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Simultaneous capillary–gravity solitary waves (simultons or quadratic solitons) are
shown to be possible in a rectangular liquid channel of arbitrary finite depth bounded
below by a solid plate and above with a free deformable surface with constant surface
tension. A second-harmonic resonance between two waveguide modes (fundamental
and second-harmonic waves) is studied with the inclusion of dispersion in the system.
The nonlinearly coupled amplitude equations for the two slowly varying envelopes
of the fundamental and the second-harmonic wave components are derived using
the method of multiple scales. Two types of capillary–gravity simulton solutions are
explicitly obtained and an experiment for observing such hydrodynamic simultons is
suggested.

1. Introduction
In the past few decades, the nonlinear dynamics of water waves has been inten-

sively studied, including modulational instabilities, transverse and dilational surface
waves, various types of solitons, mode–mode resonant interactions, etc. (Akylas,
Dias & Grimshaw 1998; Benjamin & Feir 1967; Bridges, Dias & Menasce 2001;
Chossat & Dias 1995; Christodoulides & Dias 1994; Chu & Velarde 1988; Craik
1985; Davey & Stewartson 1974; Davis 1987; Debnath 1984; Dias & Kharif 1999;
Hammack & Henderson 1993; Johnson 1997; Jones 1993, 1994; Lighthill 1978; Mei
1989; Miles 1980, 1981; Miles & Henderson 1990; Nepomnyashchy & Velarde 1994;
Nepomnyashchy, Velarde & Colinet 2002; Oron, Davis & Bankoff 1997; Rednikov et
al. 2000; Velarde, Nepomnyashchy & Hennenberg 2000; Whitham 1974; Wu 2000).
An important resonant interaction is the second-harmonic generation (SHG), a de-
generate case of general three-wave resonances. The SHG in inviscid deep water with
surface tension was first investigated by Simmons (1969), McGoldrick (1970a, b) and
Nayfeh (1970). McGoldrick (1970b) pointed out that in Wilton’s approach to ripples
(Wilton 1915) the appearance of the singularities in the Stokes expansion for large-
amplitude capillary-gravity waves corresponded to an SHG and some higher-order
resonances. The study of the SHG and other mode–mode interaction processes in
water waves is of interest in understanding the spectrum of oceanic waves (Mei 1989).

For an inviscid fluid with a free surface, the Euler equations with the boundary
conditions on the surface are of second-order nonlinearity. Thus an SHG is possible
if an appropriate phase-matching condition is satisfied. Simmons (1969), McGoldrick
(1970a, b) and Nayfeh (1970) have shown this possibility by considering an open
liquid layer with surface tension and discussed in detail the interaction between
two phase-matched plane waves. In recent years there has been increased interest
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in cascading phenomena related to second-harmonic interactions (Huang 2001a, b;
Konotop & Malomed 2000). The physics of such a process requires two successive
second-order processes in order for the net output to return to the input frequency
(ω). This can occur via up-conversion (ω + ω → 2ω, i.e. SHG) followed by down-
conversion (2ω − ω → ω) or via down-conversion (ω − ω → 0, i.e. a rectification
process) followed by up-conversion (ω+0→ ω). Such cascading processes may result
in unexpected nonlinear excitations in the system. In this paper we show that two
solitary wave modes appearing on the water surface are simultaneously possible in
an SHG process they are called quadratic solitons or hydrodynamic simultons and
define a new type of nonlinear capillary-gravity wave excitation in fluid layers with
finite depth. The paper is organized as follows. In § 2 we present our model and
make an asymptotic expansion based on the method of multiple scales. In § 3 we
solve the nonlinearly coupled amplitude equations, which are derived in § 2 when
considering the interaction of the fundamental and the second-harmonic waves with
inclusion of dispersion in the system. Two types of hydrodynamic simulton solutions
are explicitly provided. Then we discuss in § 4 a parametrically excited system and
suggest an experiment for observing the predicted hydrodynamic simultons. Finally,
in the last section a discussion and summary of results are presented.

