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(2+1)-Dimensional Envelope Solitons in a Disk-Shaped Bose-Einstein
Condensate”
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We show that, due to the nonlinear coupling between a wavepacket superposed by short-wavelength collec-

tive modes and a long-wavelength mean field generated by the self-interaction of the wavepacket, the (2+1)-
dimensional envelope solitons decaying in all spatial directions, i.e., dromions, are possible nonlinear excitations

in a disk-shaped Bose—FEinstein condensate with a repulsive interatomic interaction.
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Recently, the study on nonlinear property of mat-
ter wave has received much attention due to the ex-
perimental realization of Bose—Einstein condensation
in weakly interacting atomic gases.[!! The most spec-
tacular experimental progress achieved is the demon-
stration of atomic four-wave mixing,/?/ the observa-
tion of solitons!®! and vortices,! the discovery of
superradiancel® and the matter-wave amplification!
in Bose—Einstein condensates (BECs). This research
into nonlinear matter waves based on BEC has en-
abled the extension of linear atom optics to a nonlin-
ear regime, i.e., nonlinear atom optics.[”!

For the study of soliton dynamics in BECs,
works up to now are mainly concentrated on the
one-dimensional (1D) solitons moving in a cigar-
shaped trap.®! Recently, a Boussinesq-Korteweg—
de Vries (BKdV) description for 1D dark soliton
excitations with a repulsive atom—atom interaction
has been developed.[®! This approach has been ex-
tended in a systematic way to the case of a quasi-1D
condensate.['9! In a recent work, the 2D weak non-
linear matter wave pulses created in a disk-shaped
BEC have been considered.!'! By using a method of
multiple-scales a Kadomtsev—Pitvashvili (KP) equa-
tion is derived from an order parameter equation. It
is predicted that lump-like 2D solitons are possible
and their decay into vortices have been investigated
in details.[11]

However, all theoretical approaches developed in
Refs. [9-11] are valid only for weak nonlinear excita-
tions with a long-wavelength and hence the disper-
sion of the excitations must be weak. We note that
in addition to long-wavelength excitations, BECs also
support the nonlinear excitations with a short wave-
length, which displays a strong dispersion. One ex-
pects that a nonlinear excitation in this case will show
an interesting new character. It is just this problem
that will be addressed in this Letter.

The dynamics of a weakly interacting Bose gas at
low temperature is described by the time-dependent
Gross-Pitaevskii (GP) equation!!]
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where ¥ is called the order parameter, [dr|¥|? =
N is the atomic number in the condensate, g =
4mh%as/m is the interaction constant with a, the s-
wave scattering length (as > 0 for a repulsive interac-
tion). We consider a disk-shaped harmonic trap of the
form Vo (r) = %[wﬁ_(:@ +9y?) +w?2?] with w; < w,,
where w,; and w, are the frequencies of the trap in the
transverse (z and y) directions and the z-direction, re-
spectively. Expressing the order parameter in terms
of its modulus and phase, ¥ = y/nexp(i¢), we obtain
a set of coupled equations for n and ¢. By intro-
duCing (.’L‘,y,Z) = az(xlaylazl)) t = w,;lt,a n = nOnl
with a, = [h/(mw.)]'/? and ng = N/a3, we arrive
the following dimensionless equations of motion after
dropping the primes:
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with Q@ = 47Na,/a. and [drn = 1. Vj(z,y) =
(w1 /w.)?(z?+y?)/2 is the dimensionless trapping po-
tential in the x and y directions.

We are interested in an excitation created in the
condensate with a thin disk-shaped trap. The thin
disk-shaped trap here implies that the conditions
a, < lp and hw; < ngg < hw, can be fulfilled,
where [ = (47Tn0a5)71/2 is healing length. In this sit-
uation we can make the quasi-2D approximation,!*!]
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\/ﬁ = P(w7y7t)G0(Z)7 ¢ = _/"’t + go(a:,y,t), Where
Go(z) = exp(—22/2) is the ground-state wavefunction
of the 1D harmonic oscillator with the potential 2%/2
in the z-direction, p is the chemical potential of the
condensate and ¢ is a phase function contributed from
the excitation, which is assumed to be a function of z
and y because the created excitation can only prop-
agate in the z and y directions as mentioned above.
Then Egs. (2) and (3) are reduced to

