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We present a scheme for obtaining entangled photons and quantum phase gates in a room-temperature four-state
tripod-type atomic system with two-mode active Raman gain (ARG). We analyze the linear and nonlinear
optical responses of this ARG system and show that the scheme is fundamentally different from those based
on electromagnetically induced transparency and hence can avoid significant probe-field absorption as well as
a temperature-related Doppler effect. We demonstrate that highly entangled photon pairs can be produced and
rapidly responding polarization qubit phase gates can be constructed based on the unique features of the enhanced
cross-phase-modulation and superluminal probe-field propagation of the system.
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I. INTRODUCTION

Efficient schemes for producing entangled photons and
constructing all-optical quantum gates are very important in
optical quantum-information processing and computation [1].
Toward this end, a significant suppression of optical absorption
and a giant enhancement of Kerr nonlinearity are crucial.
However, in a conventional medium this cannot be efficiently
implemented because optical fields far away from atomic
resonance are used to avoid large optical absorption, and hence
the Kerr nonlinearity of the system is usually very weak.

In recent years, much attention has been paid to the
study of electromagnetically induced transparency (EIT) in
resonant atomic systems [2,3]. The wave propagation in EIT
media possesses many striking features, such as the large
suppression of optical absorption, the significant reduction of
group velocity, and the giant enhancement of Kerr nonlinearity
[2]. Based on these features, many EIT-based applications,
including optical quantum memory [4], highly efficient multi-
wave mixing [2], optical atomic clocks [5–7], and slow-light
solitons [8–11], have been studied intensively. Moreover,
EIT-based schemes for producing entangled photons [12–14]
and polarization qubit quantum phase gates (QPGs) [15–18]
have also been proposed. However, the EIT-based schemes
have some inherent drawbacks, such as the probe attenuation
and spreading at room temperature and the long response
time due to the nature of ultraslow propagation [19]. These
drawbacks impede the potential applications of EIT media for
rapidly responding all-optical devices at room temperature.

In this work, we propose a scheme to realize highly efficient
entangled photons and rapidly responding polarization QPGs
in a resonant atomic system. The scheme is based on active
Raman gain (ARG) (or gain-assisted) configurations, which
were demonstrated to be able to produce stable superluminal
propagations of optical waves [20–25]. Contrary to the EIT-
based schemes in which the probe field operates in an
absorption mode, the key idea of the ARG-based scheme is that
the probe field operates in a stimulated Raman emission mode.
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Therefore, the ARG-based scheme can avoid being affected by
a temperature-related Doppler effect and significant probe-
field attenuation or distortion. Recently, it was shown by
Deng et al. [26,27] that large and rapidly responding cross-
Kerr effects are possible in ARG-based media. In addition,
superluminal optical solitons are also predicted in such systems
[28,29]. The system we suggest here is a four-state tripod-type
atomic system with a two-mode pump field and two weak
fields. We prove that the unique features of the present system
can be used to produce highly entangled photon pairs and
implement rapidly responding polarization QPGs. Contrary to
the entangled photons and QPGs in EIT media [15–18], the
present ARG scheme has the following advantages: (i) It is able
to eliminate the significant probe attenuation and distortion
induced by a temperature-related Doppler effect, and hence we
can produce highly entangled photons and implement QPGs
with high reliability at room temperature. (ii) It allows superlu-
minal wave propagation, and hence one can implement QPGs
with a very rapid response. The results presented in this work
may be useful for guiding related experiments and facilitating
practical applications in quantum-information science [30].

The paper is organized as follows. In the next section, we
give a description of the model under study and present the
expressions of electric susceptibilities and the group velocity
of the probe and signal fields. In Sec. III, we describe a method
to produce entangled superluminal photons and construct
polarization QPGs based on the present ARG system. In the
final section, we provide a simple discussion on temperature-
related Doppler effect and quantum noise. The main results of
our research are also summarized.

