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Linear and nonlinear Bragg diffraction by electromagnetically induced gratings
with PT symmetry and their active control in a Rydberg atomic gas
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Due to its myriad applications in many fields of science and technology, novel light diffraction from specially
designed optical gratings is a subject of great interest. Here, we propose a scheme to realize the linear
and nonlinear Bragg diffractions from an electromagnetically induced grating (EIG) with parity-time (PT )
symmetry in a cold Rydberg atomic gas, where the Rydberg-Rydberg interaction between atoms are mapped
to strong and long-range interaction between photons, characterized by a giant nonlocal Kerr nonlinearity.
We show that a probe laser beam with very low light intensity incident upon the PT -symmetric EIG can
display distinctive asymmetric diffraction patterns, which can be actively manipulated through tuning the
gain-absorption coefficient of the EIG and the input power of the laser beam. We also show that the intensity
distribution among different diffraction orders depends significantly on the PT -symmetry property of the EIG
and on the magnitude and nonlocality degree of the Kerr nonlinearity. In addition, we demonstrate that such
Bragg diffraction patterns can be controlled by an external gradient magnetic field, which provides a different
way of diffraction control. The research results reported here are not only useful for understanding the unique
properties of linear and nonlinear Bragg diffractions by PT -symmetric gratings but may also be promising for
designing optical devices applicable in optical information processing and transmission.
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I. INTRODUCTION

Diffraction, a general characteristic of wave phenomena,
occurs if the wavefront of a wave is obstructed when encoun-
tering a (either transparent or opaque) barrier, by which the
wavefront is altered in amplitude, phase, or both [1]. The
study on the diffraction of light waves has a long history and
is of great importance due to its tremendous applications in
many fields of science and engineering [1–3].

Diffraction gratings, optical elements with periodically
varying refractive index, can diffract light into different prop-
agation directions and form various optical patterns. Gratings
play important roles in optics because they can be served
as beam splitters, beam reflectors, grating spectrometers, etc.
[1–3]. Since the diffraction grating made by Rittenhouse [3],
many schemes have been proposed to investigate grating
diffraction characteristics and applications, including ruled
[4], silicon [5,6], holographic [7–11], and metal gratings
[12–14].

Early studies on grating diffractions were focused on the
linear regime. Freund [15] reported a theoretical and experi-
mental demonstration of nonlinear grating diffraction, where
the optical refractive index of gratings depends on the light
intensity. In recent years, there has been renewed interest in
nonlinear grating diffraction and its applications due to the
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wide availability for manufacturing gratings, such as periodi-
cally poled ferroelectric crystals [16–23].

Due to the finding of electromagnetically induced trans-
parency (EIT) [24], in recent decades, electromagnetically
induced gratings (EIGs) based on resonant atomic gases have
been suggested [25–38]. In such atomic gratings, the peri-
odically varying refractive index for a probe laser field is
generated by using a control laser field with spatial ampli-
tude modulation. Compared with solid gratings, atomic EIGs
have many striking features and advantages. For example,
they are highly controllable due to the existence of various
atomic levels and selection rules, and they possess giant Kerr
nonlinearities together with significant suppression of optical
absorption due to the interplay of light-atom resonance and
EIT effect. These features make EIGs very useful for realizing
nonlinear grating diffractions and their active controllability.

On the other hand, optical systems with parity-time (PT )
symmetry [39–43] have attracted growing attention, as they
provide new possibilities for controlling light beams with
various intriguing phenomena. Optical PT symmetry has
been used to explore fascinating Bloch oscillations [44,45],
nonreciprocal and unidirectional light propagations [46–48],
coherent perfect absorbers [49–52], giant light amplifica-
tion [53], single-mode photon and phonon lasers [54–57],
topological energy transfer and mode switching [58,59], en-
hanced sensing [60–62], non-Hermitian quantum random
walks [63,64], and quantum state tomography [65]. Compared
with solid-state materials, atomic gases are more advanta-
geous in realization of PT -symmetric structures due to the
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configurable refractive index profiles, leading to active control
over the gain, absorption, and Kerr nonlinearities [66,67].

In this paper, we propose a scheme to realize the linear
and nonlinear Bragg diffractions by using an EIG with PT
symmetry. The system we consider is a Rydberg atomic gas
[68] working under the condition of Rydberg-dressed EIT,
where the Rydberg-Rydberg interaction between atoms is
mapped to strong and long-range interaction between probe-
field photons [69–71]. With such a system, the Kerr nonlin-
earity of the system becomes nonlocal, and its magnitude can
have a giant enhancement [72–74]. We show that the probe
field with very low light intensity incident upon the PT -
symmetric EIG can acquire distinctive asymmetric diffraction
patterns; these patterns can be actively manipulated by tuning
the gain-absorption coefficient of the EIG as well as the input
power of the probe field.

Moreover, we demonstrate that the intensity distribution
of the diffraction among different diffraction orders depends
significantly on the PT -symmetry property of the EIG and
on the magnitude and nonlocality degree of the Kerr non-
linearity. In addition, such Bragg diffraction patterns can be
controlled by using an external gradient magnetic field, which
provides a different technique for the diffraction control in
the present system. The research results reported here are
not only beneficial for understanding the unique properties
of nonlinear Bragg diffraction based on PT -symmetric EIGs
but also useful for designing optical devices that are promis-
ing for applications in optical information processing and
transmission.

Before proceeding, we note that the asymmetric diffraction
by PT -symmetric EIGs has been reported recently by several
authors [75–79]. However, our work is different from theirs,
with the reasons given in the following. Firstly, what we
consider here is the Bragg diffraction from a PT -symmetric
atomic EIG by using a Rydberg atomic gas. With such a
system, the intensity distribution of diffraction patterns among
different diffraction orders, and hence its symmetry property,
can be changed actively through tuning the gain-absorption
coefficient of the EIG. Secondly, the nonlocal Kerr non-
linearity contributed from the Rydberg-Rydberg interaction
between atoms plays a significant role in the formation of the
diffraction patterns. The symmetry of the diffraction pattern
can be changed by tuning both the magnitude and nonlo-
cality degree of the Kerr nonlinearity. Thirdly, due to the
giant Kerr nonlinearity of the system, the generation power
for the nonlinear Bragg diffraction can be made very weak,
which is favorable for the formation of diffraction patterns
at low light levels. Finally, the magnetic-field manipulation
of the diffraction provides a way for controlling diffraction
patterns.

The remainder of this paper is arranged as follows. In
Sec. II, we describe the theoretical model under study and
illustrate how to realize the PT -symmetric EIG potential with
a Rydberg atomic gas. In Secs. III and IV, we investigate
respectively linear and nonlinear Bragg diffractions when a
probe laser beam is incident upon the PT -symmetric EIG;
we also discuss in detail how the PT -symmetry property of
the EIG and the magnitude and nonlocality degree of the Kerr
nonlinearity affect the Bragg diffraction patterns. In Sec. V,
we consider the Bragg diffraction when an external gradient

magnetic field is applied to the system. Finally, in Sec. VI, we
summarize the main results obtained in this paper.

II. PHYSICAL MODEL AND REALIZATION
OF PT -SYMMETRIC EIGs

A. Physical model and nonlinear envelope equation

We consider a laser-cooled four-level atomic gas with an
inverted Y-type configuration. The electric field interacting
with the atomic gas reads E = Ep + Ec + Ea, where E j =
e jE j exp[i(k j · r − ω jt )] + H.c., with e j the unit polarization
vectors and E j the field amplitudes ( j = p, c, a). A weak
probe field of angular frequency ωp (half Rabi frequency �p

and wave vector kp) couples the transition between levels
|1〉 and |3〉, a strong control field of angular frequency ωc

(half Rabi frequency �c and wave vector kc) couples the
transition between levels |2〉 and |3〉, and a strong assistant
field of angular frequency ωa (half Rabi frequency �a and
wave vector ka) couples the transition between levels |3〉 and
|4〉. The propagation directions of the laser fields are assumed
to be kp = (0, 0, kp), kc = (0, 0, kc), and ka = (0, 0,−ka) for
suppressing the residual Doppler effect. For realizing an opti-
cal PT symmetry in the system, we assume that an incoherent
population pumping (with pumping rate �21) is applied, which
couples the two low-lying levels |1〉 and |2〉 and hence pro-
vides an optical gain to the probe field.

