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We make a detailed study on the dynamics of gain-assisted superluminal optical solitons in a three-state
active-Raman-gain medium at room temperature. Using a method of multiple-scales we derive a high-order
nonlinear Schrödinger equation with correction terms contributed from differential gain, nonlinear dispersion,
delay in nonlinear refractive index, and third-order dispersion of the system. We show that for a long pulse with
realistic physical parameters the high-order correction terms are small and can be taken as perturbations.
However, for a shorter pulse these higher-order correction terms are significant and hence must be treated on
equal footing as the terms in the nonlinear Schrödinger equation. We provide exact soliton solutions of the
higher-order nonlinear Schrödinger equation and demonstrate that such solitons have still superluminal propa-
gating velocity and can be generated at very low light intensity.
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I. INTRODUCTION

Optical solitons have been the subject of intensive theo-
retical and experimental studies for many years. These spe-
cial types of optical wave packets appearing as the result of
interplay between dispersion and nonlinearity are of special
interest because of their important applications for informa-
tion processing and transmission �1–4�. Up to now, most
optical solitons are produced in passive optical media such as
glass-based optical fibers, in which far-off resonance excita-
tion schemes are generally employed in order to avoid un-
manageable optical attenuation and distortion. As a result the
nonlinear effect in such passive optical media is very weak,
and hence to form a soliton a very high light intensity is
required.

In recent years, much interest has focused on the wave
propagation in highly resonant optical media via electromag-
netically induced transparency �EIT� �5�. Due to the quantum
interference effect induced by a control field, the wave
propagation of a weak optical field in such medium displays
many striking features �6�, including a large suppression of
optical absorption, a significant reduction of group velocity,
and a giant enhancement of Kerr nonlinearity, etc. Based on
these features, it has been shown that ultraslow optical soli-
tons can form and propagate in various EIT media �7–10�.
However, the weakly driven EIT-based scheme �i.e., the
probe field is much smaller than the decay rate of the upper
excited state and also much smaller than the control field�
has drawbacks of large pulse spreading at room temperature
and very long response time due to ultraslow propagation
�11,12�.

Since the work of Chiao and co-workers �13,14�, the
wave propagation in resonant optical media with an active-

Raman gain �ARG� have attracted considerable attention
both theoretically and experimentally �15–30�. Contrary to
the EIT-based scheme which is absorptive in nature, the cen-
tral idea of the ARG scheme is that the signal field operates
in the stimulated Raman emission mode, and hence the at-
tenuation of the signal field can be completely eliminated
and a stable superluminal propagation of the signal pulse can
be realized �13–30�. In addition, it has been shown recently
that a gain-assisted large and rapidly responding Kerr effect
can also be obtained in a warm atomic vapor under the ARG
scheme working at room temperature �11�.

In a recent work, gain-assisted superluminal optical soli-
tons in a three-level room-temperature ARG medium has
been predicted �31�. A nonlinear Schrödinger �NLS� equation
governing the motion of the envelope of signal optical field
is derived. However, the calculation presented in Ref. �31� is
based on the assumption of weak dispersion and weak non-
linearity and hence only low-order approximations of
Maxwell-Schrödinger equations are taken into account. Ob-
viously, for stronger dispersion and strong nonlinearity, or a
larger propagating distance of the signal pulse, the results
given in Ref. �31� are invalid and hence a new theoretical
approach is needed.

In this work we present a detailed study of the propaga-
tion dynamics of a superluminal optical soliton in a three-
state ARG system working at room temperature. By general-
izing the method of multiple scales used in Ref. �31� we
consider high-order approximations of Maxwell-Schrödinger
equations and derive a high-order NLS equation for signal-
field envelope. The high-order NLS equation includes the
NLS equation obtained in Ref. �31� but with additional cor-
rection terms coming from differential gain, nonlinear dis-
persion, delay in nonlinear refractive index, and third-order
dispersion of the system, which are absent in Ref. �31�. Fur-
thermore, we show that for a realistic set of system param-
eters and for a long signal pulse these correction terms are
indeed small and hence can be taken as perturbations. How-
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ever, for a shorter signal pulse these correction terms are
significant and hence must be treated on the same footing as
the terms in the NLS equation. We shall provide exact soliton
solutions of the higher-order NLS equation, and demonstrate
that such solitons have still a superluminal propagating ve-
locity and can be produced at very low light intensity.