II. THE MODEL AND LINEAR AND NONLINEAR
SUSCEPTIBILITIES

We start by considering a lifetime-broadened four-level
tripod-type atomic gas interacting with a strong continuous-
wave two-mode pump laser field (with electric fields EP 1 and
EP 2) and two weak, pulsed laser (probe and signal) fields (with
electric fields Ep and Es), as shown in Fig. 1. The pump fields
EP 1 and EP 2 are of π polarization and couple the ground state
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FIG. 1. (Color online) The energy levels |l〉 (l = 1–4) and
excitation scheme of the lifetime-broadened four-state tripod-type
atomic system interacting with a strong continuous-wave two-mode
pump laser field (with electric fields EP 1 and EP 2) and two weak,
pulsed (probe and signal) fields (with electric fields Ep and Es).
EP 1 and EP 2 are of π polarization, while Ep (Es) is of σ+ (σ−)
polarization, and δ1, δp , δs , and � are detunings. The inset shows the
possible geometry of the experimental set.

|1〉 to the excited state |2〉 with large one-photon detunings δ1

and δ1 + � (|�| � |δ1|), respectively. The probe (signal) field
Ep (Es) is of σ+ (σ−) polarization and couples the excited
state |2〉 to the hyperfine state |3〉 (|4〉) with a two-photon
detuning δp (δs). The system contains two Raman resonances
due to the two-mode pump field for each weak field. Our
scheme can be realized by a specific implementation using the
D1 line of 87Rb, where a homogeneous magnetic field parallel
to the laser propagation direction is applied to encode binary
information and avoid the undesirable couplings. A possible
geometry of experimental arrangement is suggested in the inset
of the figure. Note that the system we are considering here is
a direct extension (by adding a new, weak signal field) of that
used by Wang et al. [22] for the remarkable observation of
stable, superluminal light propagation in an ARG system.

The evolution equations for the atomic probability ampli-
tudes al(t) (l = 1–4) are

ȧ1 = γ1

2
a1 + i�∗

P 1e
iδ1t a2 + i�∗

P 2e
i(δ1+�)t a2, (1a)

ȧ2 = −γ2

2
a2 + i�P 1e

−iδ1t a1 + i�P 2e
−i(δ1+�)t a1

+ i�pe−i(δ1+δp)t a3 + i�se
−i(δ1+δs )t a4, (1b)

ȧ3 = −γ3

2
a3 + i�∗

pei(δ1+δp)t a2, (1c)

ȧ4 = −γ4

2
a4 + i�∗

s e
i(δ1+δs )t a2, (1d)

where �Pn = −D21EPn/(2h̄) (n = 1, 2), �p = −D23Ep/(2h̄),
and �s = −D24Es/(2h̄) are half-Rabi frequencies for |1〉 ↔
|2〉, |3〉 ↔ |2〉, and |4〉 ↔ |2〉 transitions, with relevant electric-
dipole moments D21, D23, and D24 and electric-field envelopes

EPn, Ep, and Es , respectively. The detunings are defined by
δ1 = ω21 − ωP 1, � = ω21 − ωP 2 − δ1, δp = ω23 − ωp − δ1,
and δs = ω23 − ωs − δ1 (see Fig. 1). The variable γ1 denotes
the gain of state |1〉 for describing the effect of atoms going
back to the ground state before being excited again, and γl

(l = 2–4) denotes the decay rates of state |l〉 for describing
the effects of both spontaneous emission and dephasing. In
the present work, we are interested in a closed system, that
is, there is no decay to levels outside the system we study,
and hence γ1 can be determined by the decay rates of higher
states γl (l = 2–4) through the conservation of particle number∑4

l=1 |al|2 = 1 [see Eq. (3)]. Notice that here we employ the
amplitude variable approach for the description of the motion
of atoms, and γl is introduced in a phenomenological manner.
A complete description including spontaneous emission and
dephasing can be obtained by a density-matrix equation
approach. However, for the ARG-based coherent atomic
systems, two approaches are equivalent.

