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Abstract

We propose a scheme of generating optical gap solitons in a resonant three-level atomic system via electromagnetically induced transparency.
We demonstrate, both analytically and numerically, that by means of a strong standing-wave control field the soliton with oscillating frequency
within the band gap of a weak probe field can appear. Different from conventional passive optical media, the gap soliton in such highly resonant
system can be created with very weak light intensity and can be manipulated in a controllable way.
© 2007 Elsevier B.V. All rights reserved.

PACS: 42.65.Tg; 05.45.Yv; 42.50.Gy

1. Introduction

In the past decades, considerable research activities have focused on the study of optical solitons due to their important appli-
cations in optical information processing and transmission [1,2]. Up to now, most optical solitons are produced in passive optical
media such as glass-based optical fibers, in which far-off resonance excitation schemes are generally employed in order to avoid
unmanageable optical attenuation and distortion. However, due to the lack of distinctive energy levels, the nonlinear effect in such
passive optical media is very weak, and hence a very high light intensity is required to form a soliton. In addition, the lack of
distinctive energy levels and transition selection rules also makes an active control of such optical soliton difficult.

In recent years, much attention has been paid to the investigation on the optical property of an active optical medium via
electromagnetically induced transparency (EIT) [3,4], in which an on-resonance excitation scheme is employed. Due to the quantum
interference effect induced by a control field, the wave propagation of a weak probe field in such medium display many striking
features [3,4], including a large suppression of optical absorption and a significant reduction of group velocity. Based on these
interesting features, in recent works [5–9] it has been shown that a new type of optical solitons, called ultraslow optical solitons, can
form in resonant three-level and four-level media. Such study has opened a new research direction on nonlinear wave propagation
in coherent multi-level media.

Recently, the coherent manipulation of light pulses via dynamically controlled photonic band gap in EIT media has been inves-
tigated both theoretically and experimentally [10–14]. It is widely expected that a further exploration in this direction may offer
new tools of photonic state manipulation and quantum information processing at low-light level [14]. In the present work, we
propose a scheme for the formation of an optical gap soliton in a resonant three-level atomic system via EIT technique. Different
from previous studies in Refs. [5–9], the control field used here is an optical standing-wave, which induces a periodic variation of
linear refractive index. We shall demonstrate that the oscillating frequency of the soliton found by us is within the forbidden gap
of frequency spectrum of the probe field. Notice that gap solitons in passive optical media have been studied intensively [15,16]
since the pioneer work of Chen and Mills [17]. Because our system is an active medium, the gap soliton in such system can be
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Fig. 1. Lifetime-broadened three-level atomic system interacting with a strong control field (with angular frequency ωc and Rabi frequency 2Ωc) and a weak probe
field (with angular frequency ωp and Rabi frequency 2Ωp ). FD and BD represent respectively forward and backward propagating components of the control field.
Δ3 and Δ2 are one-photon and two-photon detunings, respectively.

generated with very weak light intensity and also can be manipulated in a controllable way. Because of their robust nature, such
optical solitons may become promising candidates of well-characterized, distortion-free optical pulses and hence have potential
technological applications in optical and telecommunication engineering.

The Letter is arranged as follows. The next section gives a simple description of our three-level model. In Section 3 we derive
a set of coupled nonlinear envelope equations by using a method of multiple-scales and discuss their soliton solutions. To test our
analytical calculation, in Section 4 we present a numerical study on the gap soliton starting from Maxwell–Schrödinger equations.
Finally, the last section contains a summary and conclusion of our main results.

2. The model

The physical model we consider is a lifetime broadened three-level atomic system interacting with a weak pulsed probe field of
center angular frequency ωp (coupling |1〉 → |3〉 transition) and a strong continuous-wave control field of center angular frequency
ωc (coupling |3〉 → |2〉 transition), respectively (see Fig. 1). In particular, the control field is an optical standing wave consisting
of forward (FD) and backward (BD) propagating parts in order to provide the background periodic linear refractive index for the
probe field. The electric-field vector of the system can be written as E = ep{E+ exp[i(kpz − ωpt)] + E− exp[−i(kpz + ωpt)]} +
4ecEc cos(kcz) cos(ωct), where Ωc (Ω±) is a real constant (complex function of z and t ), kj and ej are wavevectors and polarization
directions of the probe (j = p) and control (j = c) fields, respectively. In interaction picture, the interaction Hamiltonian can be ex-
pressed in the Hilbert space spanned by the bare states |j〉 (with eigenenergy Ej , j = 1, 2, 3) under a rotating-wave approximation:

(1)Ĥ ′
1 = −h̄

[(
Ω+eikpz + Ω−e−ikpz

)|3〉〈1| + 2Ωc cos(kcz)|3〉〈2| + H.c.
]
,

where Ω+ = [(ep · p31)E+]/h̄ and Ω− = [(ep · p31)E−]/h̄ are respectively half Rabi frequencies of the probe field for the FD and
BD components, Ωc = [(ec · p32)Ec]/h̄ is the half Rabi frequency of the control field, and pij is the electric dipole matrix element
associated with the transition from |i〉 to |j〉.

