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Quantum squeezing of slow-light dark solitons via electromagnetically induced transparency
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We consider the quantum effect of slow-light dark soliton (SLDS) in a cold atomic gas with defocusing Kerr
nonlinearity via electromagnetically induced transparency (EIT). We calculate the quantum fluctuations of the
SLDS by solving the relevant non-Hermitian eigenvalue problem describing the quantum fluctuations and find
that only one zero mode is allowed. This is different from the quantum fluctuations of bright solitons, where two
independent zero modes occur. We rigorously prove that the eigenmodes, which consist of continuous modes and
the zero mode, are biorthogonal and constitute a complete biorthonormalized basis, useful for the calculation on
the quantum fluctuations of the SLDS. We demonstrate that, due to the large Kerr nonlinearity contributed from
the EIT effect, a significant quantum squeezing of the SLDS can be realized; the squeezing efficiency can be
manipulated by the Kerr nonlinearity and the soliton’s amplitude, which can be much higher than that of bright
solitons. Our work contributes to efforts for developing quantum nonlinear optics and non-Hermitian physics
and for possible applications in quantum information processing and precision measurements.
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I. INTRODUCTION

Optical dark pulses, localized dips (or holes) on a homo-
geneous bright background, have received much attention in
classical and quantum optics. Compared with bright pulses,
they possess many attractive advantages, including being
more stable and less sensitive to noise [1,2], which are de-
sirable for information processing and transformation and
hence they play significant roles in many research fields of
physics [3–10]. One typical example of dark pulses is optical
dark solitons, formed by the balance between dispersion and
defocusing Kerr nonlinearity [1,2].

In recent years, much attention has been paid to the re-
search on electromagnetically induced transparency (EIT), an
important quantum interference effect typically occurring in
a �-type three-level atomic system that interacts resonantly
with two laser fields. EIT can be used to suppress resonant
optical absorption, slow down group velocity, enhance Kerr
nonlinearity, etc., and hence has tremendous practical appli-
cations [11,12]. Interestingly, EIT systems support slow-light
solitons [13–21], which can be manipulated actively [21–23].
However, up to now most works have been mainly focused on
slow-light bright solitons and limited to a semiclassical regime
[24].

In this article, we investigate the quantum effect of opti-
cal dark pulses in a cold, three-level atomic gas working on
the condition of EIT. By using suitable one- and two-photon
detunings, a large defocusing Kerr nonlinearity and, hence,
slow-light dark solitons (SLDS) can be generated in the sys-
tem. The expression of the quantum fluctuations of the SLDS
is obtained through solving Bogoliubov–de Gennes (BdG)
equations, which are non-Hermitian eigenvalue problems de-

scribing the quantum fluctuations. We find that this eigenvalue
problem allows only a single zero mode (i.e., an eigenmode
with zero eigenvalue), which is different from the case of
bright-soliton fluctuations where there are two independent
zero modes.

Based on the above results, we rigorously prove that all
eigenmodes, consisting of continuous (Goldstone) modes and
the zero mode, are biorthogonal and constitute a complete
bi-orthonormal basis, by which the quantum dynamics of
the SLDS can be studied analytically. We demonstrate that
a significant quantum squeezing of the SLDS can be real-
ized, which originates from the large Kerr nonlinearity of
the system. Moreover, the squeezing efficiency can be ma-
nipulated by the Kerr nonlinearity and the soliton amplitude;
interestingly, the squeezing efficiency of the SLDS is higher
than that of bright solitons. The method and results presented
here are useful for developing quantum nonlinear optics and
non-Hermitian physics [25–28] and may be applied to the
study of Bose-Einstein condensation, quantum information
processing, and precision measurements, etc.

Before preceding, we stress that, although a large number
of studies on quantum optical solitons have been reported in
the past years, our work is different from those studies for the
following reasons.

(i) Most studies on quantum effects of optical solitons
reported so far have been devoted to the bright solitons in
optical fibers [29–59]. The main analytical approach used
is soliton perturbation theory. Generally, perturbations on
solitons have contributions from both zero modes and con-
tinuous modes, but most of these studies have considered
zero modes only. Although in Refs. [37,46] continuous modes
were taken into account, the completeness and orthonormality
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FIG. 1. (a) Excitation scheme of the EIT-based �-type atomic gas. Solid black dots mean that the atoms are initially prepared at the ground
state |1〉. For more detail, see text. (b) Existence regions of slow-light dark and bright solitons in the plane of one-photon detuning �3 and
two-photon detuning �2. Yellow: the region where bright solitons (BS) exist; purple: the region where dark solitons (DS) exist; green: the
region where the damping is dominant over the dispersion and Kerr nonlinearity; gray: the region where Kerr nonlinearity plays no significant
role. In both the green and the gray regions, no solitons exist. (c) Dimensionless dark soliton intensity (upper panels) |U0|2 and phase (lower
panel) � as functions of dimensionless time t/t0 for different values of blackness parameter ϑ .

of the eigenmode set were not discussed [60]. In our work,
all the eigenmodes are obtained, and their completeness and
orthonormality are proved rigorously.

(ii) The quantum effect of dark solitons in optical fibers
was investigated in Refs. [40,56]; however, the contribution
of continuous modes was not considered there. In addition,
the zero modes, as has been done for bright solitons [33–40],
were determined by a phenomenological method (i.e., they
were obtained by simply taking the derivatives of the soliton
solution with respect to the free parameters in the solution).
Such a method and related results obtained are uncomplete or
incorrect because the zero modes obtained are generally not
independent (see the discussion in Sec. III B below). Differ-
ently, in our work the eigenmodes are acquired by solving the
eigenvalue problem of the perturbation, and the zero modes
are determined by the requirement of the completeness and
orthonormality of all the eigenmodes. The results presented
in our work provide a clear way to avoid puzzles and con-
fusion regarding the zero mode problem in previous studies
[40,56,61–65] of perturbation and quantum effects of dark
solitons.

(iii) At variance with Refs. [29–59], which study the quan-
tum solitons in optical fibers, the work reported here is on
the quantum effect of SLDS generated in a cold atomic gas
via EIT. Our work can be taken as an extension of a recent
publication [66], but it is not a simple extension because the
perturbation approach of the SLDS is quite different from that
of slow-light bright solitons. One of the main differences is
that the SLDS have a continuous background, which makes
the eigenvalue problem of the perturbation be very different
from that of the slow-light bright solitons. In particular, the
system allows only a single zero mode (not like the case of
slow-light bright solitons where two independent zero modes
occur) and the quantum squeezing of the SLDS displays be-
havior different from that of the slow-light bright solitons.

The remainder of the article is organized as follows. In
Sec. II, we present the model under study and the quantum
nonlinear Schrödinger (QNLS) equation describing the non-
linear evolution of the quantized probe laser field. In Sec. III,
we diagonalize the effective Hamiltonian by expressing the
quantum fluctuations of the SLDS as a superposition of the

complete and biorthonormalized eigenmodes, obtained by
solving the eigenvalue problem (BdG equations) of the quan-
tum fluctuations. In Sec. IV, the quantum squeezing of the
SLDS is investigated in detail. Last, Sec. V gives a summary
of the main results obtained in this work.