2. Model and asymptotic expansion
2.1. The model

We consider the irrotational motion of an incompressible inviscid fluid layer in a
gravitational field. The fluid at rest fills a horizontal rectangular channel to the
depth d with −d < z < 0, where z is the vertical coordinate, b is the width along
the transverse coordinate y, and the channel is of infinite extent along the other
transverse coordinate, x. Shown in figure 1 is a schematic representation of the
system. The surface of the liquid is open to ambient air and deformable with non-
vanishing but constant surface tension, α. Air is considered hydrodynamically passive.
The velocity potential φ of the fluid satisfies the Laplace equation

∇2φ = 0 for − d < z < ζ(x, y, t), (2.1)

with the boundary conditions on two lateral sides and bottom of the channel

φy = 0 at y = 0, b, (2.2)

φz = 0 at z = −d, (2.3)

and the kinematic and dynamic boundary conditions on the free surface z = ζ(x, y, t)

ζt + φxζx + φyζy = φz, (2.4)

φt + gζ + 1
2
(∇φ)2 = σ

ζxx(1 + ζ2
y ) + ζyy(1 + ζ2

x)− 2ζxζyζxy

(1 + ζ2
x + ζ2

y )
3/2

, (2.5)

where the subscripts represent partial derivatives, e.g. φx = ∂φ/∂x, etc; g is the
acceleration due to gravity, and σ = α/ρ with α the surface tension and ρ the density
of the fluid.

For an infinitesimal surface wave excitation one can easily solve (2.1)–(2.5). The
solution takes the form given in (2.31) and (2.32) in § 2.3 below. The linear dispersion
relation reads

ω2 = k(g + σk2) tanh(kd), (2.6)
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Figure 1. A schematic representation of the system under study.

where k and ω are the wavenumber and frequency, respectively; k2 = k2
x + k2

y , with kx
an arbitrary real number and ky = nπ/b, where n is an integer. From (2.6) we see that
ω = ω(kx, ky) = ω(kx, nπ/b) ≡ ωn(kx), i.e. many dispersion curves exist denoted by the
branch index n. For the nth branch there exists a lower cutoff frequency ωnc = ωn(0).
Thus our system is a typical waveguide for water wave propagation. Non-propagating
solitons related to the (0,1)-mode (i.e. kx = 0 and n = 1) have been discovered in such
a system (Wu et al. 1984) and many remarkable properties of these solitons have
been investigated both in experiments (Denardo, Wright & Putterman 1990; Chen &
Wei 1994, 1996; Wang & Wei 1997) and theoretically (Larraza & Putterman 1984;
Miles 1984; Huang, Yan & Dai 1990; Miao & Wei 1999).

We look for possible hydrodynamic simulton excitations in the system. Accordingly,
we consider two wave modes for which an SHG can occur. Necessary conditions for
the SHG are the phase-matching conditions

k2 = 2k1, (2.7)

ω(k2) = 2ω(k1), (2.8)

where k1 (respectively, k2) is the wavevector corresponding to the fundamental (respec-
tively, second-harmonic) wave. Besides (2.7) and (2.8), the following group-velocity
matching is also necessary for exciting the hydrodynamic simultons:

vg(k2) = vg(k1), (2.9)

where vg(k) = dω/dk is the group velocity of the respective mode. Note that if the
group-velocity difference between vg(k2) and vg(k1) is high, the fundamental and the
second-harmonic waves will quickly separate from each other. Thus if (2.9) is not
fulfilled an efficient energy exchange between the two wave modes mentioned above
cannot be realized and hence a hydrodynamic simulton cannot be formed (Konotop
& Malomed 2000). In our system, the modes satisfying condition (2.9) are the cutoff
modes, i.e. k = (0, nπ/b). These modes have in fact equal (zero) group velocity. To meet
the conditions (2.7) and (2.8), we chose, for simplicity, k1 = (0, k1) and k2 = (0, 2k1)
with k1 = π/b. Then the conditions (2.7) and (2.8) require

f(k∗1) ≡ tanh2 k∗1 − 3(k∗1/k∗0)2

1 + (k∗1/k∗0)2
= 0, (2.10)

where k∗1 = k1d and k∗0 = d(g/σ)1/2, both of which (and hence f(k∗1)) are dimensionless.
Shown in figure 2 is the function f(k∗1) for different layer depths for water, d =
2 cm, 2.5 cm, 3 cm, and 4 cm. Note that when the depth d changes the value of
the dimensionless parameter k∗0 also changes, resulting in a different dimensionless
function f(k∗1). We can see that the function f(k∗1) has two zero points. The first
one is at k∗1 = 0, not relevant for the SHG. The other zero point is at a non-
vanishing value of k∗1 and hence corresponds to the sought SHG. The condition (2.10)
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Figure 2. The function f(k∗1) for different depths of the liquid layer. From the lower to upper level the
curves correspond respectively to d = 2 cm, 2.5 cm, 3 cm, and 4 cm for water with ρwater = 1 g cm−3

and αwater = 72.5 dyn cm−1.