Under the electric-dipole and rotating-wave approxi-
mations, the Hamiltonian of the atomic gas including the
Rydberg-Rydberg interaction is given by the Hamiltonian
H = Na

∫
d3rH(r, t ), where Na is the density of atomic

gas and H(r, t ) = ∑4
α=1 h̄�α Ŝαα (r, t ) − h̄[�pŜ13(r, t ) +

�aŜ34(r, t ) + �cŜ23(r, t ) + H.c.] +Na
∫

d3r′Ŝ44(r′, t )h̄V (r′ −
r)Ŝ44(r, t ) is the Hamiltonian density. Here, Ŝαβ ≡
|β〉〈α| exp{i[(kβ − kα )r − (ωβ − ωα + �β − �α )t]} is
the transition operator related to the levels |α〉 and |β〉,
satisfying the commutation relation [Ŝαβ (r, t ), Ŝμν (r′, t )] =
(1/Na)δ(r − r′)[δαν Ŝμβ (r′, t ) − δμβ Ŝαν (r′, t )], with h̄ωα the
eigenenergy of the level |α〉; �2 = ωp − ωc − (ω2 − ω1),
�3 = ωp − (ω3 − ω1), and �4 = (ω4 − ω1) − ωp − ωa

are frequency detunings; �p = (ep · p31)Ep/h̄, �c =
(ec · p32)Ec/h̄, and �a = (ea · p43)Ea/h̄ are half Rabi
frequencies of the probe, control, and assistant fields,
respectively, with pi j the electric dipole matrix elements
associated with the transition |i〉 ↔ | j〉. The last term of the
Hamiltonian density is the contribution due to the interaction
between two Rydberg atoms, respectively, at positions r and
r′, described by the van der Waals potential h̄V (r′ − r), with
V (r′ − r) = C6/|r′ − r|6 (C6 is a dispersion coefficient) [79].

The dynamics of the atoms is controlled by the optical
Bloch equation:

∂ρ

∂t
= − i

h̄
[Ĥ, ρ] − � [ρ], (1)

where ρ is the density matrix (DM), with the matrix elements
defined by ραβ ≡ 〈Ŝαβ〉 (α, β = 1–4) describing the atomic
population (α = β) and coherence (α �= β); and � is the re-
laxation matrix, contributed from the spontaneous emission
and dephasing. The evolution of the probe field is described
by the Maxwell equation, which under the slowly varying
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amplitude approximation is given by

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + 1

2kp

(
∂2

∂x2
+ ∂2

∂y2

)
�p

+ κ13ρ31

= 0, (2)

with the coupling coefficient κ13 ≡ Naωp|p13|2/(2ε0ch̄). The
second derivative term with respect to the coordinates x and
y in the equation describes the diffraction effect of the probe
field during the propagation.

Since the probe field is much weaker than the control
and assistant fields, we can employ the perturbation expan-
sion �p = ∑∞

m=1 εm�(m)
p and ραβ = ∑∞

n=0 εnρ
(n)
αβ (here, ε is

a small parameter ∼�p/�c) for solving the Bloch-Maxwell
(MB) equations order by order. Moreover, in this treatment,
we go beyond the commonly used mean-field theory by con-
sidering the many-body correlations [80]. With the solution
of ρ31 exact to the third order (for more details, see the Ap-
pendix), we obtain the optical susceptibility of the probe field,
given by χp = Nα (ep · p13)2ρ31/(ε0 h̄�p).

The probe-field susceptibility can be further expressed as
χp = χ (1)

p + χ
(3)
p,1|Ep|2 + ∫

d3r′χ (3)
p,2(r′ − r)|Ep(r′)|2, with

χ (1)
p = Nα (ep · p13)2

ε0 h̄
α

(1)
31 ,

χ
(3)
p,1 = Nα (ep · p13)4

ε0 h̄3D

×{d21d41
[
α

(2)
33 − α

(2)
11

]
−d41�cα

(2)
23 − d21�

∗
aα

(2)
43

}
,

χ
(3)
p,2 = N 2

α (ep · p13)4

ε0 h̄3 V (r′ − r)α(3)
4441,

where the explicit expressions of α
(1)
31 , α(2)

11 , α(2)
33 , α(2)

23 , α(2)
43 , and

α
(3)
4441 are given in Appendix. Here, χ (1)

p is the linear optical

susceptibility and χ
(3)
p,1 [χ (3)

p,2] is the local (nonlocal) non-
linear optical susceptibility, contributed by the atom-photon
(atom-atom) interactions. Given the typical system parameters
(given below), the third-order nonlinear susceptibility will
be mainly contributed by the Rydberg-Rydberg interaction
between atoms [74], with the order of magnitude:

χ
(3)
p,2 ≈ 10−9 m2 V−2. (3)

This is more than 10 orders of magnitude larger than that
obtained by conventional nonlinear optical materials.

The nonlinear envelope equation of the probe field can also
be derived at the third-order approximation. For simplicity,
we assume that the spatial extension of the input probe beam
along the y and z directions is much larger than the range of
Rydberg-Rydberg interaction, which is characterized by the
width of the nonlocal response function defined below. Under
this assumption, the behavior of the nonlocal optical Kerr
nonlinearity in the y and z directions can be taken as a local
one. Then the nonlinear envelope equation can be reduced into

the following dimensionless form:

i
∂U

∂ζ
+ λ

∂2U

∂ξ 2
+ V (ξ )U

+
∫

dξ ′W (ξ ′ − ξ )|U (ξ ′, ζ )|2U (ξ, ζ )

= 0, (4)

where U = �p/�p0 (�p0 is a typical half Rabi frequency
of the probe beam, which is constant and much smaller
than the half Rabi frequencies of the control and assis-
tant fields), ζ = z/LEIG [LEIG is the EIG thickness in the
transverse direction (x direction)], λ = LEIG/Ldiff (Ldiff =
2kpw

2
0 is the characteristic diffraction length, with w0

the radius of the probe beam), and (ξ, ξ ′) = (x, x′)/w0.
In the above equation, the dimensionless linear poten-
tial has the form V (ξ ) = −k2

pw
2
0χ

(1)
p (ξ ), and the nonlocal

nonlinear response function is defined by W (ξ ′ − ξ ) =
−2k3

pw
6
0�

2
p0

∫∫
dηdζ χ

(3)
p,2(ξ ′ − ξ, η, ζ ), with η = y/w0. Note

that, in Eq. (4), we have neglected the local Kerr nonlinearity
contributed from the photon-atom interactions [having the
form −k2

pw
2
0�

2
p0χ

(3)
p,1|U |2U ]. The reason is that the local Kerr

nonlinearity is several orders of magnitude smaller than the
nonlocal Kerr nonlinearity [72,80].

To be concrete, we take a cold gas of strontium 87 atoms
(87Sr atoms) as a realistic candidate for the realization of the
model described above. The assigned atomic levels are |1〉 =
|5s2 1S0, F = 9/2, mF = − 1

2 〉, |2〉 = |5s2 1S0, F = 9
2 , mF =

3
2 〉, |3〉 = |5s5p 1P1〉, and |4〉 = |5sns 1S0〉. The dispersion
parameter C6 ≈ 2π× 10.9 GHz μm6 for the main quantum
number n = 60 [81]. The incoherent population pumping
rate is �21 ≈ 2π × 0.1 MHz, and the spontaneous emis-
sion decay rates are �2 = �12 ≈ 2π × 0.1 MHz, �3 = �13 +
�23 ≈ 2π × 16 MHz (with �13 ≈ �23), and �4 = �34 ≈
2π × 16.7 kHz, respectively. The density of the atomic gas
Na = 1.0 × 1012 cm−3 and the frequency detunings �2 =
−1.186 MHz, �3 = 50 MHz, and �4 = −100 MHz. The
half Rabi frequencies of the control and assistant fields are
�c = 15 MHz and �a = 10 MHz, respectively. The wave-
length of the probe beam is λp = 2π/kp ≈ 689 nm. Since
|�3 + �4| � |�a|, the system works in the Rydberg-dressed
regime, i.e., only a small part of the atoms can be excited to
the Rydberg state |4〉.