II. MODEL AND ENVELOPE EQUATION FOR THE
PROPAGATION OF THE QUANTIZED PROBE FIELD

A. Physical model

The system we consider is a cold atomic gas interacting
with a probe laser field and a control laser field, forming
a standard �-type three-level configuration [see Fig. 1(a)].
In the system, |1〉 and |2〉 are two nearly degenerate ground
states, and |3〉 is an excited state with spontaneous-emission
decay rates �α3 (α = 1 and 2) to |1〉 and |2〉, respectively. The
probe field is weak and pulsed (with center angular frequency
ωp and wave number kp = ωp/c, where c is light speed in
vacuum), coupling to the transition |1〉 ↔ |3〉; the control
laser field is a strong continuous wave (with angular frequency
ωc and wave number kc = ωc/c), coupling to the transition
|2〉 ↔ |3〉. �2 and �3 are two- and one-photon detunings, re-
spectively. For suppressing the Doppler effect, both the probe
and the control fields are assumed to propagate along the same
(i.e., z) direction.

For simplicity, we assume the atomic gas is cigar shaped,
which can be realized by filling it into a waveguide or
by taking the transverse distribution of the probe field to
be large enough so that the diffraction effect can be ne-
glected. Thus, one can use a reduced (1 + 1)-dimensional
model to describe the probe-field propagation, with the
total electric field given by Ê(z, t ) = Ec(z, t ) + Êp(z, t ).
Here, Ec(z, t ) ≡ ecEc(z, t )ei(kcz−ωct ) + c.c. and Êp(z, t ) ≡
epEpÊp(z, t )ei(kpz−ωpt ) + H.c. are respectively the quantized
probe and c-number control fields, with c.c. (H.c.) rep-
resenting the conjugate (Hermitian conjugate); ec and Ec

are respectively the unit polarization vector and the ampli-
tude of the control field; ep and Ep ≡ √

h̄ωp/(2ε0V ) (V is
quantized volume) are respectively the unit polarization vector
and the single-photon amplitude of the probe field. Êp(z, t ) is a
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slowly-varying annihilation operator of probe photons, obey-
ing the commutation relation [Êp(z, t ), Ê†

p (z′, t )] = Lδ(z′ −
z), with L being the quantization length along the z axis.

Under electric-dipole and paraxial approximations, the sys-

tem Hamiltonian is given by Ĥ = ∫
dz [ − h̄c

L Ê†
p (i ∂

∂z )Êp −
h̄N
L (

∑
α=2,3 �α Ŝαα + gpŜ†

31Êp + �cŜ†
32 + H.c.)]. Here N is

the total atomic number of the system; Ŝαβ (z, t ) =
σ̂βα ei[(kβ−kα )z−(ωβ−ωα+�β−�α )t] (α, β = 1, 2, and 3) are atomic
transition operators; �c = (ec · p32)Ec/h̄ is the half Rabi
frequency of the control field; gp = (ep · p31)Ep/h̄ is the
single-photon half Rabi frequency of the probe field; pαβ is
the electric dipole matrix element associated with the transi-
tion from |β〉 to |α〉; and the detunings are defined by �2 =
ωp − ωc − (ω2 − ω1) and �3 = ωp − (ω3 − ω1).

The dynamics of the system is governed by the Heisenberg-
Langevin and the Maxwell (HLM) equations, given by

∂

∂t
Ŝαβ = 1

ih̄
[Ŝαβ, Ĥ ] − L̂(Ŝαβ ) + F̂αβ, (1a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
Êp + g∗

pN

c
Ŝ31 = 0, (1b)

where L̂ (Ŝαβ ) is the 3 × 3 relaxation matrix including the
atomic decay rates of the spontaneous emission and dephas-
ing, F̂αβ are δ-correlated Langevin noise operators introduced
to preserve the Heisenberg commutation relations for the op-
erators of the atoms and the probe field. Explicit expressions
of Eq. (1a) are presented in Appendix A.

The model described above can be realized by many atomic
systems. One of the candidates is the laser-cooled alkali-metal
87Rb gas, which is used below, with the levels cho-
sen to be |1〉 = |52S1/2, F = 1, mF = 1〉, |2〉 = |52S1/2, F =
2, mF = 1〉, and |3〉 = |52P3/2, F = 2, mF = 1〉, with �13 =
�23 ≈ 2π × 3 MHz [67].

B. Nonlinear envelope equation and the existence region of dark
solitons in parameter space

To understand the quantum dynamics of the system, we
need to solve the nonlinearly coupled equations, Eqs. (1a)
and (1b), which have many degrees of freedom of atoms and
photons and thus are not easy to approach. A convenient way
is to reduce such equations to an effective one by eliminating
the atomic degrees of freedom under some approximations,
which has been recently used in the study of polaritons in
atomic gases [68–70]. Similar to Ref. [66], by employing
the perturbation expansion under weak-dispersion and weak-
nonlinearity approximations, one can obtain the following
QNLS equation:

i

[(
∂

∂z
+ 1

Vg

∂

∂t

)
+ Im(K0)

]
Êp − K2

2

∂2

∂t2
Êp

+ W |gp|2Ê†
p ÊpÊp − iF̂pe−iK̃0z = 0, (2)

which describes the nonlinear evolution of the probe-field
envelope Êp. Here, Kj ≡ (∂ jK/∂ω j )−1|ω=0 ( j = 0, 1, and
2), with K = K (ω) being the linear dispersion relation,
Vg ≡ 1/K1 being the group velocity, and K2 being the coef-
ficient of the group-velocity dispersion; W is the coefficient

of third-order Kerr nonlinearity, which is proportional to the
third-order nonlinear optical susceptibility χ (3)

p ; and F̂p(z, t )
is the δ-correlated induced Langevin noise operator. For ex-
plicit expressions of K (ω), W , and F̂p(z, t ), see Appendix B.
Note that, in general, the coefficients in Eq. (2) depend on ω

(i.e., the sideband frequency of the probe pulse). Because we
are interested in the propagation of the probe pulse with the
center frequency ωp, the coefficients in Eq. (2) are estimated
at ω = 0. In this situation, these coefficients (K2, W , etc.) are
functions of the one- and two-photon detunings (i.e., �3 and
�2) and other system parameters (see Ref. [66]).

The coefficients of Eq. (2) are generally complex due to
the near-resonant character of the system. However, under the
condition of EIT (i.e., |�c|2 � γ21γ31), the imaginary parts of
these coefficients are much smaller than their real parts and
hence can be neglected. Depending on the sign of W/K2, in
the case of classical limit and negligible noise, Eq. (2) admits
dark (bright) soliton solutions for W/K2 > 0 (W/K2 < 0).