The paper is arranged as follows. In Sec. II, we give a
simple introduction of the three-level ARG system under
study. In Sec. III we derive the high-order NLS equation
governing the motion of the envelope of the signal field. In
Sec. IV, we present the gain-assisted superluminal optical
soliton solutions for different pulse durations and discuss
their stability. Finally, in Sec. IV we summarize the main
results of our study.

II. MODEL

The model under consideration is a three-level atomic
system working at room temperature, which interacts with a
weak, pulsed signal field �with pulse length �0 at the en-
trance� and a strong, continuous-wave pump field �see Fig.
1�. The pump field �with center angular frequency �P� and
the signal field �with angular frequency �S� couple the tran-
sitions �1�→ �3� and �2�→ �3�, respectively. The electric-field
vector of the system reads E=�l=P,SelEl exp�i�kl ·r−�lt��
+c.c., where el �kl� is the polarization direction �wave vec-
tor� of the electric field component with the envelope El. The

Hamiltonian of the system is given by Ĥ= Ĥ0+ Ĥ�, where Ĥ0

describes a free atom and Ĥ� describes the interaction be-
tween the atom and the electric field, respectively. In the
Schrödinger picture, the state vector of the system is ���t��
=� j=1

3 aj�j�, where �j� is the eigenvector of Ĥ0 and aj is the
probability amplitude of the state �j�. Under electric-dipole
and rotating-wave approximations, the Hamiltonian is given
by

Ĥ = �
j=1

3

�� j�j��j� − ���Pei�kP·r−�Pt��3��1�

+ �Sei�kS·r−�St��3��2� + H.c.� , �1�

where �� j is the energy of the state �j�, �P�S�
= �eP�S� ·p31�32��EP�S� /� is the one-half Rabi frequency of the

pump �signal� field, with pij being the electric-dipole matrix
element associated with the transition from �j� to �i�, and H.c.
represents Hermitian conjugate.

In order to investigate the time evolution of the system, it
is more convenient to employ an interaction picture. We
make the transformation aj =Aj exp�i�k j ·r−� jt−� jt��, with
k1=0 ,k3=kP ,k2=kP−kS. Then, the Hamiltonian in the in-
teraction picture reads as

Ĥint = − ��
j=1

3

� j�j��j� − ���P�3��1� + �S�3��2� + H.c.� ,

�2�

where �3=�P− ��3−�1� and �2=�P−�S− ��2−�1� are the
one- and two-photon detunings, respectively.

Using the Schrödinger equation i�����t��int /�t

= Ĥint���t��int, it is easy to obtain the equations for Aj,

	i
�

�t
+ d2
A2 + �

S
*A3 = 0, �3a�

	i
�

�t
+ d3
A3 + �PA1 + �SA2 = 0, �3b�

with �A1�2+ �A2�2+ �A3�2=1. Here we have defined d2,3=�2,3
+ i�2,3 with � j being the decay rates, introduced to represent
the finite lifetime of the state �j�.

The electric-field evolution is controlled by the Maxwell
equation �2E− �1 /c2��2E /�t2= �1 /�0c2��2P /�t2, where

P = N„p13A3A1
* exp�i�k3 · r − �Pt��

+ p23A3A2
* exp�i��k3 − k2� · r − �St�� + c.c.… .

Under a slowly varying envelope approximation, the Max-
well equation is reduced to

i	 �

�z
+

1

c

�

�t

�S + 	A3A2

* = 0, �4�

where 	=N�S�eS ·p23�2 / �2�0�c� with N being the atomic
concentration. For simplicity, we have assumed kS=ezkS.

We assume that atoms are initially populated in the state
�1�. Since the strong pump field couples the ground state, we
require a large one-photon detuning. The role of this large
one-photon detuning is twofold: �1� It keeps the gain at a
manageable level and �2� it substantially reduces the compli-
cation due to Doppler broadening effect. The first feature
provides an adjustable control of the gain whereas the second
feature is important for room-temperature operation.