oPdp AP e 0
e alzja;j 2 (s o) =" (4)
(5 + 5) (e3P 57 e
wa(G) G Jrram oo

where Q' = IHQ is an effective interaction constant
with Iy = [ dzGi(z)/ [T d=G3(z) = 1/V2.
principle, one can take into account the contribution
of the higher-order eigenmodes of the harmonic oscil-
lator in the z-direction, as carried out in Ref. [10] for a
cigar-shaped trap. However, as here we have assumed
nog < hw,, the contribution from these higher-order
eigenmodes is small and can be safely neglected. Fur-
thermore, on the other hand, for the thin disk-shaped
trap (wy /w, < 1) the trapping potential in the (z,y)
plane is a slowly varying function of z and y and
hence the size of the condensate in the radial direc-
tion is much larger than the size the soliton excitations
(with the order of the healing length) considered be-
low. In the propagation of the soliton for short times,
the boundary of the condensate does not come into
play and we can therefore simulate the experimental
situation by considering the condensate being uniform
in the (z,y) plane.

We first analyse the linear dispersion relation of
the system, which can be obtained by assuming in
Egs. (4) and (5) that P = ug + a(z,y,t) (uo > 0) with
(a,¢) = (ao, o) expli(k1z+ kay — wt)] 4 c.c. and ug, ag
and o being constants. The result is

w(k‘l, k2) =

where k% = k? + k2. Equation (6) is a Bogoliubov-

type linear excitation spectrum in 2D. Obviously, in

addition to a long-wavelength excitation (k = 0),

the system may support a short-wavelength excita-

tion (k # 0). The sound speed of the system reads
2 211/2

e=timeo [(52) "+ (52) ] = Vo

In order to investigate the weak nonlinear excita-
tions with a short wavelength, following the line of
Davey and Stewartson'?/ we make the asymptotic
expansion P = wug + ea® + €2a(® 4 246) 4
0 = e 4+ 2o 4 3p0B) 4 ... and assume that
a9 and ) (j =1,2,3,---) are the functions of the

(4Q"ug + k%) %k 2, (6)

fast variable 6 = kz — wt and the multiple-scale (slow)
variables £ = e(c;lsc —t),n = ey, T = €2t, where € is a
smallness parameter characterizing the relative ampli-
tude of the excitation; ¢, is a constant yet to be deter-
mined. Then substituting above expansion to Egs. (4)
9ald) N luo ) 920
00 2 062

and (5), we obtain —w = ald),

0? e 9 ;
[7 _kzw +2Q"u2 | — wug o0 = g(]l)’ for
j = 1,2,3,---. The explicit expressions of a?) and

BU) are omitted here.
At leading (j = 1) order the solution reads

o) = Ao + [Aexp(i6) + c.c., ™)
k2
oV = ; ol Aexp(if) + c.c., (8)

where Ag is a mean flow (i.e., zero-mode) necessarily
to be introduced for cancelling a secular term appear-
ing in high-order approximations. A is an envelope
function of the carrier wave exp(if). Both Ay and A
are yet to be determined functions of the slow vari-
ables £, n, and 7; w(k) is just the linear dispersion
relation of the excitation, given in Eq. (6) with ky = k
and ko = 0; c.c. represents a corresponding complex
conjugate term.

At the next order (j = 2), a solvability condition
requires that ¢, = dw = i[2Q'ugl~t + k3], i.e., the
group velocity of the carrier wave. The singularity-free
second-order solution reads p(2) = A, exp(2if) + c.c.,
and a® = Byy + [Ba1 exp(if) + Bay exp(2i6) + c.c.],
where A and Bsy; (j = 0,1,2) are functions of Ay, A,
0Ap/O& and OA/OE.

At the order 7 = 3 the solvability conditions give
rise to the equations for Ag and A:

0%4, 0%A 0] 9
a1a—£2—Wzaz—(|A| )s 9)
3A 0%A 0A
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(10)
. . .. . 1 1
with the coefficients explicitly given by oy = — — —,
cz ¢
2 1 A R2
_ 2 2 _ 2
a2 = 2c3cy (2ep+3epegte®), b = 2we? (cp_%—i—Z)’
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_ - ]2 (__ _
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3e2y 2(2¢ + k?) + 3c%k? /4
4 2 P
)k + R 1+ 5 ) e |, and
1
By = (cg + 2cp)k2, where ¢, is phase speed de-
2wcy

fined by w(k)/k. We see that due to nonlinear effect
a coupling occurs between the envelope of the short-
wavelength excitations and the long-wavelength mean
flow of the system. Such nonlinear coupling is one type
of interactions between long waves and short waves.
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Equations (9) and (10) are general Davey—
Stewartson (DS) equations, which appear also in
fluid physics, nonlinear optics, lattice dynamics, and
plasma physics, 12715 and have generated much inter-
est in recent years.[le]

