2,
wnstd=D3e0

t dtub3stdu2/ ubnstdu2 sn=1,2d, andt3.5 ms. We see
that the initial value of mode 3 is zero and it increases from
zero as time increasessit is generally a periodic function of

timed. In the case on resonance, i.e.,D̄3=0, the expressions
for A± are simplified toA+s−d=1 sb20/b10d for ub20u, ub10u and
A+s−d=b10/b20 s1d for ub10u, ub20u. The corresponding solu-
tions b3std=sA−b10/Î2dsnft / t3,A−/A+gexpf−isw10+w20

+p /2dg and bnstd= ±Îbn0
2 −2ub3stdu2exps−iwn0d sn=1,2d are

still periodic in time with a periodT3.

B. Oscillations of the average squared widths of the
condensate

We now discuss the oscillating behavior of the average
squared widthssASWsd of the condensate in the processes of
TMRI and SHG, which are important physical quantities rel-
evant to the experimental measurementsf12g. Based on the
results given in Ref.f20g we obtain the solutions for the field
operatorcsr ,td at zero temperature,

csr ,td = lÎN0f2pR'
3 Bs3/2,2 +qdg−1/2s1 − r̄2dsq+1d/2Qs1 − r̄d

+ o
n=1

k

funsr dbnstdexps− ivntd + vn
*sr dbn

*stdexpsivntdg

s42d

for the SHGsk=2d and TMRI sk=3d processes. The ASWs
in the radial and axial directions are given byf29g

kr̄ 2l = N0
−1kcGsr dur̄ 2ucGsr dl + N0

−1/2kcGsr dur̄ 2ufs1dsr ,tdl

+ kfs1dsr ,tdur̄ 2ufs1dsr ,tdl. s43d

The first term of Eq.s43d sr̄G
2 d comes from the ground-state

background, the middle termsr̄1
2d is a first-order oscillation

sproportional toubnu with the fundamental-mode frequency
vnd, and the last termsr̄2

2d is a second-order oscillationspro-
portional to ubnu2 due to the mixing of sum- and difference-
frequency modes with the frequencyvn±vn8d.

For l=1 si.e., spheral trapd, the radial ASWs arer̄G
2

=3/7 for q=0,

r̄1
2 =

3z

Î2pBf3/2,2 +qg
o
n=1

k dl0v̄nrl
s0d

nr
2 − 1/4

Î 2

Inrl
ubnstducosswn + vntd

snonzero values withl =0d, and

r̄2
2 =E

0

1

r̄2dr̄o
n=1

k Hubnstdu2fuunu2 + uvnu2 + 2uunuuvnucos 2swn

+ vntdg + o
n8Þn

k

funvn8bnbn8 expisvn + vn8d + c.c.gJ .

For l¹1 si.e., axial trapd, the radial and axial ASWs are
given by s̄G

2 =2/7 andz̄G
2 =l−2/7 for q=0, s̄1

2~ z̄1
2~dm0ubnstdu

snonzero values withm=0 for the first-order small vibra-
tionsd, and s̄2

2~ z̄2
2~ ubnstdu2 for the second-order small vibra-

tions. Note that e0
1r̄2dr̄suunu2+ uvnu2d= 1

2e0
1r̄2dr̄sw+

2+w−
2d

~zGsqd+const/z for q→0; the ASWs are divergent in the
TF limit si.e., P→`d. Here divergence-free results are ob-
tained by going beyond the TF limitsi.e., the TF regimeP
@1d.