In order to investigate the propagation of the probe and
signal fields, Eqs. (1) must be solved simultaneously with the
Maxwell equation. With the electric field defined by Ej =
Ej exp[i(kj − ωj t)] + c.c., we obtain

i

(
∂

∂z
+ 1

v
j
g

∂

∂t

)
Ej + ωj

2c
χjEj = 0 (j = p, s) (2)

under the slowly varying amplitude approximation, where v
j
g is

the group velocity, generally defined as v
j
g = c/(1 + n

j
g), with

n
j
g = Re(χj )/2 + (ωj/2)[∂ Re(χj )/∂ω]|ω=ωj

being the group
index. The susceptibilities of the two weak fields are defined
by χp,s = NaD0a2a

∗
3,4/(ε0Ep,s) (D23 � D24 = D0), whereNa

is the atomic concentration.
We assume that atoms are initially populated in the ground

state |1〉. For large one-photon detunings δ1 and δ1 + �, the
ground-state depletion is not significant, that is, a1 � 1. How-
ever, in order to take into account the nonlinear effect, we need
to consider the higher-order contribution of a1, which can be
obtained by using the condition

∑4
i=1 |ai |2 = 1. Meanwhile,

we assume that the typical temporal duration of the probe and
signal fields is long enough so that we can solve the equa-
tions adiabatically. With these considerations, we obtain the
expressions of γ1 and the electric susceptibilities of the system,

γ1 = γ2(G1 + G2) + γ

(
G1

δ2
2

+ G2

(δ2 − �)2

)
×(|�p|2 + |�s |2)

(3)

and

χ (ωj ) � χ
(1)
j + χ

(3,s)
j |Ej |2 + χ

(3,c)
j |Ej ′ |2, (4)

with j, j ′ = p, s (j �= j ′), and

χ
(1)
j � −κ

(
G1

δ2 − iγ /2
+ G2

δ2 − � − iγ /2

)
, (5a)

χ
(3,s)
j = χ

(3,c)
j � κ ′

(
G1

δ2 − iγ /2
+ G2

δ2 − � − iγ /2

)

×
(

G1

δ2
2

+ G2

(δ2 − �)2

)
. (5b)
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Here, χ
(1)
j , χ

(3,s)
j , and χ

(3,c)
j determine the linear,

self-, and cross-Kerr nonlinear responses of the sys-
tem. The constants in (3) and (5) are defined by G1 =
|�P 1|2/δ2

1, G2 = |�P 2|2/(δ1 + �)2, κ = Na|D2|2/(h̄ε0), and
κ ′ = Na|D2|4/(h̄3ε0). We should also mention that in order
to obtain simplified expressions of γ1 [i.e., Eq. (3)] and third-
order susceptibility [i.e., Eq. (5b)], we have taken δp = δs = δ2

and γ3 � γ4 = γ and used the conditions γ 2
2 � δ2

1, γ 2 � δ2
2,

γ 2 � (δ2 − �)2, and G1,2 � 1. The real and imaginary parts
of χ

(1)
j denote the phase shift per unit length and absorption

or gain, respectively. From the expression of Eq. (5b), we see
that the linear susceptibility for both the probe and signal fields
has two Raman resonances, which contribute from two pump
fields. If δ2 = �/2 and the intensities of the two pump fields
are well adjusted so that G1 = G2 = G, one has Re(χ (1)

j ) = 0,
and hence a gain-dependent linear phase can be completely
removed [26]. In this case, 2 Im(χ (1)

j ) � −8κGγ/�2 describes
the intensity gain acquired by two weak fields. This is
fundamentally different from all EIT-based systems, which are
inherently absorptive. The previous choice of two-mode pump
intensities and two-photon detuning also yields Re(χ (3)

j ) = 0
and 2Im(χ (3)

j ) � 64κ ′G2γ /�4, that is, a zero nonlinear phase
shift and a nonzero nonlinear intensity absorption. There-
fore, in order to obtain a nonzero nonlinear phase shift,
we need to slightly disturb the conditions δ2 = �/2 or
G1 = G2 = G.