imposes a constraint on the parameters of the system. For example for water at room
temperature we have ρwater = 1 g cm−3 and αwater = 72.5 dyn cm−1. Taking d = 2 cm
and g = 980 cm s−2, we obtain k∗0 = 7.35. Then the dimensionless wavenumber
corresponding to the SHG is k∗1 = 5.20. Thus the realization of the SHG requires
that the width b (= πd/k∗1) equals 1.2083 cm. For d = 2.5 cm, 3.0 cm, and 4.0 cm we
obtain almost the same value b = 1.2084 cm. In the limit of an infinitely deep water
layer, (2.10) has the exact solution k1 = [g/(2σ)]1/2 and hence ω1 = [9g3/(8σ)]1/4,
corresponding to b = (2σ/g)1/2π, which has the value 1.20843 cm. Thus if one designs
the channel with the width b near 1.21 cm and the initially static water depth d > 2 cm,
simultons should be experimentally observable.

2.2. Asymptotic expansion

We apply the method of multiple scales to investigate the SHG for the system (2.1)–
(2.5). Since we are interested in a cascading process in which the excitation width is
smaller than that in the usual SHG case, we use different multiple-scale variables and
different asymptotic expansions to characterize the evolution of the amplitudes of the
fundamental and the second-harmonic waves. Appropriate multiple-scale variables
and asymptotic expansion are

ξ = ε1/2(x− vgt), (2.11)

τ = εt, (2.12)

φ = ε(φ(0) + ε1/2φ(1) + εφ(2) + · · ·), (2.13)

ζ = ε(ζ(0) + ε1/2ζ(1) + εζ(2) + · · ·), (2.14)

where vg is a constant determined by a solvability condition, ε is the smallness
parameter measuring the slope of the wavy surface, φ( j) and ζ( j) (j = 0, 1, 2, · · ·) are
functions of the fast variables x, y, z and t and the slow variables ξ and τ. Substituting
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(2.11)–(2.14) into (2.1)–(2.3), we have

∇2φ( j) = P ( j) for − d < z < ζ, (2.15)

φ( j)
y = 0 at y = 0, b, (2.16)

φ( j)
z = 0 at z = −d, (2.17)

with

P (0) = 0, (2.18)

P (1) = −2φ(0)
xξ , (2.19)

P (2) = −2φ(1)
xξ − φ(0)

ξξ , (2.20)

· · · .
To expand the boundary conditions on the free surface we first take a Taylor
expansion for φ at z = 0 and use (2.11)–(2.14). Then (2.4) and (2.5) become

ζ
( j)
t − φ( j)

z = Q( j), (2.21)

φ
( j)
t + gζ( j) − σ(ζ( j)

xx + ζ( j)
yy ) = R( j), (2.22)

at z = 0, with j = 0, 1, 2, · · · and

Q(0) = 0, (2.23)

Q(1) = vgζ
(0)
ξ , (2.24)

Q(2) = vgζ
(1)
ξ − ζ(0)

τ − φ(0)
x ζ

(0)
x − φ(0)

y ζ
(0)
y + φ(0)

zz ζ
(0), (2.25)

· · · ,
and

R(0) = 0, (2.26)

R(1) = vgφ
(0)
ξ + 2σζ(0)

xξ , (2.27)

R(2) = vgφ
(1)
ξ − φ(0)

τ + σ(2ζ(1)
xξ + ζ

(0)
ξξ )− φ(0)

tz ζ
(0) − 1

2
(∇φ(0))2, (2.28)

· · · .
Then (2.21) and (2.22) can be rewritten in the following form:

φ
( j)
tt + [g − σ(∂2

x + ∂2
y)]φ

( j)
z = R

( j)
t − [g − σ(∂2

x + ∂2
y)]Q

( j), (2.29)

ζ( j) =

∫
dt(Q( j) + φ( j)

z ), (2.30)

at z = 0. From (2.15)–(2.17) follows φ( j). For different j the boundary condition (2.29)
gives a series of solvability conditions, including the linear dispersion relation and
the amplitude equations. Using (2.30) one can obtain the surface displacement ζ( j)

through φ( j).
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2.3. Amplitude equations for cascading processes

We now solve (2.15)–(2.17), together with the boundary conditions (2.29) and (2.30).
At leading order (j = 0) the solution reads

φ(0) =
cosh k(z + d)

cosh kd
cos kyy{A(ξ, τ) exp[i(kxx− ωt)] + c.c.}, (2.31)