The Schrödinger equation governing the motion of atomic state amplitudes Aj (j = 1,2,3) in the interaction picture reads

(2a)

(
i

∂

∂t
+ d2

)
A2 + 2A3Ωc cos (kcz) = 0,

(2b)

(
i

∂

∂t
+ d3

)
A3 + A1

[
Ω+eikpz + Ω−e−ikpz

] + 2A2Ωc cos (kcz) = 0,

with
∑3

j=1 |Aj |2 = 1. In above equations dj = Δj + iγj (j = 1,2) with Δ3 = ωp − (E3 −E1)/h̄ and Δ2 = ωp −ωc − (E2 −E1)/h̄

being one- and two-photon detunings, respectively. The parameter γj denotes the decay rate of the state |j〉.
Under a rotating-wave approximation, the Maxwell equation controlling the time evolution of the electric field E is reduced to

(3)

(
∂2

∂z2
− 1

c2

∂2

∂t2

)[
D(z)e−iωpt

] = κ0
∂2

∂t2

(
A3A

∗
1e

−iωpt
)
,

where D(z) = Ω+eikpz +Ω−e−ikpz, and κ0 = Na|p31|2/(h̄ε0c
2) is a coupling constant with Na being atomic density of the system.

Eqs. (2) and (3) are our model system employed in the following calculations.

3. Asymptotic expansion and coupled mode equations

As in usual EIT case we assume that the probe field is very weak in comparison with the control field, i.e. |Ω±| � Ωc. In
addition, we assume also that the pulse length of the probe field is large enough so that an adiabatic approximation for Eqs. (2)
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can apply. As a result we have Aj = fj (z)A1 and |A1|2 = [1 + (|f1|2 + |f2|2)]−1, with fj (z) = gj (z)D(z) (j = 2,3). Here
g2(z) = −2Ωc cos(kcz)/[4Ω2

c cos2(kcz) − d2d3] and g3(z) = d2/[4Ω2
c cos2(kcz) − d2d3]. Thus Eq. (3) can be rewritten as

(4)

(
∂2

∂z2
− 1

c2

∂2

∂t2

)[
D(z)e−iωpt

] = κ0
∂2

∂t2

{
g3D(z)

1 + (|g2|2 + |g3|)2|D(z)|2 e−iωpt

}
.

It is a nonlinear wave equation describing the spatio-temporal evolution of the probe field. Notice that, in the case of very small |Ω±|,
Eq. (4) becomes a linear one with a periodic coefficient in z. So its eigenspectrum displays forbidden gap.

We are interested in possible soliton formation in the system and hence the nonlinear effect in Eq. (4) must be take into
account. For simplicity, we consider the case of large detuning, i.e. 4Ω2

c /d2d3 = ε2A0 (ε � 1, |A0| ≈ O(1)). Then one has
g2 = ε

√
A0/(d2d3) cos (kcz)[1 + ε2A0 cos2 (kcz) + O(ε4)] and g3 = −(1/d3)[1 + ε2A0 cos2 (kcz) + O(ε4)]. We employ the pow-

erful method of multiple-scales [18] to derive the nonlinear coupled envelope equations for the FD and BD components of the
probe field. We start by making the following asymptotic expansion Ω± = ∑∞

l=1 εlΩ
(l)
± . To obtain a divergence-free solution in

high-order approximations, all quantities on the right-hand side of the asymptotic expansion must be considered as functions of the
multi-scale variables zl = εlz (l = 0, 2) and tl = εlt (l = 0, 2). Substituting such expansion into Eq. (4), we obtain a chain of linear,
but inhomogeneous equations on Ω

(l)
± , which can be solved order by order.

In the leading order, i.e. exact to O(ε), the Rabi frequencies of the forward and backward propagating components of the probe
field fulfill the equation

(5)

(
ω2

p

c2
− k2

p

)
Ω

(1)
± = κ0ω

2
p

d3
Ω

(1)
± ,

which gives kp = ωpnp/c with the linear refraction index np = √
1 − Na|p31|2/(h̄ε0d3). We see that under the condition |Δ3| � γ3,

one gets np > 1 when Δ3 < 0 and np < 1 when Δ3 > 0.