By using the above parameters and considering that �p0 ≈
0.1 MHz, we obtain the approximate expression of the non-
linear response function:

W (ξ ′−ξ )≈W0

∫∫
dηdζ

×
{

W1+
[
(ξ ′ − ξ )2+η2+4k2

pw
2
0ζ

2
]3

( 0.48Rb
w0

)6

}−1

, (5)

with W0 = 0.02, W1 = 1 + i0.41, and the radius of Rydberg
blockade [82] Rb ≈ 5.6 μm. Note that the nonlinear response
function obeys the normalization condition

∫
dξW (ξ ′ − ξ ) ≈

1, which is consistent with the local limit W (ξ ′ − ξ ) = δ(ξ ′ −
ξ ). Since W is positive, the nonlocal Kerr nonlinearity in
Eq. (4) is self-focusing, which is due to the attractive Rydberg-
Rydberg interaction (i.e., C6 is positive) for the selected atoms.
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FIG. 1. (a) Level diagram a excitation scheme of the Rydberg-
dressed electromagnetically induced transparency (EIT). Energy
levels |1〉, |2〉, and |3〉 constitute a �-type EIT configuration, where
the probe laser field Ep couples the transition |1〉 ↔ |2〉 and the
control laser field Ec couples the transition |2〉 ↔ |3〉. � j are
detunings, and � jl are the spontaneous-emission decay rate from |l〉
to | j〉. The �-type EIT is dressed by a high-lying Rydberg state |4〉,
which is far-off-resonantly coupled to state |3〉 through an assistant
laser field Ea. An incoherent pumping (with the pumping rate �21) is
applied to pump the atoms from |1〉 to |2〉. The interaction between
two Rydberg atoms is described by the van der Waals potential
Vvdw. (b) Possible setting of Bragg diffraction for the probe beam
normally incident on the atomic EIG (denoted by the white and gray
region). The cold Rydberg gas is filled in the atomic cell. Projection
of the diffracted probe-field wave vector in the x direction can be
seen as k out = mK for the mth-order diffraction mode. (c) Spatial
distributions of the real and imaginary parts of the nonlinear response
function, Re(W ) (the red solid line) and Im(W ) (the blue dashed
line), as functions of ξ = x/w0.

Figure 1(c) shows the spatial distribution of the real and
imaginary parts of the nonlinear response function W , i.e.,
Re(W ) and Im(W ), as functions of ξ = x/w0. We see that
Re(W ) � Im(W ), which means that the optical absorption
is largely suppressed. This is contributed by the EIT effect
induced by the control field.

B. Realization of PT -symmetric EIGs

Since the present system is highly controllable and can
be easily manipulated, it is possible to create an atomic EIG
with PT symmetry by designing the linear optical potential
V (ξ ) in Eq. (4). To this end, the target potential (i.e., the EIG
potential) is set to be a PT -symmetric periodic one with the
simple form:

V (ξ ) = V0 − V1 cos(Kξ ) + iV2 sin(Kξ ), (6)

where V0 is a constant (the constant part of the potential),
V1 (V2) determines the real (imaginary) part of the potential,
and K is the lattice vector (all parameters are dimensionless).
Since V (ξ ) = V (−ξ )∗, the EIG potential is PT symmetric
and the PT symmetry-breaking point locates at V1 = V2.

With the parameters of the 87Sr atoms given above, the
target potential can be created by the spatially modulated
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FIG. 2. (a) Spatially modulated half Rabi frequencies of the
control and assistant fields, �c/�c0 (red solid line) and �a/�a0

(blue dashed line), as functions of ξ = x/w0 for V1 = V2 = 0.01.
(b) The factor sin[�kLEIG/(2w0 )]/�k as a function of �k with
�k = mK − kdiff for LEIG/(2w0) = 100.

control and assistant fields by using the method proposed in
Refs. [66,83], reading as

�c(ξ )

�c0
= 1 + 0.03V2 sin(Kξ ), (7a)

�a(ξ )

�a0
= 1 + 3.44V1 cos(Kξ ) − 5.02V2 sin(Kξ ), (7b)

with �c0 = 15 MHz and �a0 = 10 MHz. From Eqs. (7a) and
(7b), we see that �c and �a are now modulated around �c0

and �a0, respectively.
In an experiment, the spatial modulation of the control and

assistant fields [Eqs. (7a) and (7b)] can be created simply
by using space light modulators. It can also be realized by
overlapping the spatial modulation part of the control and as-
sistant fields over their constant part. The spatially modulated
control and assistant fields in the form of standing waves can
be realized through using pairs of counterpropagating control
and assistant beams along the x direction. In addition, the
spatial modulation part of the control and assistant fields is
shorter than their constant part in the z direction. Thus, the
probe beam is incident in the homogenous atomic gas, firstly,
without being affected by the EIG potential; then it is incident
normally on the EIG potential and diffracts.

Shown in Fig. 2 are the half Rabi frequencies of the control
and assistant fields as functions of ξ = x/w0, given by Eq. (7).
Here, we have taken V1 = V2 = 0.01.

III. LINEAR BRAGG DIFFRACTIONS
BY PT -SYMMETRIC EIGs

The grating diffractions can be classified in different
diffraction regimes. Raman-Nath and Bragg regimes are two
conventional ones, which are, respectively, for optical thin and
thick media [84]. Different from our earlier work [79], where
the Raman-Nath diffraction by a PT -symmetric EIG was
considered. Here, we consider the case of Bragg diffraction
from the PT -symmetric EIG described in the last section.

We first consider linear Bragg diffraction in the system,
which occurs if the input probe beam is very weak (i.e.,
|U (ξ, ζ )|  1), so that the Kerr nonlinear effect plays no
significant role, and hence, the nonlinearity term in Eq. (4)
can be neglected. For simplicity, we consider the case that
the probe field with a finite transverse width [85] is normally
incident to the grating. Then the solution of Eq. (4) takes the
form U (ξ, ζ ) = u(ξ )e−iωζ , where the function u satisfies the
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inhomogeneous equation:

L̂u = −V (ξ )u, (8)

with the linear operator L̂ ≡ ω + λ∂2/∂ξ 2.
Equation (8) can be solved by using Green’s function

G(ξ, ξ ′, ω), satisfying the equation L̂G(ξ, ξ ′, ω) = δ(ξ − ξ ′),
which has the solution:

G(ξ, ξ ′, ω) = 1

2π

∫ ∞

−∞
dk

exp[ik(ξ − ξ ′)]
ω − λk2

= − 1

4π
√

ω

∫ ∞

−∞
dk

×
{

exp[ik(ξ − ξ ′)]√
λk − √

ω
− exp[ik(ξ − ξ ′)]√

λk + √
ω

}
. (9)

Noting that the integrand in the above integral has two first-
order poles located at k = k± ≡ ±√

ω/λ, one can carry out
the integration in Eq. (9) by using the residue theorem, which
yields the result:

G(ξ, ξ ′, ω) = − i

2
√

ω
exp

[
i

√
ω

λ
(ξ − ξ ′)

]
. (10)

With this Green’s function, Eq. (8) is converted into an inte-
gral equation:

u(ξ ) = u0 exp(ikdiffξ ) −
∫

dξ ′G(ξ, ξ ′, ω)V (ξ ′)u(ξ ′), (11)

where the first term on the right-hand side comes from the
contribution by the homogeneous equation L̂u(ξ ) = 0, with
u0 a constant and kdiff the diffracted probe-field wave vector,
satisfying the relation ω = λk2

diff .
The explicit analytical solution of the integral Eq. (11) can

be obtained by employing the Born approximation. Since u
is a small quantity, u(ξ ′) in the integral of Eq. (11) can be
replaced by the solution of the zeroth-order approximation
[i.e., u(ξ ′) = u0 exp(ikdiffξ

′)]. Thus, when exact to the first-
order approximation, the solution of Eq. (11) is given by

u(ξ ) = u0 exp(ikdiffξ )

{
1 + i

2
√

ω

∑
m∈Z

cm

∫
dξ ′

× exp[i(mK − kdiff )ξ ′]

}
. (12)

To get this result, we have used the periodic property of the
EIG potential V (ξ ) and expanded it into a Fourier series, i.e.,
V (ξ ) = ∑

m∈Z cmeimKξ ′
. Here, cm is the expansion coefficient;

m ∈ Z ≡ {0,±1,±2, . . .} are integral numbers characterizing
the periodicity of the EIG; K = 2πw0/� is the lattice vector;
and � is the EIG period along the x direction.