ζ(0) = i(kT/ω) cos kyy{A(ξ, τ) exp[i(kxx− ωt)]− c.c.}, (2.32)

ω2 = k(g + σk2)T , T = tanh kd, (2.33)

where k2 = k2
x + k2

y , kx is an arbitrary real number and ky = nπ/b with n being
an arbitrary integer; A is an amplitude function of the slow variables ξ and τ left
undetermined; c.c. represents the corresponding complex conjugate term. For an SHG
in the system we consider two modes, e.g. the (0,1) and (0,2) modes, which correspond
to kx = 0, n = 1 and kx = 0, n = 2, respectively. Then the solution (2.31) and (2.32) is
taken as

φ(0) =
cosh k1(z + d)

cosh k1d
cos k1y{A1(ξ, τ) exp[−iω1t)] + c.c.}

+
cosh k2(z + d)

cosh k2d
cos k2y{A2(ξ, τ) exp[−iω2t)] + c.c.}, (2.34)

ζ(0) = i(k1T1/ω1) cos k1y{A1(ξ, τ) exp[−iω1t)]− c.c.}
+i(k2T2/ω2) cos k2y{A2(ξ, τ) exp[−iω2t)]− c.c.}, (2.35)

where k1 = π/b, k2 = 2k1 = 2π/b, ω2
j = kj(g + σk2

j )Tj with Tj = tanh kjd (j = 1, 2).
Aj (j = 1, 2) are yet to be determined amplitude functions corresponding, respectively,
to the chosen (0,1) and (0,2) modes. The condition for the SHG requires ω2 = 2ω1,
which corresponds to (2.10), discussed in § 2.1.

At the second order (j = 1), the solvability condition demands that the undeter-
mined parameter vg vanishes, as the modes we have chosen in (2.34) and (2.35) are two
cutoff modes corresponding to the dispersion branches ω(kx, π/b) and ω(kx, 2π/b),
respectively. The solution at the j = 1 order takes the same form as that at the
leading order (j = 0) except that the amplitude functions Aj are changed into Bj ,
where Bj (j = 1, 2) are two yet to be determined new amplitude functions of ξ and τ.

According to the solutions obtained above, at the next order (j = 2) we can
calculate P (2), Q(2) and R(2). Then solving (2.15)–(2.17) with j = 2, we obtain

φ(2) =
cosh k1(z + d)

cosh k1d
cos k1y{C1(ξ, τ) exp[−iω1t)] + c.c.}

+
cosh k2(z + d)

cosh k2d
cos k2y{C2(ξ, τ) exp[−iω2t)] + c.c.}

− (z + d) sinh k1(z + d)

2k1 cosh k1d
cos k1y(A1ξξ exp(−iω1t) + c.c.)

− (z + d) sinh k2(z + d)

2k2 cosh k2d
cos k2y(A1ξξ exp(−iω2t) + c.c.), (2.36)

where C1 and C2 are two new amplitude functions yet to be determined. Substituting
(2.36) into the boundary condition (2.29) with j = 2, we obtain two solvability



Capillary–gravity simultons in a liquid layer 7

conditions which are just the coupled amplitude equations for A1 and A2:

i
∂A1

∂τ
+ 1

2
Γ1

∂2A1

∂ξ2
+ i∆1A

∗
1A2 = 0, (2.37)

i
∂A2

∂τ
+ 1

2
Γ2

∂2A2

∂ξ2
− i∆2A

2
1 = 0, (2.38)

with

Γ1 =
1

ω1

{
ω2

1

2k2
1T1

[T1 + k1d(1− T 2
1 )] + σk1T1

}
, (2.39)

Γ2 =
1

ω2

{
ω2

2

2k2
2T2

[T2 + k2d(1− T 2
2 )] + σk2T2

}
, (2.40)

∆1 = 1
2
k2

1

[
1− 3

2
T1T2 +

2T1 + T2

2T1

]
, (2.41)

∆2 = 1
4
k2

2

[
1
4
(1− 3T 2

1 ) +
T1

T2

]
. (2.42)

Note that Γj and ∆j (j = 1, 2) are positive real numbers. Using the transformation
uj = εAj (j = 1, 2) with ξ = ε1/2x and τ = εt, (2.37) and (2.38) take the form

i
∂u1

∂t
+ 1

2
Γ1

∂2u1

∂x2
+ i∆1u

∗
1u2 = 0, (2.43)

i
∂u2

∂t
+ 1

2
Γ2

∂2u2

∂x2
− i∆2u

2
1 = 0. (2.44)