Figure 1(b) shows the existence regions of dark and bright
solitons in the parameter space with �3 and �2 as two
coordinates. In the figure, the purple region “DS” (yellow
region “BS”) is the one where dark (bright) solitons exist.
The green region indicated by “damping” is the one where
the damping of the probe field is dominant over the group-
velocity dispersion and the Kerr nonlinearity; the gray region
indicated by “no nonlinearity” means that in this domain
the Kerr nonlinearity plays no significant role. Thus, in both
the green and the gray regions, the system does not support
solitons [24]. When plotting the figure, we have taken �13 =
�23 ≈ 2π × 3 MHz,Na (atomic density) = 8.8 × 1011 cm−3,
|gp|2N/c = 2.4 × 1010 cm−1 s−1, �c = 2π × 42 MHz, and
t0 (the time duration of the probe pulse) = 5.5 × 10−8 s.

Since the atomic gas is nearly resonant with the probe
and control fields and works under the condition of EIT, the
system can possess a large Kerr nonlinearity. As an example,
by taking �2 = −2π × 1.6 MHz and �3 = 2π × 64 MHz,
and using the formulas for the linear dispersion relation K
and the Kerr coefficient W given in Appendix B, we obtain
K1 ≈ 3.08 × 10−7 cm−1 s, K2 ≈ 3.19 × 10−15 cm−1 s2, and
W ≈ 8.20 × 10−17 cm−1 s2. Thus, we have

χ (3)
p = 2c|ep · p31|2

h̄2ωp
W ≈ 1.20 × 10−10 m2 V−2. (3)

Because χ (3)
p is proportional to �2, so nonzero two-photon

detuning (i.e., �2 	= 0) is necessary to obtain the large Kerr
nonlinearity. Such a Kerr nonlinearity, which is more than 10
orders of magnitude larger than that of conventional optical
media (such as optical fibers) [1], is the main reason why
optical solitons can form at very low-light levels in EIT-based
atomic gases [13–24].

Note that even for the large Kerr nonlinearity given above,
the perturbation expansion used for deriving the QNLS equa-
tion (2) can still be applied. The reasons are the following.
In our consideration the light intensity of the probe pulse
is small, and its time duration is large (which means that
its dispersion is weak). Thus, the perturbation expansion
is obtained under weak-dispersion and weak-nonlinearity
approximations. In fact, similar perturbation expansion was
used in Refs. [13–24].
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After neglecting the imaginary parts of K1, K2, and W ,
Eq. (2) can be written as the dimensionless form i ∂

∂sÛ +
∂2

∂τ 2 Û − 2gÛ †ÛÛ = −2iνÛ + i f̂p, with Û = Êp/
√

n0 (n0 �
1 is the typical mean photon number in the probe field [71]),
s = z/(2Ldisp), τ = (t − z/Vg)/t0, f̂ p = 2LdispF̂pe−iK0z, ν =
Ldisp/Labs, and g = Ldisp/Lnln (the dimensionless parameter
characterizes the magnitude of the Kerr nonlinearity). Here,
Ldisp ≡ t2

0 /|K2|, Lnln ≡ [n0|gp|2|W |]−1, and Labs ≡ 1/Im(K0)
are the typical dispersion length, nonlinearity length, and ab-
sorption length of the probe field, respectively.

Due to the EIT effect and the ultracold environment,
the Langevin noise operators make no contribution to the
normally ordered correlation functions of system operators
[72,73], also the dimensionless absorption coefficient ν ≈
1.69 × 10−2 � 1. Taking into account these facts and making
the transformation Û = ˆ̄Ue−iμs, we obtain the reduced QNLS
equation

i
∂

∂s
ˆ̄U = − ∂2

∂τ 2
ˆ̄U + 2g ˆ̄U † ˆ̄U ˆ̄U − μ ˆ̄U, (4)

with the parameter μ being the “chemical potential” to be
specified in the next section. The effective Hamiltonian for the
system described by the QNLS equation (4) reads

Ĥeff =
∫ +∞

−∞
dτ ˆ̄U

†
(

− ∂2

∂τ 2
− μ − g ˆ̄U

† ˆ̄U

)
ˆ̄U . (5)

III. COMPLETE AND BIORTHONORMAL SET OF THE
EIGENMODES FOR THE QUANTUM FLUCTUATIONS OF

SLOW-LIGHT DARK SOLITONS

A. Slow-light dark solitons

Our main aim is to investigate the quantum fluctuations
from classical dark solitons. As a first step, we consider the
classical limit of the system, which is valid when the probe
field contains a large photon number. In this case, the operator
ˆ̄U can be approximated by a c-number function U0. Then

the reduced QNLS equation (4) becomes a classical NLS
equation of the form i∂U0/∂s + ∂2U0/∂τ 2 − 2g|U0|2U0 +
μU0 = 0. When working in the “DS” region of Fig. 2(b), this
equation admits the fundamental dark-soliton solution

U0(s, τ ) = A√
g(cos ϑ tanh σ + i sin ϑ )eiθ0 , (6)

with σ = Agcos ϑ (τ − τ0 − 2Ag sin ϑs) and μ = 2A2g2.
Here, A and θ0 are constants characterizing the amplitude
and the overall phase of the soliton; ϑ (0 � ϑ � π/2) is a
constant characterizing the dark-soliton blackness, defined by
A2gcos2 ϑ (i.e., the difference between the minimum of the
soliton intensity and the background intensity A2g); and the
“momentum” and the initial “position” of the soliton are given
by 2Ag sin ϑ and τ0, respectively. The soliton for the special
case ϑ = 0 is called the black soliton; in the general case
(ϑ 	= 0), it is called the dark (or gray) soliton. Figure 1(c)
shows the profile of the dimensionless dark-soliton intensity
|U0|2 (upper part) and phase � ≡ arctan(cos ϑ tanh σ/ sin ϑ )
(lower part) with different values of the blackness parameter
ϑ . When plotting the figure, we have taken A = g = 1, and
hence the background intensity of the dark soliton isA2g = 1.
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FIG. 2. (a)–(d) Eigenmode functions uk (σ ), vk (σ ), ψ1(σ ), and
φ1(σ ), respectively, plotted with wave number k = 1 and blackness
parameter ϑ = π/6. The solid (dashed) line represents the relevant
real (imaginary) part.

By using the physical parameters given in Sec. II B, we can
estimate the propagation velocity of the dark soliton, given by

Vsol = Vg + Agt0 sin ϑ

Ldisp
≈ 1.08 × 10−4c, (7)

withA = 1, t0 = 5.5 × 10−8 s, and ϑ = π/2. We see that the
soliton velocity is much smaller than c (i.e., it indeed is a
SLDS), which is due to the EIT effect induced by the control
field.