With the result in Eq. (12), in the absence of Kerr nonlin-
earity, we obtain the solution of Eq. (4):

U (ξ, ζ ) = u0 exp[i(kdiffξ − ωζ )] ×
{

1 + i

2
√

ω

∑
m∈Z

cm

×
∫ LEIG/(2w0 )

−LEIG/(2w0 )
dξ ′ exp[i(mK − kdiff )ξ ′]

}
, (13)

where LEIG is the EIG thickness in the x direction. Moreover,
we have added the lower and upper bounds of the integral
which is dependent on the EIG thickness. It is obvious that

the dominant contribution to the integral in Eq. (13) comes
from the wave numbers mK fulfilling the Bragg diffraction
condition:

kdiff = mK ≡ k m
diff . (14)

Since the diffraction wave numbers k m
diff = kp sin θ m

diff , here,
kp = 2π/λp, and θ m

diff is the diffraction angle of the mth-order
diffraction, the Bragg diffraction condition in Eq. (14) can be
written into the well-known form:

sin θ m
diff = mλp

�
. (15)

When mK �= kdiff , after carrying out the integral in Eq. (13),
we get

U (ξ, ζ ) = u0 exp[i(kdiffξ − ωζ )]

×
{

1 + i√
ω

∑
m∈Z

cm

sin
[ (mK−kdiff )LEIG

2w0

]
mK − kdiff

}
. (16)

Note that the factor sin[(mK − kdiff )LEIG/(2w0)]/(mK −
kdiff ) is sharply peaked around mK = kdiff if LEIG/w0 � 1.
This means that, to realize a pronounced Bragg diffraction,
the EIG thickness LEIG should be much larger than the probe
beam radius w0. Since the occurrence of the Bragg diffraction
is due to the interference between the probe beams that are
reflected from different layers of the EIG, the EIG must be
prepared to be thick enough for making the interference effect
significant (i.e., the system works in the regime of Bragg
diffraction).

Shown in Fig. 2(b) is the factor sin[�kLEIG/(2w0)]/�k
as a function of �k with �k = mK − kdiff for LEIG/(2w0) =
100. Since LEIG/w0 � 1, the factor is sharply peaked around
�k = 0, which is exactly the Bragg diffraction condition in
Eq. (14).

To confirm that the EIG under study indeed operates in the
regime of Bragg diffraction, we fix the radius of the probe
beam w0 = 20 μm and the EIG period � = 0.2 mm. These
values give the lattice vector K = 2π × 0.1 (K is a dimen-
sionless parameter), and the characteristic diffraction length
Ldiff ≈ 7 mm (Ldiff is four times larger than the Rayleigh
length, given by πw2

0/λp ≈ 2 mm, with λp ≈ 689 nm). By
further selecting the EIG thickness in the x direction LEIG =
10� = 2 mm, we have LEIG/w0 = 100 � 1. Thus, the EIG
is indeed thick enough in the transverse direction (x direc-
tion) so that the Bragg condition in Eq. (15) can be satisfied;
meanwhile, the EIG is also long enough in the propagation
distance (z direction) which, for instance, can also be taken
as 2 mm. Then the interaction region between the probe beam
and the EIG is sufficiently large, so that the incident beam can
experience multiple scattering by the EIG. Note that, different
from Ref. [84], in our situation, the second-order derivative
term in the wave equation [i.e., the second term in Eq. (4)
for describing the diffraction] cannot be neglected because
the coefficient λ = LEIG/Ldiff ≈ 0.3 is not much less than 1.
Due to the finite transverse width of the incident probe beam,
the photons in the beam have momentums in the transverse
directions. The diffraction angle of the first-order diffraction
mode is estimated to be θ ±1

diff ≈ ±λp/� ≈ ±3.4 mrad.
To show the spatial distribution (pattern) of the Bragg

diffraction from the PT -symmetric EIG, we substitute
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FIG. 3. Intensity distributions of linear Bragg diffraction modes generated by the electromagnetically induced grating (EIG) potential.
(a) and (c) Diffraction mode intensities |Sm(ζ )|2 (m = 0, ±1, ±2) as functions of ζ = z/LEIG for κ+ = κ− (real potential) and κ+ = 1.5κ−
(complex potential), respectively. (b) and (d) Normalized mode intensities |S′

m(ζ )|2 (each mode intensity is normalized by its maximum) as
functions of the diffraction angle θ m

diff and ζ = z/LEIG. Symmetric (asymmetric) diffraction emerges in the case of κ+ = κ− (κ+ = 1.5κ−). The
mode index m is indicated for the mode intensities at z/LEIG = 0 and 1.

kdiff = mK into Eq. (13), which gives rise to the solution

U (ξ, ζ ) = u0 exp[i(mKξ − ωζ )]

(
1 + i

2
√

ω

LEIG

w0

∑
m∈Z

cm

)

≡ Sm(ζ ) exp(imKξ ), (17)

where Sm(ζ ) is the amplitude of the mth-order diffraction
mode. Then by substituting Eqs. (17) and (6) into Eq. (4)
in the absence of the Kerr nonlinearity, i.e., i∂ζU + λ∂ξξU +
V (ξ )U = 0, we attain the equation of motion for the diffrac-
tion modes with different diffraction orders:

dSm(ζ )

dζ
= i[−λm2K2Sm(ζ ) + κ−Sm+1(ζ ) + κ+Sm−1(ζ )]. (18)

The boundary conditions are given as S0(ζ = 0) = 1 and
Sm(ζ = 0) = 0 (m �= 0). Here, the coupling constants κ± =
(V1 ± V2)/2, which depend on the real and imaginary parts of
the EIG potential (i.e., V1 and V2). When the EIG potential
is real (i.e., V2 = 0), one has κ+ = κ−; otherwise, when it
is complex (i.e., V2 �= 0), one has κ+ �= κ−. Since the Bragg
diffraction usually includes only a few diffraction orders, we
can solve Eq. (18) by keeping terms for |m| � 2, i.e.,

dS0

dζ
= i(κ+S−1 + κ−S1), (19)

dS±1

dζ
= i(κ±S0 − λK2S±1 + κ∓S±2), (20)

dS±2

dζ
= i(κ±S±1 − 4λK2S±2). (21)

They are solved numerically by using the fourth-order Runge-
Kutta algorithm.

Shown in Fig. 3 are the intensity distributions of differ-
ent diffraction modes generated by the EIG potential, i.e.,
|Sm(ζ )|2 (m = 0, ±1, ±2) as functions of ζ = z/LEIG for
κ+ = κ− [Fig. 3(a)] and κ+ = 1.5κ− [Fig. 3(c)]. For the
real potential (κ+ = κ−), the input energy in the zeroth-order
diffraction mode flows into the higher-order diffraction modes
with both positive and negative diffraction orders; in this situ-
ation, the intensities of the first- and second-order diffraction
modes (i.e., |S1|2 and |S2|2) are the same with those of the
negative first- and negative second-order diffraction modes
(i.e., |S−1|2 and |S−2|2), respectively, emerging a symmetric
Bragg diffraction. For the complex potential (κ+ = 1.5κ−), on
the other hand, the input energy in the zeroth-order diffraction
mode flows mainly into the higher-order diffraction modes
with negative orders; in this case, |S1|2 and |S2|2 are much
smaller than |S−1|2 and |S−2|2, respectively, emerging as an
asymmetric Bragg diffraction. Figure 3(b) [3(d)] shows the
same as that of Fig. 3(a) [3(c)] but as a function of the diffrac-
tion angle θ m

diff and ζ = z/LEIG. From this figure, we clearly
see that real EIG potential [for κ+ = κ−; panels (a) and (b)]
results in the formation of a symmetric Bragg diffraction, but
complex EIG potential [for κ+ = 1.5κ−; panels (c) and (d)]
results in the formation of an asymmetric Bragg diffraction.

The degree of asymmetry of the diffraction intensity distri-
bution can be described by the symmetry degree Dsym, with

Dsym(ζ ) ≡ |S1(ζ )|2
|S−1(ζ )|2 , (22)

i.e., the ratio between the intensities of the first-order diffrac-
tion mode and that of the negative first-order one. The
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FIG. 4. Intensity distribution of linear Bragg diffraction modes
and its manipulation by the PT symmetry of the electromagnetically
induced grating (EIG). (a) Normalized mode intensities |S′

m(ζ )|2
(m = 0, ±1, ±2; each mode intensity is normalized by its maxi-
mum) as functions of the diffraction angle θ m

diff and the ratio between
the imaginary and real parts of the EIG potential V , i.e., V2/V1, at
z = LEIG. The mode index m is indicated for the mode intensities
at V2/V1 = 0 and 2. (b) Symmetry degree of the diffraction pattern
Dsym as a function of V2/V1. Inset: log10 Dsym as a function of V2/V1.
The minimum of Dsym arrives at the PT symmetry-breaking point
V2/V1 = 1.

diffraction is symmetric when Dsym = 1; while it becomes
asymmetric if Dsym �= 1. We find that the symmetry degree
Dsym(ζ ) depends significantly on the ratio between the imag-
inary and real parts of the EIG potential, i.e., V2/V1.