In the next order, i.e. exact to O(ε3), we obtain a set of closed coupled mode equations governing the evolution of Ω
(1)
± . They

can be written as the form

(6a)i

(
∂

∂z
+ np

c

∂

∂t

)
u = κ0ω

2
p

2d3kp

[
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2

(
u + 1

2
ve2iΔkz

)
− 1

|d3|2
(|u|2 + 2|v|2)u

]
,

(6b)i

(
− ∂

∂z
+ np

c

∂

∂t

)
v = κ0ω

2
p

2d3kp

[
B0

2

(
v + 1

2
ue−2iΔkz

)
− 1

|d3|2
(|v|2 + 2|u|2)v

]
,

when returning to original variables. Note that when obtaining Eq. (6) we have defined B0 = 4Ω2
c /(d2d3) and used the notations

u = εΩ
(1)
+ and v = εΩ

(1)
− . In particular, we have assumed Bragg resonance condition kp = kc + Δk with Δk ≈ O(ε), where a gap

of the linear spectrum is open, as shown below.
By the transformation u = U exp[i(Δkz − cf t)] and v = V exp[−i(Δkz + cf t)] with cf = cκ0ω

2
pB0/4npd3kp , the exponential

factors in Eqs. (6) can be removed. Then we have

(7a)i

(
∂

∂z
+ np

c

∂

∂t

)
U = ΔkU + κV − Γ

(|U |2 + 2|V |2)U,

(7b)i

(
− ∂

∂z
+ np

c

∂

∂t

)
V = ΔkV + κU − Γ

(|V |2 + 2|U |2)V,

where Γ = κ0ω
2
p/(2d3|d3|2kp) is the nonlinear coefficient characterizing the strength of self-phase as well as cross-phase mod-

ulations, and κ = κ0ω
2
pB0/(8d3kp) is the constant describing the coupling strength of linear interaction between the FD and BD

components of the probe field.
In linear level, Eqs. (7) admits the plane wave solution (U,V ) = (U0,V0) exp[i(Kz−ωt)]. The linear dispersion relation displays

two branches

(8)ω = ω± = c

np

[
Δk ±

√
κ2 + K2

]
,

which has been show in Fig. 2 for Δj � γj (j = 2,3). We see that there is a frequency gap between the two dispersion branches.
The gap width is given by

(9)Δωgap = ω+|K=0 − ω−|K=0 = 2cκ

np

.

Notice that since κ ∼ B0 ∼ Ω2
c , the gap width can be changed very easily by just tuning the amplitude of the control field.

Now we turn to consider the soliton solution of the full nonlinear equations (7a) and (7b). In general, these equations admit no
soliton solution because their coefficients are complex. However, due to the EIT effect induced by the strong control field, it can be
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Fig. 2. Linear dispersion relation of the couple-mode equations with wavevector K and frequency ω. The coupling constant is chosen as κ = 6.1 × 10−4 cm−1.

shown that the imaginary parts of these coefficients are much less than their real parts (see a practical numerical example given in
the next section) and hence can be taken as a small perturbation. When neglecting such perturbation,1 Eqs. (7a) and (7b) admit the
following coupled soliton solution [19]

(10a)U = αF+(z, t)eiη(θ),

(10b)V = αF−(z, t)eiη(θ),

(10c)eiη(θ) =
(

−e2θ + e∓iδ0

e2θ + e±iδ0

)2v0/(3−v2
0)

,

where θ = γ0κr sin δ0(z−v0ct/npr) and ψ = γ0κr cos δ0(v0z−ct/npr). F± are the coupled soliton solution of the massive Thirring
model [20], having the form

(11a)F+ = ±
(

∓ κr

2Γr

)1/2 1

ρ0
sin δ0e

±iψ sech

(
θ ∓ iδ0

2

)
,

(11b)F− = −
(

∓ κr

2Γr

)1/2

ρ0 sin δ0e
±iψ sech

(
θ ± iδ0

2

)
.

In Eqs. (10) and (11) we have defined the real parameters α0 =
√

(2 − 2v2
0)/(3 − v2

0) and γ0 = 1/

√
1 − v2

0 with v0 = (1 −ρ4
0)/(1 +

ρ4
0). ρ0 and δ0 are two free parameters (ρ0 is dimensionless and 0 < δ0 < π ) determining the propagating velocity and temporal

width of the soliton, respectively. The quantities κr , npr , Γr are the real parts of κ , np , and Γ , respectively. The signs in Eqs. (11)
are determined by those of the linear and nonlinear coupling coefficients. With such coupled soliton solution the Rabi frequency
of the probe field reads D(z) ≡ Ωp(z, t) = Ω+eikpz + Ω−e−ikpz = U exp{i[(kp + Δk)z − cf t]} + V exp{−i[(kp + Δk)z + cf t]},
with U and V given by Eqs. (10a) and (10b).