In Fig. 2, we show the results of direct simulations of
Eqs. (1) with a set of practical parameters given in the caption.
The initial conditions are a1 = 1 and a2 = a3 = a4 = 0. The
dependence of atomic probability amplitudes al (l = 1–4)
and quantity

∑4
i=1 |ai |2 on time are illustrated. We can see

that the condition
∑4

i=1 |ai |2 = 1 is satisfied in a rather long
time.

In Fig. 3(a) [Fig. 3(b)], we show the curves of Re(χ (1)
j )

[−Im(χ (1)
j )] and Re(χ (3)

j ) [−Im(χ (3)
j )] versus δ2 with a set

of practical parameters given in the caption [31]. A gain
doublet structure in the spectrum can be apparently observed
[see panel (b)], where a gain minimum can be acquired at
δ2 = �/2. Thus, when working near the gain minimum within
the hole, a rapid increase of light intensity appearing in the
ARG system can be effectively avoided. In Fig. 3(c), we
show the curves of v

j
g/c versus δ2. The group velocity is

negative (with a small absolute value) corresponding to the
superluminal propagation.

Now we present the expressions of group velocities for both
weak fields, which are defined by v

j
g = c/(1 + n

j
g) (j = p,s).

As we know, the group velocities of two light pulses must
be comparable in order to achieve an effective cross-phase-
modulation (CPM) [12]. In our system, the group indexes of
the probe and signal fields are given by

nj
g � −κωj

2

(
G1

δ2
2

+ G2

(δ2 − �)2

)
. (6)

Because in our system ωp ≈ ωs , we have v
p
g ≈ vs

g , and hence
the group-velocity matching is automatically satisfied. In
addition, since n

j
g � −1 (due to the large values of ωj ), both
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FIG. 2. The results of direct simulations of Eqs. (1) with the initial
conditions a1 = 1 and a2 = a3 = a4 = 0. (a) The curves of |a1| vs τ .
The inset shows the details for τ ∈ [0,10]. (b) The curves of |a2| vs
τ . The inset shows the details for τ ∈ [0,10]. (c) The curves of |aj |
(j = 3,4) vs τ . (d) The curves of N vs τ . Here, N ≡ ∑4

i=1 |ai |2 and
τ ≡ �P 1t . The parameters are given by γ2 = 36 MHz, γ = 10 MHz,
δ1 = 1.0 × 109 s−1, δ2 = 1.0 × 107 s−1, � = 2.0 × 107 s−1, �P 1 =
5.0 × 107 s−1, �P 2 = 5.1 × 107 s−1, and �p = �s = 1.0 × 106 s−1.
The value γ1 = 0.2 MHz is obtained by Eq. (3).

group velocities are negative; that is, the probe and signal fields
travel with superluminal propagating velocities.
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FIG. 3. (Color online) (a) The curves of Re(χ (1)
j ) (solid line) and

Re(χ (3)
j ) (dashed line) vs δ2. (b) The curves of −Im(χ (1)

j ) (solid

line) and −Im(χ (3)
j ) (dashed line) vs δ2. (c) The curve of vj

g/c

vs δ2. The parameters are given by γ2 = 36 MHz, γ = 10 MHz,
δ1 = 1.0 × 109 s−1, � = 2.0 × 107 s−1, �P 1 = 5.0 × 107 s−1, �P 2 =
5.1 × 107 s−1, Na = 1.44 × 1013 cm−3, and D0 = 2.54 × 10−27 C
cm.

III. TWO-QUBIT POLARIZATION PHASE GATES AND
HIGHLY ENTANGLED PHOTONS

The prototype of optical implementation of a two-qubit gate
is the QPG in which one qubit gets a phase shift conditional to
the other qubit state according to the transformation |i〉1|j 〉2 →
φij |i〉1|j 〉2, where i,j = 0,1 denote logical qubit bases. This
gate becomes universal when φ11 + φ00 − φ10 − φ01 �= 0 [32].