Plotted in Fig. 4(a) is the diffraction intensity distribution
as a function of the diffraction angle θ m

diff and the ratio be-
tween the imaginary and real parts of the EIG potential, i.e.,
V2/V1, at z = LEIG. It is obvious that the diffraction pattern
becomes more and more biased as V2/V1 increases from 0 to
1. Figure 4(b) shows the symmetry degree Dsym as a function
of V2/V1. It is seen that Dsym decreases rapidly from 1 to
nearly 0 as V2/V1 increases from 0 to 1 and then increases
slowly as V2/V1 proceeds to increase from 1 to 2. In the inset,
we show log10 Dsym as a function of V2/V1. The minimum
of Dsym is almost zero (of the order of 10−13), arriving at
V2/V1 = 1 (i.e., the PT symmetry-breaking point). Thus, the
Bragg diffraction pattern becomes the most asymmetric when
the PT -symmetric EIG potential works on the symmetry-
breaking point.

To understand the above result, we notice that the EIG
potential can be rewritten as

V (ξ ) = V0 − V1 − V2

2
eiKξ − V1 + V2

2
e−iKξ , (23)

which has two components eiKξ and e−iKξ , representing two
moving lattices toward the positive and negative x direc-
tions. When V2 = 0, the moving lattices toward the positive
and negative directions have the same amplitudes, result-
ing in a symmetric diffraction [Fig. 3(a)]. However, when
V2 �= 0, the moving lattices toward the positive and negative
directions have different amplitudes, resulting in an asym-
metric diffraction [Fig. 3(c)]. When V1 = V2, i.e., at the PT
symmetry-breaking point, there is only one lattice moving
toward the negative direction e−iKξ , and hence, the most asym-
metric diffraction pattern emerges.

Indeed, when V1 = V2, one has κ− = 0. Thereby, Eq. (18)
is reduced to

dSm(ζ )

dζ
= i[−λm2K2Sm(ζ ) + κ+Sm−1(ζ )], (24)

which means there is no energy transport from the mode Sm

to the mode Sm+1, i.e., the flow of energy between adjacent
diffraction modes is unidirectional.

IV. NONLINEAR BRAGG DIFFRACTIONS
BY PT -SYMMETRIC EIGs

We now turn to consider the nonlinear Bragg diffraction
by the EIG potential. This occurs if the input probe beam
becomes stronger (i.e., |U (ξ, ζ )| � 1), so that the nonlinear
effect in the system may bring a significant influence on the
Bragg diffraction. In this case, the Kerr nonlinear term in
Eq. (4) cannot be neglected. To consider the Kerr nonlin-
earity and give a systematic analysis on the nonlinear Bragg
diffraction, we employ the method of multiple scales [86,87]
to solve Eq. (4) based on the asymptotic expansion U =
ε3/2[U (1) + εU (2) + ε2U (3) + · · · ] (with ε the small param-
eter defined in the last section) and introduce the multiscale
variables ξ j = ε jξ ( j = 0, 1) and ζl = εlζ (l = 0, 1, 2). By
substituting the expansion into Eq. (4) and using the chain
rule for differentiation in the equation, we obtain the leading-
order equation [like Eq. (18)] at ε3/2 order, which admits the
solution:

U (1) = q(ξ1, ζ1, ζ2)Sm(ζ0) exp(imKξ0). (25)

Here, q(ξ1, ζ1, ζ2) is a slowly varying function of whole
diffraction modes due to the effect of the Kerr nonlinearity.

At ε5/2 order, we get the linear equation for the function
q, which is given by i(∂q/∂ζ1) = 0. Thus, q is independent
on the variable ζ1. To include the Kerr effect, we need to
consider the higher-order of expansion. At ε7/2 order, we get
the nonlinear equation of q, which is given by

i
∂q

∂ζ
+ λ

∂2q

∂ξ 2
+
∫

dξ ′W (ξ ′ − ξ )|q(ξ ′, ζ )|2q(ξ, ζ ) = 0,

(26)

in terms of original coordinate variables. Note that the Bragg
diffraction pattern in the nonlinear regime depends not only
on the intensity of each diffraction mode |Sm(ζ0)|2 but also on
the intensity of the whole diffraction pattern |q(ξ, ζ )|2.

For extracting more information of the function q, we need
to solve Eq. (26), which is nonintegrable and usually can
be treated only by resorting to numerical methods. However,
when the system is in the weak or strong nonlocality regimes,
one can still find analytical solutions. In the weak nonlo-
cality regime, the width of the nonlocal response function
W (ξ ′ − ξ ) is finite but much narrower than that of |q(ξ ′, ζ )|2.
Consequently, one can expand |q(ξ ′, ζ )|2 around ξ ′ = ξ , and
Eq. (26) is reduced to the form [88]:

i
∂q

∂ζ
+ λ

∂2q

∂ξ 2
+
(

|q|2 + R
∂2|q|2
∂ξ 2

)
q = 0, (27)

where R = 1
2

∫
ξ 2W (ξ )dξ is a parameter characterized the

weak nonlocality of the Kerr nonlinearity.
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FIG. 5. Nonlinear Bragg diffraction and its control by tuning the incident light power P and nonlocality of the Kerr nonlinearity
σ . (a) Normalized mode intensities |S′

m|2 (m = 0, ±1, ±2; each mode intensity is normalized by its maximum) at z = LEIG for a real
electromagnetically induced grating (EIG) potential, by taking them as functions of the diffraction angle θ m

diff and P for σ = 0. (b) The same
as (a) but by taking |S′

m|2 as functions of θ m
diff and σ for P = 50. (c) Diffraction pattern intensity |q|2 as a function of θ m

diff for (P, σ ) = (10, 0)
(blue dash-dotted line; line 1), (P, σ ) = (50, 0) (yellow solid line; line 2), (50, 20) (green dashed line; line 3), and (50, 50) (yellow dotted
line; line 4). (d) and (e) The same as (a) and (b), respectively, but for a complex PT -symmetric EIG potential at V2/V1 = 1, i.e., at the PT
symmetry-breaking point. (f) Symmetry degree Dsym as a function of P (black solid line) and σ (red dash-dotted line).

Equation (27) can be solved analytically and allows bright
soliton solutions. Assuming q(ξ, ζ ) = ϕ(ξ )eiφζ , we obtain
that the amplitude ϕ(ξ ) satisfies the equation [89]:

±
√

1

2λ
ξ =

(
1

ϕ0

)
tanh−1

(
ρ

ϕ0

)

+
√

2R

λ
tanh−1

(√
2R

λ
ρ

)
, (28)

where ρ2 = (ϕ2
0 − ϕ2)/(1 + 2Rϕ2/λ), the peak amplitude

ϕ0 = ϕ(ξ = 0), and the phase φ = ϕ2
0/2. At the local

limit, W (ξ ) → δ(ξ ), and hence R → 0, we recover from
Eq. (28) the well-known hyperbolic secant profile ϕ(ξ ) =
ϕ0 sech(ϕ0ξ ).

In the strong nonlocality regime, the width of the response
function W (ξ ′ − ξ ) is much wider than |q(ξ ′, ζ )|2. Conse-
quently, one can expand W (ξ ′ − ξ ) around ξ ′ = ξ , and hence,
Eq. (26) is reduced to the form [88]:

i
∂q

∂ζ
+ λ

∂2q

∂ξ 2
+ (

Q0 − Q2ξ
2
)
q = 0, (29)

where the coefficients:

Q0 = Re(W )|ξ=0Q, Q2 = −1

2

d2Re(W )

dξ 2

∣∣∣∣
ξ=0

Q,

with the constant Q = ∫ |q|2dξ . Since Q0, 2 > 0 [see
Fig. 1(c)], Eq. (29) has the form of the Schrödinger equa-
tion for a linear harmonic oscillator, whose solution can be

written as q(ξ, ζ ) = ϕ(ξ )eiφζ , with the amplitude:

ϕ(ξ ) = 1√√
2π2nn!