4. Numerical simulation

We consider that the control and probe fields propagate in a gas cell filled with cold alkali atoms (e.g. 87Rb or 23Na) of density
Na = 1.0 ∼ 1.6 × 1010 cm−3. The decay rates (detunings) of the states |2〉 and |3〉 are γ2 = 1.0 × 104 s−1 (Δ2 = 1.0 × 108 s−1)
and γ3 = 6.0 × 106 s−1 (Δ3 = −1.0 × 109 s−1), respectively. With these realistic parameters, we obtain κ = −(6.09 + 0.073i) ×
10−4 cm−1, np = 1.0+4.6×10−16i, and Γ = −(6.09+0.036i)×10−7 cm−1. We see that the imaginary parts of these parameters
are indeed much smaller than their corresponding real parts. The physical reason of such small imaginary parts is due to the quantum
destructive interference effect induced by the control field (i.e. EIT effect). It is easy to show that soliton solution obtained in the
last section corresponds to K = Ks ≡ γrκr cos δ0v0, with the oscillating frequency ωs = γrκr cos δ0c/npr . With the choice of our
parameters, we get |Ks | � 0 and

(12)|ωs | = 0.49|Δωgap|.
Consequently, the oscillating frequency of the soliton falls in the forbidden gap and hence it is a gap soliton.

With this result one can easily calculate the maximum mean peak power of the gap soliton, which reads P̄max = 9.01×10−3 mW.
This is drastically different from the conventional soliton generation technique using fibers or waveguides where picosecond or
femtosecond laser pulses are needed to reach very high peak power to bring out the nonlinear effect required for soliton formation.

1 The perturbation contributed by the imaginary parts in the coefficients of Eqs. (7a) and (7b) will be considered by numerical simulation presented in Section 4.
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Fig. 3. The evolution of a gap soliton with the parameters ρ = 0.90 and δ = π/13. The Rabi frequency of the control field and the atomic density are chosen as
Ωc = 1.0 × 107 s−1 and Na = 1.6 × 1010 cm−3. The black line denotes the initial soliton probe pulse, while the blue and red lines indicate its evolution after
propagating for 3.0 cm and 5.0 cm, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
Letter.)

(a) (b)

Fig. 4. The evolution of the gap soliton for two set of system parameters. Panel (a): ρ = 0.2, δ = π/4.0, and Na = 1.0 × 1010 cm−3. Panel (b): ρ = 0.2, δ = π/4.0,
and Na = 1.6 × 1010 cm−3. In the figure the black line represents the initial soliton, and the blue line and red line are the results after the soliton propagates
z = 3.0 cm and z = 5.0 cm, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

In order to test the stability of the soliton solution given above, we present a numerical simulation starting directly from the
Maxwell–Schrödinger equations (2) and (3) by taking the analytical result (10) and (11) as an initial condition. In Fig. 3 we
have shown the evolution of an initial gap soliton, by using the parameters ρ0 = 0.9, δ0 = π/13, Ωc = 1.0 × 107 s−1 and Na =
1.6 × 1010 cm−3. The black line indicates the initial soliton probe pulse while the blue and red lines indicate its evolution when
propagating for 3.0 cm and 5.0 cm, respectively. We see that the soliton keeps its shape after propagating for a long distance without
obvious deformation. Although the EIT effect suppress largely the absorption of the probe field, the absorption is, however, not zero
and hence a small damping of the soliton amplitude occurs.

Shown in Fig. 4 is the soliton evolution with smaller pulse length, i.e. with smaller ρ0. In Fig. 4(a) we choose the system
parameters as ρ0 = 0.2, δ0 = π/4.0, Ωc = 1.0 × 107 s−1 and Na = 1.0 × 1010 cm−3. We see that the soliton in this case is still
fairly stable and has smaller damping in comparison with the soliton in Fig. 3. Decreasing the pulse length further, we expect
high-order dispersion effect will take a significant role. This is just the case found in our numerical simulation. In Fig. 4(b) we have
plotted the soliton evolution by increasing the atomic density up to Na = 1.6 × 1010 cm−3 for narrowing the initial pulse. We see
that an obvious deformation of the soliton with a decreasing of its amplitude and a radiation of some “phonons” in its tail occurs.

5. Conclusion

We have proposed a scheme for creating an optical gap soliton in a resonant three-level atomic system via electromagnetically
induced transparency. By means of the method of multiple scales, we have derived a set of coupled mode equations that govern
the evolution of the forward and backward components of the probe field. The coupled soliton solution has been discussed and
their stability has been tested by using a numerical simulation. We have demonstrated that by manipulating system parameters the
oscillating frequency of the soliton can be indeed within the band gap of a weak probe field and hence gap soliton can appear in such
highly-resonant physical system. Different from conventional passive optical media, the gap soliton found here can be created with
very weak light intensity and can be manipulated in a controllable way. Because the gap solitons found here are well-characterized,
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distortion-free nonlinear optical pulses, they may have promising technological applications in optical and telecommunication
engineering.
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