The lowest-order solution of Eqs. �3� is given by A1
�0�

=1 /1+ ��P /d3�2, A2
�0�=0, and A3

�0�=−�P / �d3
1+ ��P /d3�2�.

The linear dispersion relation of the system is given by

K��� =
�

c
+

	�A3
�0��2

� − d2
* . �5�

K��� can be Taylor expanded around the center frequency of
the probe field �corresponding to �=0�, i.e., K���=K0

+K1�+ 1
2K2�2+¯, where the coefficients Kj

= ��� jK��� /�� j���=0 �j=0,1 ,2 , . . . � can be obtained from Eq.

1
2

3

2�

3�

P� S�

FIG. 1. �Color online� Excitation scheme of the three-state
atomic system interacting with a strong, continuous-wave pump
field with the one-half Rabi frequency �P and a weak, pulsed signal
field with the one-half Rabi frequency �S. �3 and �2 are one-
photon and two-photon detunings, respectively.
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�5� explicitly. Here K0=
+ i� /2 with 
=
−	��P�2�2 / ��d2�2��d3�2+ ��P�2�� being a phase shift per unit
length and �=−2	��P�2�2 / ��d2�2��d3�2+ ��P�2�� characterizes
the absorption or gain of the signal field as it traverses the
medium. Since ��0, we have a gain medium and the signal
field grows as it propagates through the medium. It is pre-
cisely because of this signal field amplification during propa-
gation that leads to the question of the possible Kerr self-
induced nonlinearity and self-modulation effect. We also
note that Re�K1� determines the group velocity and Im�K1�
gives a further signal propagation gain. In addition, K2 de-
scribes signal field group-velocity dispersion that contributes
to both signal wave pulse spread and additional loss. In the
remainder of this paper we investigate the possibility of ac-
tively balancing these signal pulse spreading and loss due to
group-velocity dispersion by the signal gain due to K0 and
perhaps Im�K1�.

III. ASYMPTOTIC EXPANSION AND A HIGH-ORDER NLS
EQUATION

Now we apply a singular perturbation theory to solve Eqs.
�3� and �4� in the nonlinear regime and search for the forma-
tion and propagation of a shape-preserving signal pulse in
the system. We first note that nonvanishing two-photon de-
tuning ��2�0� is necessary for producing a self-phase
modulation effect that provides an effective mean to balance
a detrimental dispersion effect, leading to the formation of a
gain-assisted superluminal soliton. To get a quantitative de-
scription of the dynamics of such a soliton in the system, we
first derive a nonlinear envelope equation that describes the
evolution of the signal field envelope by employing the stan-
dard method of multiple scales �1�. Specifically, we make the
following asymptotic expansion Aj =�n=0

 �nAj
�n� and �S

=�n=1
 �n�S

�n�, where � is a small parameter characterizing the
amplitude of the signal field. To obtain a divergence-free
expansion, all quantities on the right-hand side of the
asymptotic expansion are considered as functions of the mul-
tiscale variables zl=�lz �l=0 to 3� and tl=�lt �l=0,1�. Sub-
stituting the expansion and the multiscale variables into Eqs.
�3� and �4�, we obtain the following linear inhomogeneous
equations:

	i
�

�t0
+ d2
A2

�j� + �
S
*�j�

A3
�0� = M�j�, �6a�

	i
�

�t0
+ d3
A3

�j� + �PA1
�j� = N�j�, �6b�

i	 �

�z0
+

1

c

�

�t0

�S

�j� + 	A3
�0�A2

*�j�
= Q�j� �j = 1 − 4� , �6c�

where the explicit expressions of M�j�, N�j�, and Q�j� can be
systematically and analytically obtained but they are omitted
here.