We now investigate the 2D soliton solutions of
the DS Egs. (9) and (10). Using the transformation
oAy _ ik ),

)

= s, and A = €
o€ o104 (azﬁ4

Egs. (9) and (10) can be rewritten in the following
form

9%s 9%s 0?2

_ 4 2
oz'?  oy'? + 6w'2(|u‘ )
Ou 0%*u 0%

2 —
1@+m+w+2|u| u + su = R[u],

—0, (11)

e — 1), ¥ = Ky, ' =

where ' = (k*/\/a1)(c,

82
(B1k*/ay)t and R[u] = (1 — nl)—ay,2 +2(1 — ko) |ul?
2
with k; = 1 and ko = 041,33-
1 azBy

For an arbitrary value of the wavenumber k, an
exact 2D soliton solution decaying in all spatial di-
rections is not available yet. However, we note that

1
for small k one has 1 — k; = ——k? + —k* —
602 18104
6 8 _ 2 4
54—6k +O(k ) and ]. — Ry = 73?]? 18c4k +

10826 kS + O(k®), thus R[u] is a small quantity pro-

portional to k2. In this case, one can take R[u] as a
perturbation. As the first step we neglect R[u| here.
The effect of nonvanishing R[u] will be considered in
the future work.l'”l Then Eq. (12) is simplified as

Ou  0%u  9%u 9
1@+m+w+2|u|u+su=0. (13)
Egs. (11) and (13) are standard type-I Davey-
Stewartson (DSI) equations. They are completely in-
tegrable and can be solved exactly by the inverse scat-
tering transform. One of remarkable properties of the
DSI equations is that they allow dromion solutions
decaying in all spatial directions.[!6]
The dromion solution of the DSI Egs. (11) and (13)

2
reads(t8l = g, s = 4—— 3 5 InF, where F' = 1+
exp(n+nf )+exp(n2+n2)+7 exp(?h +0}+n2+n3), and
G = pexp(n+mnz) with ny = (k. +ik;)z" + (2, +12)t,
n2 = (Ir +il;)y" + (wr + iwi)t', 2. = —2k.k;, w, =
—20,1;, Qi +w; = k2 + 12—k} 17 and p = |p| exp(iy,),
lp| = 2[2k,1.(y — 1)]*/2, where k,, ki, 1,1, |pl, ¢, and
~ are real integrable constants. If choosing k,.l,. > 0,
we have v = exp(2¢y), ¢y > 0. Here 2" and y”
are the orthogonal transformation of =’ and ¥/, i.e

— L(alc' +vy') and ¥y’ = %(y’ — 2'). If taking

V2

k. = \/§U7 l, = \/E)\ ()\U > 0)7 ki = \/Eaa l; = ﬁpv

2; = 2(6* — a?), one has 2, = —4ao, w, = —4\p, and
= 2(\2 — p?). Then we obtain
2 ih
" o exp(ih) (14)

nq cosh fi 4+ ng cosh fo’
_ 4(nf +n3)(0? + A\?) — 80?

5 (nq cosh fi + ny cosh f)?
+ {8n1n2[(02 + )\2) cosh f; cosh f5
— (0> — A?)sinh fi sinh f5] }
. (n1 cosh f1 4 ng cosh fo) 72, (15)
o 1/2 oy /2
where ny = (m) , Ng = (m) with

h = \/iaw// 4 \/Epy// + 2(02 + 22— g2 _pz)t/ + P

V202" — /2)\y" — 4(ac — Ap)t' and fo =
V202" 4+ /20y" — 4(ac + Ap)t’ + ¢.,. Obviously, the
expression of u in Eq.(14) denotes a localized enve-
lope function decaying in all spatial directions, called

dromion.*®! From (14) we know that the dromion has
20

(07 + 7)1 72
dinate system, at time t’ it locates at the position

4
da —pt'— Py ) Hence the

nmo N 2 Py _rr
(wvy)_<\/§t 2\/507\/5 2\/5)\

dromion has a constant velocity V4 = (

an amplitude and, in the Oz"y" coor-

4 4
i )
The mean field component s consists of two
interacting plane solitons with each plane soli-
ton decaying in its travelling direction. It is
easy to show that s has the following asymp-
totic form s|pr_on = 4)\2sech? AV2y" — 4pt!),
Slerstoo = 4NZsech’A(V2y" — 4pt) + ¢,
8|y 0o = 402sech? 0 (v/22" — 4at'), and |y 4o =
402sech?[o(v/22" — 4at') + ¢,]. Thus in the Ozy"
coordinate system the plane soliton with the am-
plitude 4\? (A-soliton) travels with the velocity