B. Eigenmodes of the quantum fluctuations and their
biorthogonality and completeness

1. Eigenvalue problem of the quantum fluctuations

Now we consider the quantum correction of the SLDS
solution (6). We assume the mean photon number n0 in the
probe field is much larger than 1, the quantum fluctuations of
the SLDS are weak, and hence we can take the Bogoliubov
decomposition

ˆ̄U (s, τ ) = U0(τ ) + Û1(s, τ ), (8)

where U0(τ ) = U0(0, τ ) is a classical SLDS background
for s = 0, and Û1 is the annihilation operator of photons
representing the quantum fluctuations (perturbations) on the
SLDS backgroundU0(τ ), satisfying the commutation relation
[Û1(s, τ ), Û †

1 (s, τ ′)] = δ(τ − τ ′). For the convenience of the
following calculations, we introduce ŵ ≡ Û1/(

√
Agcos ϑ ),

which satisfies [ŵ(s, σ ), ŵ†(s, σ ′)] = δ(σ − σ ′).
Substituting the Bogoliubov decomposition (8) into the

reduced QNLS equation (4) and neglecting the high-order
terms of Û1, we obtain the following equation for ŵ and ŵ†:

i
∂

∂s

(
ŵ

ŵ†

)
−A2g2 cos2 ϑ L̂

(
ŵ

ŵ†

)
= 0, (9)
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where L̂ is a linear matrix operator, defined by

L̂ =
(
M+ 2iγ ∂

∂σ
2N

−2N∗ −M+ 2iγ ∂
∂σ

)
, (10)

with M = − ∂
∂σ 2 + 4 tanh2 σ − 2 + 2γ 2, N = (tanh σ +

iγ )2, and γ = tan ϑ .
To solve Eq. (9) for all possible quantum fluctuations, the

key is to find the eigenmodes of the operator L̂ and constitute
an orthogonal and complete set of them. The difficulty of
success for this depends on the property of L̂. Obviously, L̂ is
non-Hermitian; its adjoint operator is given by

L̂† = σ3L̂σ3 =
(
M+ 2iγ ∂

∂σ
−2N

2N∗ −M+ 2iγ ∂
∂σ

)
, (11)

where σ3 = (1 0
0 −1) is a Pauli matrix. Although L̂ is not

Hermitian, i.e., L̂† 	= L̂, it is pseudo-Hermitian due to the
property L̂† = σ3L̂σ3. It is known that such a pseudo-
Hermitian operator possesses real eigenvalues, and it is
possible to get the eigenmodes of L̂ and L̂†, which can be
complete and biorthonormal in the mutually dual-function
spaces of L̂ and L̂† [25,27].

To get the eigenmodes explicitly, we use the Bogoliubov
transformation to expand the quantum fluctuations ŵ as

ŵ(s, σ ) =
∑

n

[un(σ )ân(s) + v∗
n (σ )â†

n(s)]

+
∫

dk [uk (σ )âk (s) + v∗
k (σ )â†

k (s)]. (12)

Here the indices n and k are quantum numbers denot-
ing respectively the discrete and continuous modes; ân(s)
and âk (s) are respectively annihilation operators of photons
for the discrete and continuous modes, satisfying respec-
tively the commutation relations [ân(s), â†

m(s)] = δmn and
[âk (s), â†

k′ (s)] = δ(k − k′); un(σ ) and vn(σ ) are mode func-
tions for the discrete spectra; and uk (σ ) and vk (σ ) are mode
functions for the continuous spectra.

Assuming â j (s) = â j (0)e−iE jA2g2 cos2 ϑ s, and substituting it
into Eq. (9), we obtain the eigenvalue equations (i.e., BdG
equations)

L̂ |� j (σ )〉 = Ej |� j (σ )〉. (13)

Here, for simplicity, we have used the index j to denote
both the discrete (for j = n) and the continuous (for j =
k) spectra. The eigenvectors |� j (σ )〉 ≡ [u j (σ ), v j (σ )]T , with
symbol “T ” representing transpose.

Note that the eigenmodes of the operator L̂ form a function
space VL, which is, however, not a Hilbert space because L̂ is
not Hermitian. Following the standard method [25,27,74–76],
we consider the dual space of L̂, i.e., the function space VL† of
the operator L̂†. The eigenvalue problem of L̂† reads

L̂†|� j (σ )〉 = E∗
j |� j (σ )〉 = Ej |� j (σ )〉 (14)

because Ej is real. The above equation is usually written in the
form 〈� j |L̂ = Ej〈� j | [25]. It is easy to show that |� j (σ )〉 =
σ3|� j (σ )〉.

With the eigenmodes of the two mutually dual-function
spaces VL and VL† , we can define the product between the right

vectors {|� j〉} and the left vectors {〈� j |}:
〈� j |�l〉 =

∫ ∞

−∞
dσ 〈� j (σ )|�l (σ )〉. (15)

It can be shown that {|� j〉} and {〈� j |} are biorthogonal and
can be made to be normalized, i.e.,

〈� j (σ )|�l (σ )〉 = δ jl . (16)

To implement the perturbation calculation on the quantum
fluctuations of the SLDS, one needs the eigenmodes in the
dual spaces not only to be biorthonormalized but also to span a
complete set, so that any possible quantum fluctuations can be
expanded as their linear superposition. However, the proof of
the completeness for such biorthogonal eigenmodes is usually
not an easy problem. If all the eigenmodes (especially the
independent zero modes) are found, the completeness rela-
tionship reads

∑
n

|�n(σ )〉〈�n(σ ′)| +
∫ +∞

−∞
dk|�k (σ )〉〈�k (σ ′)|

= Iδ(σ − σ ′), (17)

with I being the 2 × 2 unit matrix.

2. Eigenmode solutions and their biorthogonality
and completeness

The eigenmodes for the continuum spectrum (i.e., Gold-
stone bosons) of the present eigenvalue problem [i.e., the BdG
equations (13)] can be found in a manner similar to that of
Refs. [77,78]. We obtain the solutions

|�k (σ )〉 =
(

uk (σ )

vk (σ )

)
, (18a)

|�k (σ )〉 = σ3|�k (σ )〉 =
(

uk (σ )

−vk (σ )

)
, (18b)

where the eigenvalues and eigenfunctions are given by

E (±)
k = |k|[−2γ ±

√
k2 + 4(1 + γ 2)], (19a)

uk (σ ) = eikσ
{

tanh σ + i
2 [D±(k) − k]

}2

√
2π |k|ν(k)D±(k)

, (19b)

vk (σ ) = eikσ
{

tanh σ − i
2 [D±(k) + k]

}2

√
2π |k|ν(k)D±(k)

, (19c)

with D±(k) = −2γ ± ν(k) and ν(k) =
√

k2 + 4(1 + γ 2).
Note that the eigenmodes corresponding to the eigenvalue
E (−)

k are nonphysical and hence must be excluded. The reason
is due to the fact limk→∞ E (−)

k = −∞; with such an eigen-
value, the energy has no lower bound, which makes the system
collapse.

The continuum eigenmode set {|�k (σ )〉} and {|�k (σ )〉} is
not enough to constitute a complete biorthonormal basis. In
fact, the operators L̂ and L̂† allow discrete eigenmodes with
zero eigenvalues, i.e., zero modes, satisfying the equations

L̂|�n(σ )〉 = 0, |�n(σ )〉 =
(

un(σ )

vn(σ )

)
, (20a)

L̂†|�n(σ )〉 = 0, |�n(σ )〉 = σ3|�n(σ )〉, (20b)

n = 1, 2, . . .
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Since a linear superposition of multiple zero modes is also
a zero mode, in general, one can get infinite many zero modes.
How to choose these zero modes? The criteria for the choice
of the zero modes are the following: (i) they must be indepen-
dent each other; and (ii) the set consisting of the continuous
modes given in Eq. (18) and the zero modes given in Eqs. (20)
should constitute a complete and biorthonormal basis, which
is necessary for providing an expansion basis to express any
quantum fluctuation of the soliton.