Hn

(
4

√
Q2

λ
ξ

)
exp

(
−
√

Q2

λ

ξ 2

2

)
, (30)

and the phase φ = Q0 − √
λQ2(2n + 1). Here, Hn(·) is the nth

Hermite polynomial. When n = 0, the amplitude (phase) is re-
duced to the form ϕ(ξ ) = (1/

4
√

2π ) exp(−√
Q2/λ ξ 2/2) (φ =

Q0 − √
λQ2). At the limit of strong nonlocality, W (ξ ) →

W (ξ = 0), and hence Q2 → 0, the solution becomes ϕ(ξ ) =
ϕ0 cos(

√
(Q0 − φ)/λ ξ ), which is not a localized solution in

the x direction any more.
The above analytical results are confirmed by carrying

out numerical simulation. Figures 5(a), 5(b), 5(d), and 5(e)
show the spatial distribution of nonlinear Bragg diffraction
and its control through tuning the incident light power P ≡∫∞
−∞ dξ |U (ξ, ζ = 0)|2 and nonlocality of the Kerr nonlinear-

ity. The nonlocal property of the Kerr nonlinearity can be
characterized by the nonlocality degree, defined as

σ = Rb

w0
. (31)

The weakly nonlocal Kerr nonlinearity has a small value of
σ , whereas the strongly nonlocal Kerr nonlinearity has a large
value of σ .

Plotted in Fig. 5(a) is the diffraction intensity distribution
|Sm|2 (m = 0,±1,±2) at z = LEIG for a real EIG potential
(V1 = 0.01,V2 = 0) in the plane of the diffraction angle θ m

diff
and the incident light power P at the local limit of Kerr
nonlinearity (σ = 0). From the figure, we see that, at the local
limit, the energy of the light field becomes more and more
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focused in the zeroth-order diffraction mode as P grows
(which can be clearly seen when P is increased to 50, illus-
trated by the yellow peaks in this figure). The physical reason
for this increased self-focusing of the diffraction pattern is due
to the growth of the Kerr nonlinearity when P increases. The
blue dash-dotted line (line 1) and the yellow solid line (line
2) correspond to the function |q|2 for (P, σ ) = (10, 0) and
(P, σ ) = (50, 0), respectively.

Plotted in Fig. 5(b) is the diffraction intensity distribution
|Sm|2 (m = 0,±1,±2) at z = LEIG as a function of θ m

diff and σ

for a strong incident light power P = 50. We see that, when
σ is increased, the light energy is likely to distribute uni-
formly among all diffraction orders, and hence, the diffraction
pattern becomes more extended (which can be clearly seen
when σ is increased to 50, illustrated by the yellow peaks
in this figure). The spreading of the diffraction pattern in
this case is attributed to the increase of the nonlocality of
the Kerr nonlinearity, which plays an opposite role against
the magnitude of the focusing Kerr nonlinearity. The green
dashed line (line 3) and yellow dotted line (line 4) corre-
spond to the function |q|2 for (P, σ ) = (50, 20) and (50, 50),
respectively.

To illustrate the Kerr nonlinear effect on the Bragg diffrac-
tion more clearly, in Fig. 5(c), we show |q|2 as a function
of θ m

diff for (P, σ ) = (10, 0), (50, 0), (50, 20), and (50, 50),
given respectively by the blue dash-dotted line (line 1),
yellow solid line (line 2), green dashed line (line 3),
and yellow dotted line (line 4). These lines correspond to the
linear Bragg diffraction at the local limit (line 1), the nonlinear
Bragg diffraction at the local limit (line 2), the nonlinear
Bragg diffraction in the strongly nonlocal regime (line 3), and
the nonlinear Bragg diffraction at the nonlocal limit (line 4).
From the figure, we see that the diffraction pattern given by
lines 1 and 4 are extended, which is due to the absence of
Kerr nonlinearity (line 1) and strong nonlocality (line 4). The
diffraction pattern given by line 2 is rather localized (like a
hyperbolic secant soliton) due to the strong Kerr nonlinearity
at the local limit. The diffraction pattern given by line 3 is
also localized; however, it is less localized than that given
by line 2 because of the increased nonlocality of the Kerr
nonlinearity.

The behavior of the nonlinear Brag diffraction by a com-
plex PT -symmetric EIG potential is displayed in Figs. 5(d)
and 5(e), corresponding to Figs. 5(a) and 5(b), respectively.
Since the complex PT -symmetric EIG potential works at
V2/V1 = 1 (i.e., at the PT symmetry-breaking point), the
diffraction pattern for (P, σ ) = (13, 0), corresponding to the
linear Bragg diffraction at the local limit, is strongly asym-
metric. However, the asymmetric diffraction pattern restores
its symmetry when P is increased at the local limit (σ = 0)
[Fig. 5(d)] and loses its symmetry by increasing the non-
locality of the Kerr nonlinearity when P is fixed (P = 65)
[Fig. 5(e)]. Shown in Fig. 5(f) is the symmetry degree of the
diffraction patterns Dsym as a function of the incident light
power P (the nonlocality degree σ ). It is seen that Dsym is
increased when P increases. It is decreased, however, when σ

increases.
The generation power of the nonlinear Bragg diffraction

shown in Fig. 5 can be estimated by computing the corre-
sponding Poynting’s vector integrated over the cross-sectional

area of the probe beam, which is given by

Pgen = 2ε0cnpS0

(
2h̄

p13

)2

|�p|2 ≈ 1.8 nW, (32)

where S0 is the cross-sectional area of the probe beam (S0 ∼
104 μm2). From the value of Pgen, we find that, in the present
system, a very low input power is sufficient for creating the
nonlinear Bragg diffraction, which is due to the presence
of giant nonlocal Kerr nonlinearity contributed by strong
Rydberg-Rydberg interaction between atoms. This fact may
be highly beneficial for the exploration of nonlinear Bragg
diffraction in the regime of quantum optics, as well as fa-
cilitate more applications in the fields of optical information
processing and transmission.

V. BRAGG DIFFRACTION MANIPULATED
BY A GRADIENT MAGNETIC FIELD

Light fields interacting with multilevel atoms can be con-
trolled by using gradient magnetic fields [90,91]. Such a
technique can also be used to manipulate the Bragg diffraction
of the probe beam by the PT -symmetric EIG in the present
system. For this aim, we consider that a weak gradient mag-
netic field:

B(x) = ẑB(x) = ẑB0x, (33)

is applied to the system, where ẑ is the unit vector in the z
direction, and B0 characterizes the gradient of the magnetic
field in the x direction. Due to the presence of the magnetic
field, each level of the atoms is split into a series of Zeeman
sublevels with energy �Eα,Zeeman = μBgα

F mα
F B, where μB,

gα
F , and mα

F are the Bohr magneton, gyromagnetic factor, and
magnetic quantum number of level |α〉, respectively. As a re-
sult, the one- and two-photon detunings are modified as �̃2 =
�2 + μ21B0x, �̃3 = �3 + μ31B0x, and �̃4 = �4 + μ41B0x,
with μαβ = μB(gα

F mα
F − gβ

F mβ
F )/h̄. For the strontium atoms

and the given parameters, we have μ21 = 6 × 109 C kg−1,
μ31 = 4.6 × 109 C kg−1, and μ41 = 3 × 109 C kg−1.

The Zeeman shift of atomic levels is equivalent to an ex-
ternal force acting on the atoms, which acts back to the probe
field in the system. As a result, an external potential related to
the magnetic field will appear in the envelope equation of the
probe field. By employing a similar derivation as that given in
Sec. II A, we get the nonlinear envelope equation for the probe
beam:

i
∂q

∂ζ
+ λ

∂2q

∂ξ 2
+
∫

dξ ′W (ξ ′ − ξ )|q(ξ ′, ζ )|2q(ξ, ζ )

+Vm(B0)ξq

= 0, (34)

where the magnetic-field-induced potential is given by
Vm(B0) = LEIGw0κ13(M21μ21 + M31μ31 + M41μ41)B0, with

M21 = d41
[
ρ

(0)
33 − ρ

(0)
11

]− �∗
aρ

(0)
43

D
+ α

(1)
31

d31d41 − |�a|2
|D|2 ,

M31 = α
(1)
31

d21d41

|D|2 ,

M41 = d21
[
ρ

(0)
33 − ρ

(0)
11

]− �cρ
(0)
23

D
+ α

(1)
31

d21d31 − |�c|2
|D|2 ,

063511-9



JIE GAO, CHAO HANG, AND GUOXIANG HUANG PHYSICAL REVIEW A 105, 063511 (2022)