If we allow a small frequency mismatch, i.e. ω2 = 2ω1 + δω with δω a small quantity
of order ε, then the amplitude equations (2.43) and (2.44) are replaced by

i

(
∂u1

∂t
+ v1

∂u1

∂x

)
+ 1

2
Γ1

∂2u1

∂x2
+ i∆1u

∗
1u2 exp(iδωt) = 0, (2.45)

i

(
∂u2

∂t
+ v2

∂u2

∂x

)
+ 1

2
Γ2

∂2u2

∂x2
− i∆2u

2
1 exp(−iδωt) = 0, (2.46)

where vj (j = 1, 2) are, respectively, the group velocities of the fundamental and the
second-harmonic waves near kx1 = 0, n = 1 and kx2 = 0, n = 2. Equations (2.45)
and (2.46) are coupled amplitude equations for the fundamental and the second-
harmonic waves, respectively. Similar equations have been obtained by Karamzin &
Sukhorukov (1974) in nonlinear optics and, recently, by Konotop & Malomed (2000)
in nonlinear lattice dynamics. A significant difference between (2.45) and (2.46) and
the amplitude equations obtained by McGoldrick (1970b) and Nayfeh (1970), for the
usual SHG, is that in the present case we have included dispersion. We shall see in the
following that the inclusion of dispersion results in quite different dynamic behaviour
for the evolution of nonlinear water waves. In addition, from (2.39)–(2.42) we can see
that our amplitude equations (2.45) and (2.46) are also valid for infinitely deep water
(i.e. for d→∞ and hence we have Tj → 1, j = 1, 2).
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3. Hydrodynamic simulton solutions
In this section, we provide some exact solutions of the amplitude equations (2.45)

and (2.46). We look for the solution with the following form:

u1(x, t) = U1(η) exp(iθ1), (3.1)

u2(x, t) = U2(η) exp(iθ2), (3.2)

where η = Kx − Ωt, θj = Kjx − Ωjt + φj (j = 1, 2) with K2 = 2K1, Ω2 = 2Ω1 + δω,
φ2 = 2φ1 − π/2. K , Ω, K1, Ω1 and φ1 are constants yet to be determined. Then (2.45)
and (2.46) are transformed into

U1ηη + α1U1U2 − β1U1 = 0, (3.3)

U2ηη + α2U
2
1 − β2U2 = 0, (3.4)

with

αj =
2∆j
ΓjK2

, (3.5)

βj =
ΓjK

2
j − 2(Ωj − vjKj)

ΓjK2
(3.6)

(j = 1, 2) with K1 = (v2 − v1)/(Γ1 − 2Γ2) and Ω = v1K + Γ1KK1. Note that α1 and α2

are positive constants. A coupled soliton–soliton (i.e. simultaneous solitary waves or
solitons for two wave components) solution of (3.3) and (3.4) reads

U1 =
6s1√
α1α2

sech2η, (3.7)

U2 =
6

α1

sech2η, (3.8)

with s1 = ±1. For the solution (3.7) and (3.8) to exist, the condition β1 = β2 = 4 is
required, resulting in

K2 =
2(v2 − v1)K1 + (2Γ2 − Γ1)K

2
1 − δω

2(Γ2 − 2Γ1)
. (3.9)

In this case the free-surface displacement takes the form

ζ(x, y, t) = − 12s1√
α1α2

k1T1

ω1

sech2(Kx− Ωt) cos k1y sin[K1x− (ω1 + Ω1)t+ φ1]

+
12

α1

k2T2

ω2

sech2(Kx− Ωt) cos k2y cos[K2x− (ω2 + Ω2)t+ 2φ1], (3.10)

where φ1 is a phase constant depending on the initial condition. The first (respect-
ively, second) term of (3.10) on the right-hand side corresponds to the fundamental
(respectively, second-harmonic) wave component. We see that each component of
the excitation is a standing wave in the y-direction and a bright (above level)
envelope soliton in the x-direction. We call the solution (3.10) the hydrodynamic
simulton. If kx1 (kx2) is exactly zero but δω 6= 0, then v1 = v2 = 0. Consequently,
K1 = K2 = 0, K2 = δω/(4Γ1 − 2Γ2), Ω = 0, Ω1 = −2Γ1K