Based on such criteria, we find that the system supports
only a single zero mode, given by

|�1(σ )〉 =
(

u1(σ )

v1(σ )

)
, (21a)

|�1(σ )〉 = σ3|�1(σ )〉 =
(

u1(σ )

−v1(σ )

)
, (21b)

with

u1(σ ) = 2sech2σ + iγ tan σ + iγ σ sech2σ + 1

2
√

2
, (22a)

v1(σ ) = 2sech2σ + iγ tan σ + iγ σ sech2σ − 1

2
√

2
. (22b)

It can be rigorously proved that, for our present system, the
eigenmode set { |�k (σ )〉, |�1(σ )〉 } and { |�k (σ )〉, |�1(σ )〉 }
given by Eqs. (19) (taking only the E (+)

k mode) and (22) is not
only biorthonormal, but also complete, satisfying Eqs. (16)
and (17). A detailed proof for this is presented in Appendix C.
When γ = 0 (i.e., for the special case of black solitons), these
results are consistent with those obtained in previous studies
[79,80].

Taking the transformations

u1 = 1√
2

(ψ1 + φ1), (23a)

v∗
1 = 1√

2
(ψ1 − φ1), (23b)

Q̂1 = 1√
2

(â1 + â†
1), (23c)

P̂1 = 1√
2i

(â1 − â†
1), (23d)

where Q̂1 and P̂1 are “coordinate” operators and “momentum”
operators, satisfying the commutation relations [Q̂1, Q̂1] =
[P̂1, P̂1] = 0 and [Q̂1, P̂1] = i, we obtain the general expres-
sion of the quantum fluctuations of the SLDS in the following
form:

ŵ = ψ1(σ )Q̂1(s) + iφ1(σ )P̂1(s),

+
∫ +∞

−∞
dk[uk (σ )âk (s) + v∗

k (σ )â†
k (s)]. (24)

Based on this expression, the effective Hamiltonian (5) is
diagonalized to be

Ĥeff = A2g2 cos2 ϑ

×
[

1

2
P2

1 (s) +
∫ +∞

−∞
dkE (+)

k â†
k (s)âk (s)

]
, (25)

with ψ1(σ ) = sech2σ and φ1(σ ) = (iγ tan σ + iγ σ sech2σ +
1)/2. Figures 2(a)–2(d) show the profiles of ψ1(σ ), φ1(σ ),
uk (σ ), and vk (σ ) as functions of σ , respectively. The term
P2

1 /2 in Eq. (25) is contributed by the zero mode. We see
that the zero mode behaves like a free particle and its mass
is positive, which means that the SLDS is quite stable when
the quantum fluctuations exist in the system.

We must stress that the zero mode given by Eq. (21) is
not corresponding to a Goldstone boson, though its origin has
some similarities to that of Goldstone bosons [81]. The zero
mode is a discrete eigenmode of the system. It is different
from the Goldstone bosons described by the continuous eigen-
modes, which also have a zero frequency as lower bound of
the continuum of frequency. In fact, the appearance of the
zero mode is due to the existence of the SLDS, which are
inhomogeneous in space. If the classical background U0 in
the Bogoliubov decomposition (8) is a constant, the zero mode
will disappear. For a similar discussion on relativistic quantum
field theory, see Ref. [82].

IV. QUANTUM SQUEEZING OF SLOW-LIGHT
DARK SOLITONS

A. Quantum dynamics of slow-light dark solitons

Based on the diagonalized effective Hamiltonian (25), it
is easy to study the quantum dynamics of the SLDS. The
Heisenberg equations of motion for Q̂1(s), P̂1(s), and âk (s)
read

∂

∂s
Q̂1(s) − A2g2 cos2 ϑP̂1(s) = 0, (26a)

∂

∂s
P̂1(s) = 0, (26b)

i
∂

∂s
âk (s) − A2g2 cos2 ϑE (+)

k âk (s) = 0. (26c)

The exact solutions of these equations can be obtained, given
by

Q̂1(s) = Q̂1(0) +A2g2 cos2 ϑP̂1(0)s, (27a)

P̂1(s) = P̂1(0), (27b)

âk (s) = âk (0)e−iA2g2 cos2 ϑE (+)
k s, (27c)

where Q̂1(0), P̂1(0), and âk (0) are the values of Q̂1(s), P̂1(s),
and âk (s) at s = 0, respectively. From Eqs. (26) and their
solutions (27), we have the following conclusions.

(i) The quantum fluctuations contributed by the zero mode
display specific characters. The momentum operator P̂1 re-
mains unchanged during propagation (i.e., the momentum of
the SLDS is conserved); while the evolution of the position
operator Q̂1 depends on P̂1(0), the value of the momentum
operator P̂1 at s = 0. Such a correlation between Q̂1 and P̂1

leads to a position spreading of the SLDS, contributed by
the Kerr nonlinearity (characterized by the nonlinear param-
eter g). However, photon-number and phase fluctuations are
not predicted here, different from the case of bright solitons
[66,83,84].

(ii) The quantum fluctuation of the continuum modes
(characterized by the quantum number k) has only a simple
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effect, i.e., a phase shift to the same mode caused by the Kerr
nonlinearity.

From formulas (6) and (12), we can get the approximate
expression of the quantized probe field by using the renormal-
ization technique [85], given by

ˆ̄U (s, σ ) ≈ A√
g

[
cos ϑ tanh

(
σ + Q̂1√

g

)
+ i sin ϑ

]
eiθ0+i P̂1σ

A√
g .

(28)

One can see clearly that the quantum fluctuations of the SLDS
are mainly contributed by the zero mode, which propagates
together with the soliton; the conjugated operator pair Q̂1

and P̂1 describe the position and momentum fluctuations,
respectively. The reason for no fluctuation of particle num-
ber (amplitude) and phase is as follows. In our approach,
the SLDS has an infinite large background [i.e., it contains
a very large (infinite) photon number], and hence no phase
diffusion occurs in the presence of perturbations. If, however,
the system has a finite size (e.g., when there is an external
potential Vext acting on the system, the photon number in the
soliton will be finite), a phase diffusion of the soliton will
happen.

With these results, we can give a numerical estimation on
the quantum fluctuations of the SLDS. Let |�〉 = |n0, n1, nc〉
denote the quantum state with n0 photons in the SLDS; n1

photons in the zero mode, and nc photons in the continu-
ous modes. We assume that, at the entrance of the system
(s = 0), the quantum state of the probe field is in the “vac-
uum” state |�0〉 = |n0, 0, 0〉 (i.e., the probe field has no
quantum fluctuation). Based on the analytical result (27), we
obtain 〈Q̂1(s)〉 = 〈P̂1(s)〉 = 0 and 〈Q̂2

1(0)〉 = 〈P̂2
1 (0)〉 = 1/2;

the variances (mean-squared derivations) as functions of s are
given by

〈
P̂2

1 (s)
〉 = 1

2 , (29)

〈
Q̂2

1(s)
〉 = 1

2 (1 +A4g4 cos4 ϑs2). (30)

Here 〈· · · 〉 ≡ 〈�0| · · · |�0〉. One sees that the variance of
the position fluctuation is propagation dependent, while the
variance of the momentum fluctuation is a constant during
propagation.