12.9

0
B0  (mG/cm)

6.4

0.14
-0.14

0.5

0

D
sym

  (10-2  rad) B0  (mG/cm)

0.2

0.4

0.6

0.8

1

1

B 0 
 (m

G
/c

m
)

0
20

1

0

0.5

V2/V1

0.5 1.5

  (
10

-2
  r

ad
) 0.2

0.04

0.08

0.12

0.16

0

6.4

12.9

12.94.3 8.6

P=101

|S
 m
|2

m=-2

m=0

m=-1

m=2

m=-2

m=0

m=1m=-1

m

m

)b()a(

(c)

FIG. 6. Nonlinear Bragg diffraction manipulated by an applied
gradient magnetic field. (a) Normalized mode intensities |S′

m|2 (m =
0, ±1, ±2; each mode intensity is normalized by its maximum) as
functions of the diffraction angle θ m

diff and the magnetic-field gradient
B0 with the incident light power P = 10 at z = LEIG. (b) Diffraction
angle θ m

diff of the largest diffraction mode (red solid line) and symme-
try degree Dsym (blue dashed line) as functions of B0. (c) Symmetry
degree Dsym as a function of V2/V1 and B0. The blue (white) region
corresponds to the emergence of symmetric (asymmetric) diffraction
pattern.

and D = d21d31d41 − |�c|2d41 − |�a|2d21. Here, dαβ = �α −
�β + iγαβ , with γαβ the decay rate from |β〉 to |α〉.

For illustrating how the gradient magnetic field affects the
Bragg diffraction, as a first step, we consider Eq. (34) in
the absence of the nonlocal Kerr nonlinearity. By using the
transformations:

q′ = q exp

[
−i

(
Vmξ ′

2λ
+ V 2

mζ ′2

12λ2

)
ζ ′
]
,

ξ ′ = ξ − Vmζ ′2

(4λ)
, ζ ′ = 2λζ , (35)

Eq. (34) is converted into the form i∂q′/∂ζ ′ +
( 1

2 )(∂2q′/∂ξ ′2) = 0. Assuming the input probe beam is
a wave packet, it is easy to obtain the expression of the
trajectory of the central position of the probe beam, i.e.,
ξ = Vmλζ 2, which turning back to the original variables reads

x = w2
0

Ldiff
κ13(M21μ21 + M31μ31 + M41μ41)B0z2. (36)

We see that, due to the presence of the magnetic field, the
trajectory of the central position in the x direction has a
deflection with a quadratic dependence on the propagation
coordinate z; moreover, the trajectory can be controlled by
tuning the gradient of the magnetic field, i.e., by the control
parameter B0.

In the presence of the nonlocal Kerr nonlinearity, it is not
easy to get an exact expression for the trajectory of the central

position of the probe beam. In this case, we resort to a numeri-
cal simulation for solving Eq. (34) directly. Shown in Fig. 6(a)
is the diffraction pattern as a function of the diffraction angle
θ m

diff and the magnetic gradient B0 with the incident light
power P = 10 (corresponding to a weak input probe beam) at
z = LEIG. One sees that the diffraction pattern becomes more
and more biased when B0 increases. Figure 6(b) shows the
diffraction angle θ m

diff of the largest diffraction mode and the
symmetry degree Dsym as functions of B0. It is seen that θ m

diff
is increased when B0 increases, whereas Dsym is decreased as
B0 increases.

Finally, in Fig. 6(c), we plotted the result of the symmetry
degree Dsym of the Bragg diffraction pattern as a function of
the ratio between the imaginary and real parts of the PT -
symmetric EIG potential V (i.e., V2/V1) and the magnetic-field
gradient B0. As expected, for large V2/V1 or large B0, Dsym

has small values, which means that the diffraction pattern is
highly asymmetric; particularly, when V2/V1 is close to one
or B0 is very large, Dsym is nearly vanishing. Therefore, the
diffraction pattern of the probe beam can be controlled not
only by the PT -symmetry property of the EIG through the
ratio V2/V1 but also by the gradient magnetic field through the
gradient B0.

VI. SUMMARY

In summary, we have proposed a scheme for realizing a
tunable EIG with PT symmetry in a cold gas of Rydberg
atoms and investigated linear and nonlinear Bragg diffrac-
tions and their active control. We have shown that a laser
beam with very low light intensity incident upon the PT -
symmetric EIG can display distinctive nonlinear diffraction
patterns, which can be actively manipulated through tuning
the gain-absorption coefficient of the EIG and the input power
of the laser beam. We have also shown that the patterns of
intensity distribution among different diffraction modes de-
pend significantly on the PT -symmetry property of the EIG
and on the magnitude and nonlocality degree of the Kerr
nonlinearity. In addition, an external gradient magnetic field
can be used to provide a different way for manipulating the
nonlinear Bragg diffraction. The results reported here are not
only beneficial for understanding the unique properties of
nonlinear Bragg diffraction by PT -symmetric EIGs but also
useful for designing optical devices applicable in the areas of
optical information processing and transmission.
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APPENDIX: BLOCH EQUATIONS AND SOLUTIONS OF DM ELEMENTS AT DIFFERENT ORDERS

1. Bloch equations

The optical Bloch equations for single atomic DM elements ραβ ≡ 〈Ŝαβ〉 (α, β = 1, 2, 3, 4) read [84]

i
∂

∂t
ρ11 + i�21ρ11 − i�13ρ33 − �pρ13 + �∗

pρ31 = 0, (A1a)

i
∂

∂t
ρ22 − i�21ρ11 − i�23ρ33 − �cρ23 + �∗

cρ32 = 0, (A1b)

i
∂

∂t
ρ33 + i�3ρ33 − i�34ρ44 + �pρ13 − �∗

pρ31 + �cρ23 − �∗
cρ32 − �aρ34 + �∗

aρ43 = 0, (A1c)

i
∂

∂t
ρ44 + i�34ρ44 + �aρ34 − �∗

aρ43 = 0, (A1d)

for diagonal DMs, and (
i
∂

∂t
+ d21

)
ρ21 + �∗

cρ31 − �pρ23 = 0, (A2a)

(
i
∂

∂t
+ d31

)
ρ31 + �p(ρ11 − ρ33) + �cρ21 + �∗

aρ41 = 0, (A2b)

(
i
∂

∂t
+ d41

)
ρ41 + �aρ31 − �pρ43 − Na

∫
d3r′V (r′ − r)ρ44,41(r′, r, t ) = 0, (A2c)

(
i
∂

∂t
+ d32

)
ρ32 + �c(ρ22 − ρ33) + �pρ12 + �∗

aρ42 = 0, (A2d)

(
i
∂

∂t
+ d42

)
ρ42 + �aρ32 − �cρ43 − Na

∫
d3r′V (r′ − r)ρ44,42(r′, r, t ) = 0, (A2e)

(
i
∂

∂t
+ d43

)
ρ43 + �a(ρ33 − ρ44) − �∗

pρ41 − �∗
cρ42 − Na

∫
d3r′V (r′ − r)ρ44,43(r′, r, t ) = 0, (A2f)

for off-diagonal DMs. Here, dαβ = �α − �β + iγαβ , with γαβ = (�α + �β )/2 + γ
dep
αβ . Here, �β = ∑

α<β �αβ , with �αβ

the spontaneous emission decay rate and γ
dep
αβ the dephasing rate from |β〉 to |α〉. Note that we have used the notation

ραβ,μν (r′, r, t ) ≡ 〈Ŝαβ (r′, t )Ŝμν (r′, t )〉, which are two-atom DMs coming from the Rydberg-Rydberg interaction in the system.