2 and Ω2 = −2Γ2K
2. Then

(3.10) represents a hydrodynamic non-propagating simulton, in which the oscillating
frequencies of both the fundamental and second-harmonic waves are smaller than the
lower cutoff frequencies of the corresponding linear modes. Shown in figure 3 is the
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surface displacement pattern corresponding to the hydrodynamic non-propagating
simulton (3.10) when d = 2 cm, s1 = +1, φ1 = 0 and δω = 0.8 Hz at different
times, t0 = 0 (figure 3a), t1 = π/[4(ω1 + Ω1)] (figure 3b), and t2 = π/[2(ω1 + Ω1)]
(figure 3c). The vertical coordinate in the figures is chosen as the dimensionless
surface displacement ζ(x, y, t)/[α1ω2/(12k2Γ2)]. Note that the value of the width b
of the channel has been chosen as 1.2083 cm, determined by the SHG resonance
condition (2.10). The interaction between the (0,1) and the (0,2) modes is clearly
shown. Obviously, the non-propagating simulton can be taken as a two-mode breather
of the system. Each point on the breather has a periodic oscillation with the oscillating
frequency ω1. Figure 4 shows such an oscillation of the points on x = 0. If δω 6= 0 and
hence Ω 6= 0, the simulton is travelling along the x-direction with the velocity Ω/K .

Equations (3.3) and (3.4) admit another type of simulton solution, e.g.

U1 = − 6s1√
α1α2

( 2
3
− sech2η), (3.11)

U2 = − 6

α1

( 2
3
− sech2η). (3.12)

When the condition β1 = β2 = −4 is imposed, the parameter K must take the value

K2 =
2(v2 − v1)K1 + (2Γ2 − Γ1)K

2
1 − δω

2(2Γ1 − Γ2)
. (3.13)

The free-surface displacement is now given by

ζ =
12s1√
α1α2

k1T1

ω1

[ 2
3
− sech2(Kx− Ωt)] cos k1y sin[K1x− (ω1 + Ω1)t+ φ1]

−12

α1

k2T2

ω2

[ 2
3
− sech2(Kx− Ωt)] cos k2y sin[K2x− (ω2 + Ω2)t+ 2φ1]. (3.14)

Hence in this case both the fundamental wave and the second-harmonic wave are
dark (below level) envelope solitons. In particular, when v1 = v2 = 0, we have
K1 = K2 = 0, Ω = 0, K2 = −δω/(4Γ1 − 2Γ2), Ω1 = 2Γ1K

2 and Ω2 = 2Γ2K
2.

Hence the solution (3.14) represents a non-propagating simulton with the oscillation
frequency of the fundamental and the second-harmonic waves both larger than
the lower cutoff frequency of the corresponding linear mode. Note that to make
K2 positive one should chose the frequency mismatch δω < 0 in this particular
circumstance.

Formally, (3.3) and (3.4) also admit the following coupled soliton solution:

U1 = i
6s1√−α1α2

sech η tanh η, (3.15)

U2 = − 6

α1

sech2η. (3.16)

However, such a solution cannot be physically realized because in our system both
α1 and α2 are positive.

Physically, the formation of the hydrodynamic simultons provided in (3.10) and
(3.14) results in an effective energy transfer between the fundamental and the second-
harmonic wave components. The energy is then transferred back again to each wave
mode itself as a consequence of dispersion, and hence we have a cascading process
or mutual self-trapping.
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Figure 3. The dimensionless surface displacement [(α1ω2)/(12k2T2)]ζ(x, y, t) corresponding to the
non-propagating simulton for d = 2 cm, s1 = +1, φ1 = 0 and δω = 0.8 Hz at times (a) t = 0,
(b) t = π/[4(ω1 + Ω1)], (c) t = π/[2(ω1 + Ω1)].
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Figure 4. Periodic oscillation of the points on x = 0 in the water surface corresponding to the
hydrodynamic simulton. The parameters are the same as those in figure 3.

4. Parametrically excited hydrodynamic simultons
Wu, Keolian & Rudnick (1984) made the important experimental finding of a

soliton in a parametrically excited fluid layer. Their system was a narrow and long
rectangular channel filled with water to finite depth. When the system is driven
vertically with a low-frequency loudspeaker, or a similar low-frequency vibrating
support, a non-propagating soliton appears on the free surface of the water, which is
a nonlinearly modulated standing wave related to the (0,1)-mode of the system. Since
our system, described in § 2.1, parallels that used by Wu et al. (1984), we expect that a
parametrically excited hydrodynamic simulton could also be observed following our
findings described above.