B. Quantum squeezing of slow-light dark solitons

In recent years, a multitude of studies have been dedicated
to quantum squeezing [86,87]. In particular, many efforts
have focused on the quantum squeezing of light, which has
important applications, especially for quantum precision mea-
surements (e.g., the detection of gravitational waves) [88].
The results obtained above can be exploited to investigate
the quantum squeezing of the SLDS, which can be measured
using a homodyne detection method [33,38]. In comparison
with the zero mode, the quantum fluctuations from the contin-
uous modes are much weaker and hence are neglected in the
following calculation.

The quantum squeezing of the SLDS may be described by
the quadrature operators at the angle θ related to the operator

FIG. 3. (a) Quadrature variance 〈X̂ 2
θ 〉 of the SLDS as a function

of s = z/(2Ldisp ) (dispersion length Ldisp = 0.95 cm) and θ/(2π ).
Different colors shown in the color bar denote different magnitudes
of 〈X̂ 2

θ 〉. The quadrature variance in the black domains is much
smaller than its vacuum value, indicating that the SLDS displays
larger quadrature squeezing. (b) Squeezing ratio R (unit dB) versus
detection angle θ with s = 0.3, 0.6, and 0.9, plotted by dotted blue,
solid red, and dashed purple lines, respectively. (c) R versus propaga-
tion distance s with θ = π/5, 2π/5, 3π/5, and 4π/5. (d) Optimum
angle θopt for the quadrature variance 〈X̂ 2

θ 〉 as a function of the prop-
agation distance s. Panels (a)–(d) are all plotted for A = 1, ϑ = 0,
and g = 1.

â1 [89]:

X̂θ (s) = 1√
2

[â1(s) e−iθ + â†
1(s) eiθ ]

= Q̂1(s) cos θ + P̂1(s) sin θ, (31)

which satisfies the commutation relation [X̂θ , X̂θ+ π
2
] = i. With

the results obtained in the last subsection, it is easy to get the
expression of the variance of X̂θ :

〈
X̂ 2

θ (s)
〉 = 1

2
(A2g2s cos2 ϑ cos θ + sin θ )2 + cos2 θ

2
. (32)

Shown in Fig. 3(a) is 〈X̂ 2
θ 〉 as a function of s = z/(2Ldisp)

and θ/(2π ) by taking A = 1, ϑ = 0, and g = 1. We see that
when s = 0, the variance takes the vacuum value 〈X̂ 2

θ (0)〉 =
1/2; for any s, 〈X̂ 2

π
2
(s)〉 = 1/2. However, when θ and s are

located in the black domains of the figure, the quadrature
variance is much smaller than its vacuum value, which means
that the SLDS can be significantly quantum-mechanically
squeezed. The SLDS can also be made to be antisqueezed,
which occurs in the bright domains of the figure.

One can also define the squeezing ratio, i.e., the ratio of
the quadrature variance between the value at the position s
and that at the position s = 0 [33,38], as

R =
〈
X̂ 2

θ (s)
〉

〈
X̂ 2

θ (0)
〉 , (33)

to characterize the degree of squeezing quantitatively.
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FIG. 4. (a) Minimum squeezing ratio Rmin as a function of s =
z/(2Ldisp ) and the blackness parameter ϑ = 0, π/3, π/2, and π/6
(withA = 1, g = 1). “BS” means the result for the slow-light bright
soliton. (b) Rmin as a function of s versus the nonlinear coefficients
g = 0, g = 0.6, g = 1, and g = 1.2 (withA = 1 and ϑ = 0).

Figure 3(b) shows the squeezing ratio R (with unit dB) of
the SLDS as a function of angle θ for different propagation
distances of s = 0.3, 0.6, and 0.9, respectively. We see that the
squeezing ratio is sensitive to the selections of θ . Illustrated in
Fig. 3(c) is the degree of squeezing (also antisqueezing) in the
system, which becomes larger during propagation (i.e., when
s increases). However, at some special detection angle (such
as 4π/5), the squeezing reaches a threshold. We stress that,
in comparison with the quantum squeezing of dark solitons
in optical fibers, the quantum squeezing of the SLDS in the
present atomic gas is more significant. The typical feature is
that the SLDS can acquire a large quantum squeezing in a
very short propagation distance (on the order of a centimeter).
The physical reason is that the EIT-based atomic gas possesses
a larger Kerr nonlinearity (much bigger than that in optical
fibers), which makes the typical nonlinearity length Lnonl of
the system be very small (for the case of the SLDS in the
present system, one has Lnonl ≈ Ldisp = 0.95 cm). In addition,
the ultraslow propagating velocity of the SLDS is another
factor that makes the soliton squeezing more efficient.

By minimizing the quadrature variance 〈X̂ 2
θ 〉 [Eq. (32)]

with respect to θ , we can obtain the optimum angle as a func-
tion of the propagation distance s, i.e., θopt = θopt (s), which is
plotted in Fig. 3(d). Once θopt (s) is known, experimentally one
can choose the optimum detection angle to acquire the largest
suppression of the quantum uncertainties in the position and
the momentum of the SLDS. With θopt (s) we can get the min-
imum value of the quadrature as a function of s; meanwhile,
the quadrature for the angle θopt + π/2 will be maximized.

Shown in Fig. 4(a) is the minimum squeezing ratio Rmin

as a function of s = z/(2Ldisp) and the blackness parameters
ϑ = 0, π/3, π/2, and π/6, for A = 1 and g = 1. One sees
that (i) Rmin is lowered as s is increased, and (ii) Rmin is
strongly dependent on the parameter ϑ (which characterizes
the blackness of the SLDS; see Sec. III A). The darker the
SLDS, the larger the minimum squeezing ratio Rmin. In the
figure, the Rmin for the slow-light bright soliton is also plotted,
given by the dotted dashed green line with circles. We see
that if the SLDS is made to be dark enough (i.e., ϑ is small),
its minimum squeezing ratio Rmin can be much smaller than
that of the slow-light bright soliton. This means that the SLDS
can have quantum squeezing larger than that of the slow-light
bright soliton.

We stress that the minimum squeezing ratio Rmin is strongly
dependent on the Kerr nonlinearity of the system, which is
proportional to the soliton’s amplitude. Figure 4(b) shows the
result of Rmin as a function of s for the nonlinear coefficients
g = 0, g = 0.6, g = 1, and g = 1.2 (with A = 1 and ϑ = 0).
We see that Rmin decreases rapidly as g increases. Because the
EIT effect can result in a large enhancement of the Kerr non-
linearity and the Kerr nonlinearity can be actively controlled
due to the active character of the system (e.g., the nonlinear
parameter g can be adjusted by changing the two-photon de-
tuning �2), the EIT-based atomic gas is an excellent platform
for realizing large quantum squeezing of the SLDS.