We choose two orthogonal polarization states |σ−〉 and
|σ+〉 to encode binary information for each qubit. The scheme

shown in Fig. 1 is completely implemented only if both probe
and signal fields have the “right” polarization states. When
both of the two weak fields have the “wrong” polarization
states, there is no sufficiently close excited state to which levels
|3〉 and |4〉 can couple, and hence the probe and signal fields
will only acquire the trivial vacuum phase shift φj

0 = kjL. Here
kj ≡ ωj/c (j = p,s), and L denotes the length of the medium.
When one of the two weak fields has the “wrong” polarization
state, say for a σ−-polarized probe field, there is no sufficiently
close excited state to which levels |3〉 can couple, and the
signal field is subjected to the � configuration constituted by
the |1〉, |2〉, and |4〉 levels. Thus the signal field experiences
a self-Kerr effect and acquires a nontrivial phase shift
φs

1, while the probe field acquires only a vacuum phase
shift φ

p

0 . When only the probe and the signal fields have the
“right” polarization states, they all acquire nontrivial phase
shifts φ

p

2 and φs
2, respectively.

Assume that the input probe and signal pulses can
be treated as polarized single-photon wave packets,
expressed as a superposition of the circularly polarized states,
that is, |ψ〉j = (1/

√
2)|σ−〉j + (1/

√
2)|σ+〉j (j = p,s). Here

|σ±〉j = ∫
dωξj (ω)a†

±(ω)|0〉, with ξj (ω) being a Gaussian
frequency distribution of incident wave packet centered at fre-
quency ωj . The photon field operators undergo a transforma-
tion while propagating through the atomic medium of length L,
that is, a±(ω) → a±(ω) exp{(iω/c)

∫ L

0 dzn±(ω,z)}. Assuming
n±(ω,z) (the real part of the refractive index) varies slowly
over the bandwidth of the wave packet centered at ωj , one
gets |σ±〉j → exp (−iφ

j
±)|σ±〉j , with φ

j
± = ωjn±(ωj ,z)L/c.

Thus, the truth table for a polarization two-qubit QPG using
the present configuration is given by

|σ−〉p|σ+〉s → exp
[−i

(
φ

p

0 + φs
0

)]|σ−〉p|σ+〉s , (7a)

|σ−〉p|σ−〉s → exp
[−i

(
φ

p

0 + φs
1

)]|σ−〉p|σ−〉s , (7b)

|σ+〉p|σ+〉s → exp
[−i

(
φ

p

1 + φs
0

)]|σ+〉p|σ+〉s , (7c)

|σ+〉p|σ−〉s → exp
[−i

(
φ

p

2 + φs
2

)]|σ+〉p|σ−〉s , (7d)

where φ
j

0 = kjL, φ
j

1 = kjL(1 + 2πχ
(1)
j ) + φ(j,s), and φ

j

2 =
φ

j

1 + φ(j,c), with

φ(j,s) = kjL
π3/2h̄2|�j |2

4|D2|2 Re
(
χ

(3,s)
j

)
, (8a)

φ(j,c) = kjL
π3/2h̄2|�j ′ |2

4|D2|2 Re
(
χ

(3,c)
j

)erf(ξjj ′)

ξjj ′
, (8b)

contributed, respectively, by self-phase-modulation (SPM) and
CPM, where ξjj ′ = √

2L(1 − v
j
g/v

j ′
g )/(τj ′v

j
g ), with τj ′ being

the width of the pulse. If group-velocity matching is satisfied,
that is, ξjj ′ → 0, erf(ξjj ′)/ξjj ′ reaches its maximum value
2/

√
π .