For convenience, we convert Eqs. �6a�–�6c� into the fol-
lowing form:

L̂�S
�j� = S�j�, �7a�

A2
�j� =

1

	A3
*�0��Q*�j� + i	 �

�z0
+

1

c

�

�t0

�

S
*�j�� , �7b�

A3
�j� =

1

d3
�N�j� − �PA1

�j�� , �7c�

with

L̂ = i	 �

�z0
+

1

c

�

�t0

	− i

�

�t0
+ d2

*
 − 	�A3
�0��2, �8a�

S�j� = 	− i
�

�t0
+ d2

*
Q�j� − 	A3
�0�M*�j�, �8b�

Equations �7a�–�7c� can be solved order by order in a simple
and unified way.

�i� First-order approximation. The case for j=1 is just the
linear problem solved in the last section. The linear disper-
sion relation is given by Eq. �5� and the first-order approxi-
mation solution reads as

�S
�1� = Fei�, �9a�

A2
�1� =

1

	A3
*�0�	K���* −

�

c

F*e−i�*, �9b�

A3
�1� = A1

�1� = 0, �9c�

where �=K���z0−�t0, F is a yet to be determined envelope
function depending on the slow variables t1, z1, z2, and z3.

�ii� Second-order approximation. For j=2, we can obtain
S�2� by using the first-order solution given by Eqs. �9a�–�9c�
into M2 and Q2. Then Eq. �7a� �for j=2� becomes

L̂�S
�2� = i�� − d2

*�	 �

�z1
+

1

Vg

�

�t1

Fei�. �10�

Notice that exp�i�� is an eigensolution of the operator L̂;
divergence-free condition of the solution of Eq. �10� requires
naturally

i	 �F

�z1
+

1

Vg

�F

�t1

 = 0, �11�

where Vg=1 /K1 is �complex� group velocity of the wave
packet. It is easy to find the second-order approximation so-
lution as

�S
�2� = 0, �12a�

A1
�2� = b1

�2��F�2e−2�̄z2, �12b�

A3
�2� = b3

�2��F�2e−2�̄z2, �12c�

A2
�2� =

i

	A3
*�0�	1

c
−

1

V
g
*
 �F*

�t1

e−i�*, �12d�

where, �̄=�−2�. The explicit expressions of b1
�2� and b3

�2� have
been listed in the Appendix.
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�iii� Third-order approximation. Letting j=3 in Eq. �7� we
obtain the third-order approximation equation for �S

�3�,

L̂�S
�3� = �� − d2

*�	i
�

�z2
−

1

2
K2

�2

�t1
2 + W�F�2
Fei�, �13�

with

W =
	

� − d2
* �A3

�0�b3
*�2�

+ A3
*�0�

b3
�2��e−2�̄z2.

Obviously, the divergence-free condition of Eq. �13� requires

i
�F

�z2
−

1

2
K2

�2F

�t1
2 + W�F�2F = 0. �14�

Equation �14� is a NLS equation controlling the time evolu-
tion of the envelope function F, obtained in Ref. �31�. The
coefficient W appearing in the third term of Eq. �14� charac-
terizes the self-phase modulation of the signal field.

The third-order approximation solution is found to be

�S
�3� = 0, �15a�

A1
�3� = i	b11

�3� �F

�t1
F* + b12

�3��F*

�t1

F
e−2�̄z2, �15b�

A3
�3� = i	b31

�3� �F

�t1
F* + b32

�3��F*

�t1

F
e−2�̄z2, �15c�

A2
�3� = 	−

A3
�0�

�� − d2�3

�2F*

�t1
2 +

b3
�2�

� − d2
�F�2F*e−2�̄z2
e−i�*,

�15d�

where the coefficients b11
�3�, b12

�3�, b31
�3�, and b32

�3� in the above
expressions have been given in the Appendix.