Finally, we indicate that the larger Kerr nonlinearity con-
tributed by the EIT can not only result in the large quantum
squeezing of the probe laser pulse (here the SLDS) but also
induce an atomic spin squeezing in the system. The result of
the atomic spin squeezing in the presence of the SLDS is given
in Appendix D.

V. SUMMARY

In this work, we have investigated the quantum effect of the
SLDS in a cold atomic gas with defocusing Kerr nonlinearity
working on the condition of EIT. We have made an analytical
calculation on the quantum fluctuations of the SLDS through
solving the BdG equations and the relevant non-Hermitian
eigenvalue problem. We found that only a single zero mode
is allowed for the quantum fluctuations, which is different
from the quantum fluctuations of bright solitons where two
independent zero modes occur. We have rigorously proved
that the eigenmodes, which consist of continuous modes and
the zero mode, are biorthogonal and constitute a complete
biorthonormalized basis, which is useful and necessary for
the calculation of the quantum fluctuations of the SLDS. We
have demonstrated that, due to the large Kerr nonlinearity
contributed from the EIT effect, a significant quantum squeez-
ing of the SLDS can be realized; the squeezing efficiency
can be manipulated by the Kerr nonlinearity and the black-
ness and the amplitude of the soliton, which can be much
higher than those of the slow-light bright solitons. Our work
is useful for developing quantum nonlinear optics and non-
Hermitian physics, and for applications in Bose-condensed
quantum gases, quantum and nonlinear fiber optics, quantum
information processing, and precision measurements, and so
on.
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APPENDIX A: EXPLICIT EXPRESSIONS OF THE
HEISENBERG-LANGEVIN EQUATIONS

Explicit expressions of the Heisenberg-Langevin equa-
tion 1(a) are given by

i
∂

∂t
Ŝ22 − i�23Ŝ33 − �cŜ23 + �∗

c Ŝ32 − iF̂22 = 0,

(A1a)
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i

(
∂

∂t
+ �3

)
Ŝ33 + gpŜ13Êp − g∗

pÊ†
p Ŝ31 + �cŜ23

−�∗
c Ŝ32 − iF̂33 = 0, (A1b)(

i
∂

∂t
+ d21

)
Ŝ21 + �∗

c Ŝ31 − gpŜ23Êp − iF̂21 = 0,

(A1c)(
i
∂

∂t
+ d31

)
Ŝ31 + �cŜ21 + gp(Î − Ŝ22 − 2Ŝ33)Êp

− iF̂31 = 0, (A1d)(
i
∂

∂t
+ d32

)
Ŝ32 + �c(Ŝ22 − Ŝ33) + gpŜ12Êp

−iF̂32 = 0. (A1e)

Here Ŝ11 = Î − Ŝ22 − Ŝ33; Î is the identity operator; and dαβ =
�α − �β + iγαβ (α 	= β), where γαβ ≡ (�α + �β )/2 + γ

dep
αβ ,

�β ≡ ∑
α<β �αβ , and γ

dep
αβ is the dephasing rate between |α〉

and |β〉. F̂αβ are δ-correlated Langevin noise operators asso-
ciated with the dissipation in the system, with the two-time
correlation function given by

〈F̂αβ (z, t ) F̂α′β ′ (z′, t ′)〉

= L

N
δ(z − z′)δ(t − t ′)Dαβ,α′β ′ (z, t ), (A2)

where Dαβ,α′β ′ are the atomic diffusion coefficients [90],
which can be obtained from the Eqs. (A1) using the general-
ized fluctuation dissipation theorem. Some of them are given
by

D21,12 = �23〈Ŝ33〉, (A3a)

D31,13 = 0, (A3b)

Dα1,1β = 0, (A3c)

with α, β = 2 and 3 (α 	= β).

APPENDIX B: EXPLICIT EXPRESSIONS
OF K(ω), W , AND F̂p(z, t )

The linear dispersion relation reads

K (ω) = ω

c
+ |gp|2N

c

ω + d21

D(ω)
. (B1)

Here ω is the sideband frequency of the probe pulse. The new
noise operator F̂p(z, t ) is defined by

F̂p(z, t ) = g∗
pN

c

(ω + d21)F̂31(z, t ) − �cF̂21(z, t )

D(ω)
, (B2)

with D(ω) = |�c|2 − (ω + d21)(ω + d31).
By considering the steady-state solution of the Heisenberg-

Langevin equations (for which Ŝ11 = Î and Ŝ22 = Ŝ33 = 0),
we obtain the solution at the first-order approximation, given
by

Ŝα1 = a(1)
α1 gpÊp (α = 2, 3), (B3)

and other Ŝαβ = 0, where

a(1)
α1 = −�∗

cδα2 + d21δα3

|�c|2 − d21d31
. (B4)

Proceeding to the next order of iteration by substituting
Eq. (B4) into Eqs. (A1), one obtains Ŝαβ = a(2)

αβ |gp|2Ê†
p Êp

(α, β = 1, 2, and 3). Here

a(2)
11 = �23 + 2Dc

�13Dc
2Im

[
a(1)∗

31

] − 1

Dc
2Im

[
�∗

c

d32
a(1)∗

21

]
, (B5a)

a(2)
22 = 1

Dc
2Im

[
�∗

c

d32
a(1)∗

21

]
− �23 + Dc

�13Dc
2Im

[
a(1)∗

31

]
, (B5b)

a(2)
33 = − 1

�13
2Im

[
a(1)∗

31

]
, (B5c)

a(2)
32 = − 1

d32

[
a(1)∗

21 + �c
(
a(2)

22 − a(2)
33

)]
, (B5d)

and other Ŝαβ = 0, with Dc = 2γ32|�c|2/|d32|2.
Based on the above results, we can proceed to the third-

order of iteration. We get

Ŝ31 = a(3)
31 |gp|2gpÊ†

p ÊpÊp, (B6a)

a(3)
31 ≡ �ca(2)∗

32 − d21
[
a(2)

22 + 2a(2)
33

]
|�c|2 − d21d31

. (B6b)

The solutions of other Ŝαβ are also obtained but are omitted
here.

The optical susceptibility of the probe field is defined by
χp = Na|ep · p31| ρ31/(ε0Ep), with ρ31 ≡ 〈Ŝ31〉. Based on the
above result, we obtain χp = χ (1)

p + χ (3)
p |Ep|2, with the third-

order Kerr nonlinear susceptibility given by

χ (3)
p = Na|p31|4

ε0h̄3 a(3)
31 = 2c|ep · p31|2

h̄2ωp
W, (B7a)

W = Na|ep · p31|2ωp

2cε0 h̄
a(3)

31 . (B7b)

Generally, χ (3)
p and W are functions of ω (the sideband

frequency of the probe pulse). Since we are interested in the
probe-pulse propagation near the center frequency ωp, the
coefficients in the QNLS equation (2) will be estimated at
ω = 0. In this case, these coefficients are functions of the one-
and two-photon detunings (i.e., �3 and �2) and other system
parameters.