The evolutions of the axial and radial ASWs of the BEC
in the axially symmetric trap are shown, respectively, in Figs.
7 and 8 for the SHG process from the lower 010 mode to
higher 200 mode withub10u=0.05 andw10=0 for the param-
etersP=100 andN0=106. A resonant nonlinear coupling be-
tween the fundamental mode 010 and the second-harmonic
mode 200 happens under the phase-matching condition 2v1
=v2, which requiresl=lc=2.415 for q=0.7. The dashed
lines for the mismatchedsoff-resonanced case sl=2.000d
show an oscillation of the lower 010 mode. In this case the
second-harmonic modesi.e., the 200 moded is not generated.
The solid lines in the figures are for the matchedson-
resonanced casesl=2.415d, and show clearly the generation
of the second-harmonic mode. The generation of the 200

FIG. 7. The average axial width in units ofR' vs t in units of
v'

−1 in the SHG process from the lower 010 mode to the higher 200
mode forub10u=0.05,w0=0, P=100,N0=106, and fixedq=0.7 with
an axially symmetric trap. The solid line is for the matchedson-
resonanced casesl=2.415d, which shows clearly generation of the
second-harmonic mode 200. The dashed line is for the mismatched
soff-resonanced casesl=2.000d.

FIG. 8. The average radial width in units ofR' vs t in units of
v'

−1 in the SHG process from the lower 010 mode to the higher 200
mode forub10u=0.05,w0=0, P=100,N0=106, and fixedq=0.7 with
an axially symmetric trap. The solid line is for the matched case
sl=2.415d and the dashed line is for the mismatched casesl
=2.000d. There is no manifestation of the SHG from the radial
ASWs.
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mode here is due to the strong resonance between the 010
mode and the 200 mode and hence the energy of the 101
mode transfers into the 200 mode in the most efficient way
when the phase-matching condition is exactly satisfied.
However, due to the symmetry of these modes, the second-
harmonic generation is manifested only in the axial oscilla-
tion. Thus if one explores the SHG according to the measure-
ment of the ASWs for a BEC in an axially symmetric trap
with the above selected modes, it is useless to measure the
radial ASW. One must measure the axial ASW which dis-
plays strong signals for the SHG. This result agrees well with
the experiment done by Hechenblaikneret al. f12g. The rea-
son our theoretical curves fit well the experimental onesf12g
is the following. For the 010 mode the functionW fsee Eq.
s26dg is W1=1+b1z̄

2+c1s̄
2. Both the axial and radial ampli-

tudesb1 andc1 are divergent when the on-resonance condi-
tion v̄1

2=2+2q is satisfied. However, the ratio ofub1/c1u
= uv̄1

2−4−2qu=2, i.e., the oscillation amplitude in thez axis
is greater than that in thexy plane. Therefore, the condensate
oscillates along the axial direction and the SHG can be ob-
served by measuring the axial ASWf12g.

We now turn to discuss the three-mode resonant processes
by using other different modes, which are not explored ex-
perimentally. The time evolution of the radial ASWs is

shown in Fig. 9 for a TMRI process in a BEC with a spheri-
cally symmetric trap withb10=0.03,b20=0.06,w10=w20=0,
andN0=106. The energy of the lower 20 and 30 modes trans-
fers into the higher 60 mode under the matching condition
P=49. Sincel1= l2= l3=0, there is a first-order vibration of
the condensate with the oscillating frequenciesv1,2,3. The
solid line denotes the vibrations of the radial ASW of the
condensate, showing clearly the generation of the higher 60
mode. For comparison a dashed line is plotted to show the
vibrations of the lower 20 and 30 modes.

Shown in Fig. 10 is the time evolution of the radial ASW
of the condensate for the SHG process from the lower 01
mode to the higher 10 mode withub10u=0.05, w10=0, and
N0=106 under the matching condition ofP=82 for a spheri-
cal trap. Because in this case we havel1=1 andl2=0, in the
leading order there is no contribution to the oscillation of the
ASW coming from the fundamental mode 01. The ASW os-
cillation is due to the contribution from the second-harmonic
mode 10sin the leading orderd and the fundamental modesin
the second orderd.