�iv� Fourth-order approximation. To go beyond the work
of Ref. �31�, we should look for the high-order corrections
further. Based on the solutions in the first-order to third-order
approximations given above, from Eq. �7a� for j=4 we ob-
tain

L̂�S
�4� = i�� − d2

*�	 �F

�z3
−

1

6
K3

�3F

�t1
3 + �1

���F�2F�
�t1

+ �2
��F�2

�t1
F
ei�, �16�

where the coefficients �1 and �2 are given in the Appendix.
The solvability condition of Eq. �16� gives rise to

�F

�z3
−

1

6
K3

�3F

�t1
3 + �1

���F�2F�
�t1

+ �2
��F�2

�t1
F = 0. �17�

Combining Eqs. �11�, �14�, and �17�, we obtain the fol-
lowing high-order NLS equation:

i	 �

�z
+

1

Vg

�

�t

U −

1

2
K2

�2U

�t2 + W�U�2U

+ i	−
K3

6

�3U

�t3 + �1
�

�t
��U�2U� + �2

��U�2

�t
U
 = 0,

�18�

where we have defined U=�F.

IV. DYNAMICS OF SUPERLUMINAL OPTICAL
SOLITONS IN DIFFERENT PULSE DURATION REGIMES

Equation �18� derived in the preceding section is a high-
order Ginzburg-Landau equation with complex coefficients
and hence generally does not allow soliton solutions. How-
ever, if a realistic set of parameters can be found so that the
imaginary part of these coefficients can be made small in
comparison with their corresponding real parts, then it is
possible to get a shape-preserving, localized signal pulse that
can propagate for an extended distance without significant
attenuation and distortion. We shall show this is indeed pos-
sible for the present gain-assisted system. A set of realistic
parameters of the system will be given below.

With a small imaginary part of the coefficients, Eq. �18�
can be converted into the dimensionless high-order NLS
equation

i
�u

�s
+

�2u

��2 + 2�u�2u

= i	g0u + g1
���u�2u�

��
+ g2u

��u�2

��
+ g3

�3u

��3
 + g4
�u

��
,

�19�

where we have taken �=0 �corresponding to the central fre-
quency of the signal field� and defined U=U0ue�z, s
=z / �2LD�, and �= �t−z /Re�Vg�� /�0. The coefficients gj
=2LD /Lj �j=0 to 4�, where L0=−1 /� �characteristic linear
gain length�, L1=−�0 / ��1rU0

2� �characteristic nonlinear dis-
persion length�, L2=−�0 / ��2rU0

2� �characteristic delay length
in nonlinear refractive index�, L3=6�0

3 /K3r �characteristic
third-order dispersion length�, and L4=�0 /K1i �characteristic
differential gain length�, respectively. Here, subscripts r and
i denote, respectively, the real and imaginary parts of corre-
sponding quantities. LD=−�0

2 /K2r is the characteristic disper-
sion length at which the group velocity dispersion becomes
important. Obviously, the property of the formation and
propagation of solitons in the system is controlled by these
characteristic lengths. For the balance between the dispersion
and nonlinearity, we have taken LD=LNL, where LNL
=1 / �WrU0

2� is the characteristic nonlinear length. Thus, we
obtain U0=�K2r /Wr� /�0, which is a typical one-half Rabi
frequency of the probe field. In the following, we discuss
two cases of soliton excitations in the system based on the
high-order NLS equation �19�.

Case 1: Soliton solutions for perturbed NLS equation. If
Lj �j=0 to 4� are much larger than LD, the terms on the
right-hand side of Eq. �19� are high-order small corrections
to the NLS equation and hence can be taken as perturbations,

LI et al. PHYSICAL REVIEW A 78, 023822 �2008�

023822-4



which are not considered in the simple approach given in
Ref. �31�. We now consider the effect of these perturbations
to a soliton. We write Eq. �19� in the following form:

i
�u

�s
+

�2u

��2 + 2�u�2u = iR�u� , �20�

where R�u�=g0u+g1���u�2u� /��+g2u���u�2� /��+g3�
3u /��3

− ig4�u /��, representing the perturbations. We use the stan-
dard soliton perturbation theory �33� to solve the perturbed
NLS equation �20�. The soliton solution of Eq. �20� for
R�u�=0 reads as

u0 = 2� sech�2��� − �0 + 4�s��

�exp�− 2i�� − 4i��2 − �2�s − i�0� , �21�

where � ,� ,�0,�0 are real, free parameters determining the
initial propagating velocity, amplitude �as well as width�, po-
sition, and phase of the soliton, respectively. When the per-
turbations take action, i.e., R�u��0, these soliton parameters
will change and depend on the propagation distance z. Solv-
ing the ordinary differential equations of ��z�, ��z�, �0�z�,
and �0�z� based on the soliton perturbation theory �33� we
obtain the adiabatic evolution of the soliton �21�, which is
given by