From Eq. (7), we can compute the degree of entanglement
of the two-qubit state by using the entanglement of formation.
For an arbitrary two-qubit system, it is given by [33]

EF (C) = h

(
1 + √

1 − C2

2

)
, (9)

where h(x) = −x log2(x) − (1 − x)log2(1 − x) is Shannon’s
entropy function and C is the concurrence given by
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C(ρ̂) = max{0,λ1 − λ2 − λ3 − λ4}. Here λi’s are square roots
of eigenvalues of the matrix

ρ̂ ˜̂ρ = ρ̂σ̂ p
y ⊗ σ̂ s

y ρ̂∗σ̂ p
y ⊗ σ̂ s

y (10)

in decreasing order. The density matrix ρ̂ in Eq. (10) can be
directly obtained by using Eq. (7), the quantity ˜̂ρ (ρ̂∗) denotes
the transpose (complex conjugation) of ρ̂, and σ̂y denotes the
y component of the Pauli matrix.

Equation (7) supports a universal QPG if the conditional
phase shift [32](

φ
p

0 + φs
0

) + (
φ

p

2 + φs
2

) − (
φ

p

0 + φs
1

) − (
φ

p

1 + φs
0

)
= φ(p,c) + φ(s,c) (11)

is nonzero. From this formula, we see that only the phase shifts
due to the CPM effect contribute to the conditional phase shifts.

Now we provide a practical set of parameters corresponding
to typical values of 87Rb atoms at room temperature. The decay
rate of the lower states, that is, |3〉 (5 2S1/2, F = 2,m = −1)
and |4〉 (5 2S1/2, F = 2,m = 1), is γ = 300 Hz. The hyperfine
splitting between the lower states can be adjusted by the in-
tensity of an externally applied magnetic field. For a magnetic
field ≈340 G, we obtain the splitting ≈3.8 GHz. The decay rate
of the higher state |2〉 (5 2P1/2, F = 2,m = 0) is γ2 = 36 MHz.
The other parameters are taken the same as those used in
Fig. 2, as well as δ2 = 0.8 × 107 s−1. With the given parame-
ters, we obtain that χ

(1)
j = −0.10 × 10−2 − i0.85 × 10−7 and

χ
(3)
j = 0.34 × 10−4 + i0.28 × 10−8 cm2 V−2. We note that the

imaginary parts of the susceptibilities are much smaller than
those of the real parts due to the conditions γ2 � δ1, γ � δ2,
and δ2 �= �/2. A very small total gain effect remains after
the balance of the linear gain and nonlinear absorption. The
real parts of the third-order susceptibilities are about ∼1013

times larger than those measured for usual nonlinear optical
materials, that is, a giant enhancement of CPM can be achieved
in our system. The group velocities of both the probe and signal
fields are very well matched, with the values

vp
g ≈ vs

g = −0.94 × 10−5c (12)

corresponding to a superluminal propagation.
In Fig. 4(a), we calculated the result of the degree of

entanglement versus the propagation of the device length L.
We see that a nearly 100% degree of entanglement can be
obtained at L = 0.53 cm. The reason for acquiring such a high
degree of entanglement is due to the nonabsorption feature of
the system. Shown in Fig. 4(b) are the curves of CPM-induced
phase shifts φ(p,c) and φ(s,c) versus L. We see that a conditional
phase shift φ(p,c) + φ(s,c) up to π radians can be obtained at
L � 0.53 cm, corresponding to the point of the maximum
entanglement in Fig. 4(a). In Fig. 4(c), we show the curves of
φ(p,c) and φ(s,c) versus δ2 at L = 0.53 cm.

The probe and signal fields can have a mean amplitude of
about one photon when these beams are focused or propagate
in a tightly confined waveguide (e.g., hollow-core photonic
crystal fibers [34]). With these parameters, we obtain the
intensities of the probe (Ip) and signal (Is) fields, given by Ip ≈
Is = 0.23 × 10−6 W cm−2 when �p ≈ �s = 1.0 × 106 s−1.
We remark that the intensity of a single 800-nm photon per
nanosecond on the area of 1 µm2 is Iph = 2.5 × 10−2 W cm−2.
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FIG. 4. (Color online) (a) The degree of entanglement vs the
device length L. (b) The curves of φ(p,c) and φ(s,c) vs L. A conditional
phase shift φ(p,c) + φ(s,c) up to π radians can be obtained at L �
0.53 cm. (c) The curves of φ(p,c) and φ(s,c) vs δ2 at L = 0.53 cm. The
parameters are given in the text.