4p
Vi = (0, —), while the plane soliton with the
A V2 p
amplitude 402 (o-soliton) travels with the velocity
4a
V,= (—,0). There is a cross region (correspond-
7 gion ( p

ing to an oblique collision between the plane solitons)
where a new plane soliton, i.e., a Mach stem, ap-
pears. If assuming that both a and p are positive
with @ > p, one can assign z” = +4oo, ¥y’ = +oo
as the region of “before collision”
y"" = —oo as the region of “after collision.” The phase

shift (i.e. position shift) for each plane soliton due to

Lia B L In~y
V22 212
(for A-soliton) and A, = — L]

L | f
Vo —2\/50 n~y (for
o-soliton). Therefore, both phase-shifts are negative.
We note that the centre-point of the cross region of
two plane solitons is just the position of the dromion
and its motional velocity is also V3. Thus the dromion

and z"” = —oo,

the collision is given by Ay = —
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rides exactly on the cross-point of the two plane soli-
tons and travels with the common velocity V4. From
this result we see that the dromion, which represents
the high-frequency component of the excitation, can
be taken as being driven by the “truck,” i.e., the
long-wavelength (low-frequency) component denoted
by two plane solitons.

Now we give the explicit expression for the or-
der parameter when the dromion excitation presented
above is created. At the leading order approximation
we obtain

1
¥ = P(z,y,t)exp ( —iut — 522 + iso(fﬁayat))a (16)

where

sin @ )

P t) = 1—- B
(,9,1) u0< 0 cosh f1 + ny cosh fo (’17)

_ b1
7o 7\/061,3
+—( 161 )1/2k4

o234

kQ-DO( r,Y, )

40 cos @
ny cosh fi + no cosh fo’

(18)

2

k
with @ = {k—i—(a—p)
Va1

}x + (a + p)k?y + {2(02 +

A2 —a? — 2)ék4—(a— )e k—2}t+ f
p o p g\/a—1 Pps J1
2 2
(c+A) kalac—l—(a—/\)kzy— {(U—i—/\)cg—l +4(ac —
k2
) S = (0 = N (o DR

k.2
{(0‘ - Ae g\/_
4By \1/2 KD
40( ) .
asf4 Vk2 + 4c?

Do ={oexp(m + n7)[1 + v exp(n2 + n3)]
+ Xexp(nz +m3)[1 + vexp(n + n7)]}

[T+ exp(m +n7) + exp(nz +n3)
—1

+ 4(ac + )\p) 2 k4}t + ¢, and By =

The function Dy is given by

(19)

jz_lm—l—ka—[ cg+4 & }t}

+yexp(m + 0} +n2 +03)]

with n1+n7 = 20’{

k2 k2
and +*:2)\{— x+k2+{ c
72 N2 \/a_l Yy \/04_1 g
4pﬁk4} t}. From the expression (17) we see that the
g

excitation is a grey dromion created from the back-
ground (the ground-state condensate). The parameter
By characterizes its greyness. The phase correction of
), includes
two parts. The first part is a mean flow (represented

the order parameter, i.e., ¢ given by Eq. (18

by Dg) describing an oblique interaction of two plane

kinks.
nentially in all spatial directions.

We have investigated the dynamics of (2+1)D
weak nonlinear matter-wave pulses in a disk-shaped
BEC. By means of a method of multiple scales,
the Davey—Stewartson equations, which describe the
time evolution of an envelope superposed by short-
wavelength collective modes and a long-wavelength
mean field generated from the self-interaction of the
short-wavelength collective modes, have been derived
from the order parameter equation of the condensate.
Our results show that the (2+1)-D nonlinear local-
ized structures, i.e., dark dromions, may be excited in
the BEC with a disk-shaped trap for repulsive atom—
atom interactions. We note that disk-shaped traps
have been used to realize the first BEC in 199518
and observe linear excitations lately.'¥) We hope the
results given above can be used to guide new experi-
mental findings of high-D solutions in BECs.

The author is grateful to Jacob Szeftel for warm
hospitality received at LPTMC, Université Paris-VII,
where part of this work was carried out.

The second part is a dromion decaying expo-
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