APPENDIX C: PROOF ON THE COMPLETENESS AND
BIORTHONORMALITY OF THE EIGENMODE SET

For investigating the physical properties of the quantum
fluctuations of the SLDS, it is necessary to acquire all the
eigenmodes of the BdG eigenvalue problem (13). In addi-
tion, the eigenmode set obtained should be complete and
biorthonormal, which is necessary not only for a complete
and correct description of quantum fluctuations of the SLDS
but also for obtaining a general and consistent perturbation
expansion valid for any perturbation on the soliton when ex-
ternal and/or initial disturbances are applied to the system.
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1. Biorthogonality

We first prove the biorthogonality for the continuous
modes given by Eqs. (18) and (19). Consider the following
integral:

〈�k′ (σ )|�k (σ )〉

=
∫ ∞

−∞
dσ [uk (σ )u∗

k′ (σ ) − v∗
k (σ )vk′ (σ )]

=
∫ ∞

−∞
dσ

ei(k−k′ )σ

2π
√

kk′ν(k)ν(k′)D(k)D(k′)
{A + B}, (C1)

with

A = { − 1
4 [D(k′) − k′]2 + 1

}{ − 1
4 [D(k) − k]2 + 1

}
+ { − 1

4 [D(k′) + k′]2 + 1
}{

1
4 [D(k) + k]2 − 1

}
− 2kD(k′) − 2k′D(k), (C2)

B = i
{
[D(k) −D(k′)]

[
1
2D(k)D(k′) + kk′ + 2

]
+ 1

2 [k2D(k′) − k′2D(k)]
}

tanh σ

+ {(2k′ − k)D(k) + (2k − k′)D(k′)} sech2 σ

+ 2i[D(k′) −D(k)] tanh σ sech2 σ. (C3)

It is easy to show that the first term of the right-hand side of
Eq. (C1) (related to A) equals δ(k − k′). The second term (re-
lated to B) can be calculated by using the following formulas:∫ ∞

−∞
eikx tanh xdx = iπcsch(πk/2), (C4a)

∫ ∞

−∞
eikx sech2 xdx = πkcsch(πk/2), (C4b)

∫ ∞

−∞
eikx tanh x sech2 xdx = iπk2csch(πk/2)/2. (C4c)

It is also easy to show that the second term equals zero.
Thereby, we have

〈�k′ (σ )|�k (σ )〉 = δ(k − k′). (C5)

In a similar way, we can prove the biorthogonality of the
zero mode,

〈�1(σ )|�1(σ )〉 = 1, (C6)

as well as the biorthogonality between the zero mode and the
continuous modes,

〈�1(σ )|�k (σ )〉 = 0. (C7)

2. Completeness

To prove the completeness of the eigenmodes, we consider
the expression |�1(σ )〉〈�1(σ ′)| + ∫ +∞

−∞ dk|�k (σ )〉〈�k (σ ′)|.
Using the results (18)–(22), we have

|�1(σ )〉〈�1(σ ′)| +
∫ +∞

−∞
dk|�k (σ )〉〈�k (σ ′)|

=
(
G(σ ) R(σ )
R(σ ′) G(σ ′)

)
. (C8)

FIG. 5. (a) Integral path of P(k) for σ − σ ′ > 0, with kP = 2i
and kb = 2i

√
1 + γ 2. (b) The same as panel (a) but for σ − σ ′ < 0,

with kP = −2i and kb = −2i
√

1 + γ 2. Here Re and Im are the real
and imaginary part of complex k, respectively.

Here G(σ ) = X (k) + ψ1(σ )φ∗
1 (σ ′) + ψ∗

1 (σ )φ1(σ ′) and
R(σ ) = Y (k) + ψ1(σ )φ1(σ ′) − φ1(σ )ψ1(σ ′); X (k) and Y (k)
are given by

X (k) =
∫ +∞

−∞
[uk (σ )u∗

k (σ ′) − v∗
k (σ )vk (σ ′)]dk, (C9a)

Y (k) =
∫ +∞

−∞
[uk (σ )v∗

k (σ ′) − v∗
k (σ )uk (σ ′)]dk. (C9b)

Functions X (k) and Y (k) have the following properties:
(i) As k → ∞, X (k) → δ(σ − σ ′) and Y (k) → 0; and (ii)
X (k) and Y (k) are analytic in the complex k plane, except
for the existence of a single pole at k = 0, two second-order
poles at k = kP = ±2i, and two branch points at k = kb =
±2i

√
1 + γ 2. For convenience, we introduce P(k) ≡ X (k) −

δ(σ − σ ′). According to Jordan’s lemma, we can use the
residue theorem to calculate the integrals in Eqs. (C9a) and
(C9b), with the integral path shown in Fig. 5.

After a detailed calculation, we obtain (with Res[P(ks)]
representing the residue of P(k) at k = ks)

P(k) =
{

2π iRes[P(2i)]+π iRes[P(0)], for σ−σ ′ > 0,

−2π iRes[P(−2i)]−π iRes[P(0)], for σ−σ ′ < 0,

= −1

2
sech2σ (−iγ tan σ ′ − iγ σ ′sech2σ ′ + 1)

−1

2
sech2σ ′(iγ tan σ + iγ σ sech2σ + 1)

= −ψ1(σ )φ∗
1 (σ ′) − ψ∗

1 (σ )φ1(σ ′), (C10a)

Y (k) = −1

2
sech2σ (iγ tan σ ′ + iγ σ ′sech2σ ′ + 1)

+1

2
sech2σ ′(iγ tan σ + iγ σ sech2σ + 1)

= −ψ1(σ )φ1(σ ′) + φ1(σ )ψ1(σ ′), (C10b)

which meansG(σ ) = δ(σ − σ ′) andR(σ ) = 0. Therefore, we
obtain

|�1(σ )〉〈�1(σ ′)| +
∫ +∞

−∞
dk|�k (σ )〉〈�k (σ ′)|

= I δ(σ − σ ′), (C11)

which is Eq. (17) given in the main text for n = 1.
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APPENDIX D: ATOMIC SPIN SQUEEZING

The Kerr nonlinearity can not only result in the quantum
squeezing of the SLDS but also can cause atomic spin squeez-
ing in the system. To show this, we consider the atomic spin
operators [86–88] ŝx = 1

2 (σ̂12 + σ̂21), ŝy = 1
2i (σ̂12 − σ̂21), and

ŝz = 1
2 (σ̂11 − σ̂22), which satisfy the commutation relation

[ŝl , ŝm] = iεlmnŝ j . We introduce the quadrature spin operator
to calculate the spin squeezing

ŝθ = 1
2 [σ̂12e−iθ + σ̂21eiθ ]

= cos θ ŝx + sin θ ŝy, (D1)

and define the minimum spin squeezing degree

ξ 2 = minθ

(〈
ŝ2
θ

〉 − 〈ŝθ 〉2

〈ŝz〉/2

)
. (D2)

From the result given by Eq. (B3) and the relation between
Ŝαβ and σ̂αβ , we can calculate the minimum spin squeezing

0 1 2
0

0.05

0.1

FIG. 6. Minimum atomic spin squeezing degree ξ 2 as a function
of propagation distance s.

degree ξ 2. Shown in Fig. 6 is the result of ξ 2 as a function of
the propagation distance s. We see that the system indeed
supports atomic spin squeezing, which is also contributed
from the Kerr nonlinearity.
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