This shows that our scheme can indeed make a polarization
QPG with a π -conditional phase shift possible with single-
photon wave packets. Based on the superluminal propagating
velocities and the enhanced CPM, the probe and signal fields
acquire nontrivial nonlinear phase shifts when both of them
have the “right” polarization states in a fast response time
and a short propagation distance. This allows us to implement
a rapidly responding phase gate. For instance, if the group
velocity of the probe and signal waves is reduced 10−4c when
using the EIT-based scheme, these waves will take around
180 ns to pass the device (for L = 0.53 cm), during which
time the nonlinear phase-shifting probe and signal fields must
be present all the time. However, to acquire the same amount
of nonlinear phase shift for the probe and signal waves in the
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present ARG system, the device transient time is only about
18 ps [35].

IV. DISCUSSION AND SUMMARY

Now we briefly discuss the Doppler effect due to the atom’s
thermal motion. Actually, our results can be readily general-
ized when an atom moves with a velocity V by the replacement
δ1 → ω21 − ωP 1 + kP 1zVz, δ2 → (ωP 1 − ωp) − ω31 + (kp −
kP 1)zVz = (ωP 1 − ωs) − ω41 + (ks − kP 1)zVz (we assume all
light fields propagate along the z direction, as suggested in the
inset of Fig. 1). The Vz-dependent terms obtained are then
averaged over a given thermal velocity distribution f (Vz).
From these discussions, we see that the velocity-dependent
effect in the two-photon detunings δ2 in the copropagating case
kP 1kj > 0 is much smaller than that in the counterpropagating
case kP 1kj < 0. Consequently, the velocity-dependent effect
or the Doppler effect in the two-photon detunings can usually
be neglected compared with that in the one-photon detuning
if we choose the waves to propagate in the same direction.
Moreover, such an effect in the one-photon detuning can also
be efficiently suppressed if ω21 − ωP 1 � ωP 1zVz, which is
satisfied in our system.

The experimental demonstration of the phase gate requires
the measurement of phase shifts, which will result in errors due
to the fluctuations of light intensities and frequency detunings
of the probe and signal fields. In order to minimize the
effect of relative detuning fluctuations, one can take all lasers
tightly phase-locked to each other. The light intensity with
fluctuations of 1% will yield an error less than 2% in the phase
measurement.

We should point out that although CPM is a very promising
candidate for the design of deterministic optical quantum phase
gates, it still faces some challenges. These include (i) how to
achieve the sufficiently high single-photon intensity; (ii) how
to overcome the phase noise induced by the noninstantaneous

nonlinear response inherent in resonant atomic systems; and
(iii) how to obtain a spatially homogeneous CPM necessary for
effective entanglement between light pulses. These problems
are now actively being investigated, and some methods for
dealing with them have already been proposed [36]. On the
other hand, in the present work we have treated the probe and
signal fields in a classical way. Therefore, it would be easier
to create the entanglement of macroscopic, coherent states
rather than single-photon states. A full quantum treatment
is still necessary but is beyond the scope of the present
work.

To sum up, we have presented a scheme for obtaining
entangled photons and quantum phase gates in a room-
temperature four-state tripod-type atomic system with a two-
mode ARG. We have analyzed the linear and nonlinear optical
responses of the ARG system and shown that the scheme is
fundamentally different from those based on EIT, and hence
it can avoid significant probe-field absorption as well as a
temperature-related Doppler effect. We have demonstrated that
highly entangled photon pairs can be produced and rapidly
responding polarization qubit quantum phase gates can be
constructed based on the unique features of enhanced CPM and
superluminal probe-field propagation of the ARG system. The
method provided here can also be extended to study multiway
entanglement and multiqubit phase gates.
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