2. Solutions of DM elements at different orders

The solution of the optical Bloch equations given above can be solved by taking a perturbation expansion ραβ = ρ
(0)
αβ +

ερ
(1)
αβ + ε2ρ

(2)
αβ + ε3ρ

(3)
αβ + · · · and assuming �p/�c as a small parameter. Since the two-photon detuning �4 is large, we can

assume that the atomic population in the Rydberg state |4〉 is approximated to zero, i.e., ρ
(0)
4 = 0. Thus, at the zeroth order of

perturbation expansion, we obtain equations for ρ
(0)
11 , ρ

(0)
22 , and ρ

(0)
33 , given by⎛

⎝−�21 0 �13

�21 0 �23

1 1 1

⎞
⎠
⎡
⎢⎣

ρ
(0)
11

ρ
(0)
22

ρ
(0)
33

⎤
⎥⎦ =

⎧⎨
⎩

0
2 Im

[
�∗

cρ
(0)
32

]
1

⎫⎬
⎭. (A3)

To solve ρ
(0)
32 , we also need equations for ρ

(0)
32 , ρ

(0)
42 , and ρ

(0)
43 , which are given by⎛

⎝d32 �∗
a 0

�a d42 −�c

0 −�∗
c d43

⎞
⎠
⎡
⎢⎣

ρ
(0)
32

ρ
(0)
42

ρ
(0)
43

⎤
⎥⎦ =

⎧⎨
⎩

�c
[
ρ

(0)
33 − ρ

(0)
22

]
0

−�aρ
(0)
33

⎫⎬
⎭. (A4)

The solutions of Eqs. (A3) and (A4) are given as

ρ
(0)
11 = − �13X

�21�13 − (�21 + �13)X + �21(�23 + Y )
, (A5)

ρ
(0)
22 = �21(�13 + �23 + Y )

�21�13 − (�21 + �13)X + �21(�23 + Y )
, (A6)

ρ
(0)
33 = − �21X

�21�13 − (�21 + �13)X + �21(�23 + Y )
, (A7)
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ρ
(0)
32 =

[− (d42d43 − |�c|2)ρ (0)
22 + (d42d43 − |�c|2 + |�a|2)ρ (0)

33

]
�c

Z
, (A8)

ρ
(0)
42 =

[
d43ρ

(0)
22 − (d32 + d43)ρ (0)

33

]
�c�a

Z
, (A9)

ρ
(0)
43 =

[|�c|2ρ (0)
22 − (d32d42 + |�c|2 − |�a|2)ρ (0)

33

]
�a

Z
, (A10)

with the other DM elements being zeros [ρ (0)
21 = ρ

(0)
31 = ρ

(0)
41 = ρ

(0)
44 = 0]. Here, X = 2 Im[(d42d43 − |�c|2)|�c|2/Z] and Y =

−2 Im[(d42d43 − |�c|2 + |�a|2)|�c|2/Z], with Z = d32d42d43 − |�c|2d32 − |�a|2d43.
At first order, the solutions for nonzero matrix elements read ρ

(1)
21 = α

(1)
21 �p, ρ

(1)
31 = α

(1)
31 �p, and ρ

(1)
41 = α

(1)
41 �p, where α

(1)
21 ,

α
(1)
31 , and α

(1)
41 are determined by the equation:⎛

⎝d21 �∗
c 0

�c d31 �∗
a

0 �a d41

⎞
⎠
⎡
⎢⎣

α
(1)
21

α
(1)
31

α
(1)
41

⎤
⎥⎦ =

⎡
⎣ ρ

(0)
23

ρ
(0)
33 − ρ

(0)
11

ρ
(0)
43

⎤
⎦, (A11)

leading to the solutions of α
(1)
21 , α

(1)
31 , and α

(1)
41 :

α
(1)
21 = {

(d31d41 − |�a|2)ρ (0)
23 + �∗

c�
∗
aρ

(0)
43 − d41�

∗
c

[
ρ

(0)
33 − ρ

(0)
11

]}
/D,

α
(1)
31 = {

d21d41
[
ρ

(0)
33 − ρ

(0)
11

]− d41�cρ
(0)
23 − d21�

∗
aρ

(0)
43

}
/D,

α
(1)
41 = {

(d21d31 − |�c|2)ρ (0)
43 + �c�aρ

(0)
23 − d21�a

[
ρ

(0)
33 − ρ

(0)
11

]}
/D,

where D = d21d31d41 − |�c|2d41 − |�a|2d21.
At second order, the solution for the nonzero matrix elements is found to be ρ

(2)
32 = α

(2)
32 |�p|2, ρ

(2)
42 = α

(2)
42 |�p|2, ρ

(2)
43 =

α
(2)
43 |�p|2, and ρ

(2)
j j = α

(2)
j j |�p|2, with α32, α42, and α43 satisfying the equation:

⎛
⎝d32 �∗

a 0
�a d42 −�c

0 −�∗
c d43

⎞
⎠
⎡
⎢⎣

α
(2)
32

α
(2)
42

α
(2)
43

⎤
⎥⎦ =

⎧⎨
⎩

�c
[
α

(2)
33 − α

(2)
22

]− α
(1)
12

0
�a
[
α

(2)
44 − α

(2)
33

]+ α
(1)
41

⎫⎬
⎭, (A12)

and α
(2)
j j satisfying the equation:

⎛
⎜⎝

−�21 0 �13 0
�21 0 �23 0
0 0 −�13 − �23 �34

1 1 1 1

⎞
⎟⎠
⎡
⎢⎢⎢⎣

α
(2)
11

α
(2)
22

α
(2)
33

α
(2)
44

⎤
⎥⎥⎥⎦ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 Im
[
α

(1)
31

]
2 Im

[
�∗

cα
(2)
32

]
2 Im

[
α

(1)∗
31 + �cα

(2)∗
32 + �∗

aα
(2)
43

]
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (A13)

The nonlocal Kerr nonlinearity appears at the third order. The solution of ρ
(3)
jl can be obtained from the equation:

⎛
⎝d21 �∗

c 0
�c d31 �∗

a
0 �a d41

⎞
⎠
⎡
⎢⎣

ρ
(3)
21

ρ
(3)
31

ρ
(3)
41

⎤
⎥⎦ =

⎡
⎣ α

(2)
23

α
(2)
33 − α

(2)
11

α
(2)
43

⎤
⎦|�p|2�p +

⎡
⎣ 0

0
Nα

∫
r′V (r′ − r)α(3)

4141|�p(r′)|2�p(r)

⎤
⎦. (A14)

To acquire the expression of α
(3)
4141 in the second term on the right-hand side of the above equation, we need to write the equation of

the two-body DM elements from the second order, reading

⎛
⎜⎜⎜⎜⎜⎝

d21 0 0 �∗
c 0 0

0 d31 0 �c 0 �∗
a

0 0 d41 − V
2 0 0 �a

�c �∗
c 0 d21 + d31 �∗

a 0
0 0 0 �a d21 + d41 �∗

c
0 �a �∗

a 0 �c d31 + d41

⎞
⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(2)
2121

α
(2)
3131

α
(2)
4141

α
(2)
2131

α
(2)
2141

α
(2)
3141

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(0)
23 α

(1)
21[

ρ
(0)
33 − ρ

(0)
11

]
α

(1)
31

ρ
(0)
43 α

(1)
41[

ρ
(0)
33 − ρ

(0)
11

]
α

(1)
21 + ρ

(0)
23 α

(1)
31

ρ
(0)
23 α

(1)
41 + ρ

(0)
43 α

(1)
21[

ρ
(0)
33 − ρ

(0)
11

]
α

(1)
41 + ρ

(0)
43 α

(1)
31

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A15)

After solving the above equation and obtaining the solutions of α
(2)
j1,l1, the third-order equation of the two-body DM elements

(which are too lengthy, thus not written explicitly down here) can also be solved, which have the solution of the form
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ρ
(3)
jl,mn = a(3)

jl,mn|�p(r′, t )|2�p(r, t ), where a(3)
jl,mn are functions of r′ − r. The solution of ρ

(3)
44,41 can be written as ρ

(3)
44,41(r′

1, r1) =
a(3)

44,41|F (r′
1)|2F (r1) exp[i(Kz0 − ωt0)], with

a(3)
44,41 =

∑3
m=0 AmV (r′ − r)m∑4
n=0 BnV (r′ − r)n

. (A16)

Here, Am (m = 0, 1, 2, 3) and Bn (n = 0, 1, 2, 3, 4) are complex constants depending on the spontaneous emission decay rate
� jl , the dephasing rate γ

dep
jl , the detuning � j , and the half Rabi frequencies �a and �c; their explicit expressions are too lengthy,

thus omitted here.
Finally, by keeping the terms up to the third order, we obtain ρ31 = ρ

(1)
31 + ρ

(3)
31 , reading

ρ31 = α
(1)
31 �p +

{
d21d41

D
[α(2)

33 − α
(2)
11 ] − d41�c

D
α

(2)
23 − d21�

∗
a

D
α

(2)
43

}
|�p|2�p

− d21�
∗
a

D
Nα

∫
r′V (r′ − r)α(3)

4141|�p(r′)|2�p(r), (A17)

with D being the same as that used in the solutions of α
(1)
21 , α

(1)
31 , and α

(1)
41 .
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