As in Wu et al. (1984) we assume that a long water channel is placed on a
vibrating support. The width b of the channel is designed such that the phase-
matching condition of the SHG (2.10) is satisfied. As mentioned in § 2.1, for water at
room temperature the phase-matching condition for the SHG requires b = 1.21 cm
if the static water depth is d = 2 cm. To excite hydrodynamic simultons we apply
in the vertical direction an external double-frequency drive z0(t) = ae1 cos(2ωet) +
ae2 cos(4ωet), with ωe near ω1, the frequency of the fundamental wave. The equations
of motion of the system are still (2.1)–(2.5) but the gravitational acceleration, g, is
now replaced by a time-dependent parameter, g + z̈0(t). Using a similar asymptotic
expansion as in (2.11)–(2.14) and assuming

4ω2
e ae1/g = γ1ε, 16ω2

e ae2/g = γ2ε, (4.1)

and

(ωe − ω1)/ω1 = γ3ε (4.2)

with γj(j = 1, 2, 3) of order unity, we obtain the following coupled amplitude equations:

i
∂A1

∂τ
+ 1

2
Γ1

∂2A1

∂ξ2
+ i∆1A

∗
1A2 − ν̃1A

∗
1 exp(−2iω1γ3τ) = 0, (4.3)

i
∂A2

∂τ
+ 1

2
Γ2

∂2A2

∂ξ2
− i∆2A

2
1 − ν̃2A

∗
2 exp(−4iω2γ3τ) = 0, (4.4)
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where ν̃j = gγjkjTj/(4ωj) (j = 1, 2). Γj and ∆j (j = 1, 2) are the same as those given in
(2.39)–(2.42). A1 and A2 are still the envelope functions of the fundamental and second-
harmonic wave components, respectively. If we allow a small frequency mismatch in
the SHG resonance condition, (4.3) and (4.4) should become

i

(
∂

∂t
+ v1

∂

∂x
+ d1

)
u1 + 1

2
Γ1

∂2u1

∂x2
+ i∆1u

∗
1u2 exp(iδωt)− ν1u

∗
1 exp(−2iδωet) = 0, (4.5)

i

(
∂

∂t
+ v2

∂

∂x
+ d2

)
u2 + 1

2
Γ2

∂2u2

∂x2
− i∆2u

2
1 exp(−iδωt)− ν2u

∗
2 exp(−4iδωet) = 0 (4.6)

when returning to the original variables, where (u1, u2) = ε(A1, A2), ν1 = ωeae1k1T1,
ν2 = 4ωeae2k2T2 and δωe = ωe − ω1. As in (2.45) and (2.46), v1 and v2 are the
group velocities of the fundamental and the second-harmonic waves near kx1 = 0,
ky1 = π/b and kx2 = 0, ky2 = 2π/b, respectively. Since damping always exists in
the system, for simplicity, following Miles (1984) and Huang et al. (1990), we have
phenomenologically included two ad hoc damping parameters d1 and d2.

To solve the parametrically driven amplitude equations (4.5) and (4.6) we assume

u1 = U1(η) exp[iθ1 − i(ωe − ω1)t], (4.7)

u2 = U2(η) exp[iθ2 − 2i(ωe − ω1)t], (4.8)

with η = Kx − Ωt and θj = Kjx − Ωjt + φj (j = 1, 2). Substituting (4.7) and
(4.8) into (4.5) and (4.6) and then comparing the real and imaginary parts gives
Ω = Ω1 = Ω2 = 0, K1 = K2 = 0, v1 = v2 = 0, ω2 = 2ω1 and φ2 = 2φ1 − π/2. Hence
only non-propagating solutions are possible. Under these conditions, (4.5) and (4.6)
become (3.3) and (3.4) with the same αj (j = 1, 2) given in (3.5) but with

β1 = 2
ν1 cos 2φ1 − (ωe − ω1)

Γ1K2
, (4.9)

β2 = 2
ν2 cos 2φ2 − 2(ωe − ω1)

Γ2K2
. (4.10)

The condition φ2 = 2φ1 − π/2 corresponds to(
d2

ν2

)2

= 4

(
d1

ν1

)2
[

1−
(
d1

ν1

)2
]
. (4.11)

It gives a constraint for the driving amplitudes, ae1 and ae2, and the damping par-
ameters, d1 and d2, and, accordingly, must be suitably adjusted in experiment.