Shown in Figs. 11 and 12 are, respectively, the time evo-
lution of the axial and radial ASWs of an axially symmetric
BEC in the TMRI process from the lower 001 and 002
modes to the higher 103 mode withb10=0.03,b20=0.06, and
w10=w20=0 for the parametersP=100 andN0=106 where
the phase-matching condition islc=1.682. Since in this case
s̄1

2= z̄1
2=0 and s̄2

2~ z̄2
2=ez̄2d3r̄on=1

k ubnstdu2suunu2+ uvnu2d, there
are only zero-frequency second-order oscillation coming

FIG. 9. The average radial width of the condensate in units of
R' vs t in units ofv'

−1 in the TMRI process from the lower 20 and
30 modes to the higher 60 mode forb10=0.03, b20=0.06, w10

=w20=0, andN0=106 under the phase-matching conditionP=49
and for a spherical symmetry trap. The solid line shows the genera-
tion of the higher 60 mode while the dashed line shows the time
evolution of the lower modes.

FIG. 10. The average radial width for a spherical trap in units of
R' vs t in units ofv'

−1 in the SHG process from the lower 01 mode
to the higher 10 mode forb10=0.05,w10=0, andN0=106 under the
matching condition ofP=82.

FIG. 11. The average axial width in units ofR' vs t in units of
v'

−1 in the TWRI process from the lower 001 and 002 modes to the
higher 103 mode forub10u=0.03, ub20u=0.06, w10=w20=0, P=100,
andN0=106 with an axial symmetry trap oflc=1.682.

FIG. 12. The average radial width in units ofRz vs t in units of
v'

−1 in the TWRI process from the lower 001 and 002 modes to the
higher 103 mode forub10u=0.03, ub20u=0.06, w10=w20=0, P=100,
andN0=106 with an axial symmetry trap oflc=1.682.
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from the elliptic integrals. So there is energy transfer of up-
and down-conversion within each time periodt=T3. In the
time interval 0, t,T3, the system is in the lower 001 and
002 modessi.e., b3.0d. For t.T3 the energy is transferred
to the higher 103 modesi.e., b1,2.0d. The up-conversion
occurs att=T3. However, there are no fundamental-mode
frequency components appearing in the shape vibrations.

V. DISCUSSION AND SUMMARY

We have made a systematic investigation of the resonant
mode coupling of the collective excitations in a harmonically
trapped BEC at zero temperature with a repulsive inter-
atomic interaction. We have proposed a divergence-free, con-
sistent theory for describing low-energy collective excita-
tions and their interactions in both the linear and nonlinear
regimes beyond the TF limit. The nonlinearly coupled enve-
lope equations for three-mode resonant interactions have
been derived by use of the method of multiple scales. We
have demonstrated how to calculate analytically the coupling
matrix elements for mode-coupling problems in trapped
BECs and how to eliminate the divergence appearing in the
integrals of the coupling matrix elements by using a Fetter-
like variational approximation for the ground-state wave
function of the condensate. We have obtained the selection
rules for mode-mode interaction processes according to the
symmetry of the excitation modes. The divergence-free for-
mulas for the average squared widths in the radial and axial
directions have been given explicitly; they describe the shape
oscillations of the condensate and can be compared with ex-
perimental measurements directly. We have also shown that

the calculations of the coupling matrix elements and shape
oscillations can be simplified greatly by using the orthogo-
nality relations of the eigenfunctionsunsr d andvnsr d.

We have discussed in detail a set of three-mode resonant
coupling processessincluding SHG as a particular cased for
spherically and axially symmetric traps. By solving the non-
linearly coupled envelope equations we have obtained the
nonlinear amplitudes and then made a detailed calculation of
the shape oscillations of the condensate for different mode-
coupling processes in different parameter regimes. The the-
oretical results about the shape vibrations of the BEC for
SHG in the case of an axially symmetric trap agree well with
the experimental observations. We have also made theoreti-
cal predictions on a series of TMRI processes, which need to
be verified experimentally further. For example, for a BEC in
a spherically symmetric trap, the first-order radial vibration
of the condensate shape with the frequenciesv20, v30, and
v60 may be measured by selecting the lower modesnr =2,
l1=0 andnr =3, l2=0 sdashed line predicted in Fig. 9d and
higher modenr =6, l3=0 ssolid line predicted in Fig. 9d with
suitable parametersN0 andasc/aHO. We stress that although
the theoretical description developed in this work is mainly
for TMRI and SHG, a generalization to other mode-coupling
processes is straightforward.
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