We obtain two types of non-propagating simulton solutions. One of them is
U1 = (6s1/

√
α1α2)sech2(Kx) and U2 = −(6/α1)sech2(Kx) with K2 = [µ1 cos 2φ1 −

(ωe − ω1)]/(2Γ1). For this soliton–soliton solution to be valid the driving frequency
and the driving amplitude must satisfy the relation ωe − ω1 = (Γ2ν1 cos 2φ1 −
Γ1ν2 cos 2φ2)/(Γ2 − 2Γ1), with sin 2φj = −ηj/νj (j = 1, 2). The free-surface displace-
ment in this case takes the form

ζ(x, y, t) =
12s1√
α1α2

k1T1

ω1

sech2(Kx) cos k1y sin(ωet− φ1)

−12

α1

k2T2

ω2

sech2(Kx) cos k2y cos(2ωet− 2φ1), (4.12)

with φ1 = −(1/2) sin−1(η1/ν1).
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The other type of non-propagating simulton is U1 = −(6s1/
√
α1α2)[2/3−sech2(Kx)]

and U2 = −(6/α1)[2/3− sech2(Kx)] with K2 = (ωe − ω1 − ν1 cos 2φ1)/(2Γ1) and ωe−
ω1 = (Γ2ν1 cos 2φ1 − Γ1ν2 cos 2φ2)/(2Γ1 − Γ2). In this case the surface displacement
reads

ζ(x, y, t) = − 12s1√
α1α2

k1T1

ω1

[ 2
3
− sech2(Kx)] cos k1y sin(ωet− φ1)

−12

α1

k2T2

ω2

[ 2
3
− sech2(Kx)] cos k2y cos(2ωet− 2φ1). (4.13)

The above results show that, using parametric driving with appropriate conditions
imposed on the corresponding driving amplitude and driving frequency, it is indeed
possible to observe hydrodynamic simultons in a water channel.

5. Discussion and summary
We have investigated the second-harmonic generation (SHG) of nonlinear surface

water waves in a long rectangular channel filled with water to finite depth. General-
izing earlier work by Simmons (1969), McGoldrick (1970a, b), Nayfeh (1970) and
Miles (1984) we have shown that a new type of nonlinear excitation, simultaneous
capillary–gravity (simultons or quadratic solitons) waves, can be excited. Taking into
account wave dispersion, two coupled nonlinear equations for the amplitudes of the
fundamental and second-harmonic waves, (2.45) and (2.46), have been derived and
two types of hydrodynamic simulton solutions have been explicitly provided. We have
also studied the possibility of parametrically exciting hydrodynamic simultons in a
water channel. Incorporating damping and having the liquid channel parametrically
excited by vertical vibration with suitable frequency and amplitude, the corresponding
evolution equations, (4.5) and (4.6), have been derived, thus generalizing (2.45) and
(2.46). Parametrically excited simulton solutions have been obtained and an exper-
iment for observing such new nonlinear hydrodynamic excitations has been suggested
as a straightforward extension of earlier experimental work by Wu et al. (1984).

Unlike the conventional solitons in deep water, in which the generation of a
single soliton is due to the self-trapping of linear plane waves, the mechanism for
the formation of the hydrodynamic simultons presented here is through cascading
between two wave modes. In this process, the fundamental and the second-harmonic
waves (with frequency ω1 and ω2, respectively) interact with each other through
repeated three-wave interactions. For example, the energy of the fundamental wave is
first up-converted to the second-harmonic wave (through the sum-frequency process
ω + ω = 2ω) and then down-converted (through the difference-frequency process
2ω − ω = ω), resulting in mutual self-trapping of the two waves thus leading to the
simultaneous appearance of two hydrodynamic solitons (hence the term simultons).
Besides the usual condition for an SHG, i.e. the phase matching given in (2.7) and
(2.8), the occurrence of hydrodynamic simultons requires an additional group-velocity
matching condition (2.9). We have also shown that wave dispersion plays a significant
role in the generation of this type of excitation.

Gottwald, Grimshaw & Malomed (1997, 1998) have considered parametric envelope
solitons in systems of coupled Korteweg–de Vries and Kadomtsev–Petviashvili-like
equations, describing the coupling of internal waves in a shallow stably stratified fluid
and thus valid only in the long-wave approximation. Their coupled envelope solitons
are in fact the simultons in shallow water. Our systems described in § 2 and § 4 are
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long rectangular waveguides filled with liquid to finite depth in a channel open to air
with dispersion, gravity and surface tension taken into account. The results presented
in §§ 2–4 can be easily extended to an infinitely deep water layer.
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