�s =
eg0z/LD

�0

− K2r/Wr sech� eg0z/LD

�0
	t −

z

Vgr
+ 2

��0

LD
z
�

exp�iK0rz − 2i�	t −
z

Vgr

/�0 − 4i

��2 − �2�
2LD

z� , �22�

where �=−g4�exp�2g0z /LD�−1� / �12g0�, �
= �1 /2�exp�g0z /LD�. We see that the perturbations result in
not only an increasing in the soliton amplitude and decreas-
ing in the soliton width, but also a change of the propagating
velocity and a shift of oscillating frequency �34�.

Case 2. Soliton solutions for the high-order NLS equation.
If some of Lj �j=0–4� are of the same magnitude of order as
LD, the terms on the right-hand side of Eq. �19� become
significant and cannot be taken as perturbations. In this situ-
ation, Eq. �19� reduces to the high-order NLS equation

i
�u

�s
+

�2u

��2 + 2�u�2u − i	g1
���u�2u�

��
+ g2u

��u�2

��
+ g3

�3u

��3
 = 0,

�23�

if the condition g0 ,g4�g1 ,g2 ,g3 can be satisfied. Equation
�23� supports the exact soliton solution �32�

�s = U0	3�� + 3q2 − 2q�
g3

2�3c1 + 2c2�

1/2

�sech�� + 3q2 − 2q

g3
	 t − z/Vgr

�0
+

�z

2g3LD

�

�exp	i�q3 − q2 + �� + 3q2 − 2q��1 − 3q��

�
z

2g3
2LD

− i
q

g3

t − z/Vgr

�0
+ i
z
 , �24�

with the conditions �+3q2−2q�0, 3q1+2q2�0, and q
�1 /3, where � is a free real number, c1=g1 / �2g3�, c2
=g2 / �2g3�, and q= �3c1+2c2−3� / �6�c1+c2��.

To demonstrate that the imaginary parts of the coefficients
of Eq. �18� can be much less than their corresponding real
parts, we consider a set of parameters relevant to a typical
alkali atom vapor working at room temperature. For such
system �e.g., 87Rb warm vapor at temperature 300 K�, Dop-
pler effect may contribute linewidth broadening around
500 MHz, which may degrade the effectiveness of the EIT-
based scheme. It is, however, much less important in an
ARG-based scheme because we can choose a large one-
photon detuning �3 �11� to suppress the Doppler effect.
This aim can be easily reached by taking �3=−2.0 GHz in
the present system. The other parameters are given by
�2�500 Hz, �3�500 MHz �such big �3 is mainly due to
Doppler broadening�, 	�0=8000.0 cm−1, �2�0=1.5, �3�0=
−2000, and �P�0=43.0 with �0=1.0 �s. With the above
parameters, we obtain K0=−�2.32+ i0.77�10−3� cm−1, K1=
−�15.46+ i0.01��10−7 cm−1 s, K2=−�20.62+ i0.02�
�10−13 cm−1 s2, K3=−�41.23+ i0.05��10−19 cm−1 s3,
W= �19.03+ i0.006��10−16 cm−1 s2, �1= �28.4+ i0.01�
�10−22 cm−1 s3, and �2=−�2.99+ i0.24��10−21 cm−1 s3. We
see that the imaginary part of every coefficient of the high-
order Ginzburg-Landau equation �18� is indeed much smaller
than its real part, justifying the validity of the high-order
NLS equation �19�. With these results we obtain the group
velocity of the soliton �24� as

Re�Vg� = − 0.58 � 10−5c . �25�

Hence, the soliton obtained travels with a superluminal
propagating velocity.

In order to show in what physical condition the solitons
given by �22� and �24� can form in the system, in Fig. 2 we
have plotted the curves of the absolute value of the coeffi-
cients gj �j=1–4� as functions of the pulse length �0. �The
other parameters are the same as given above.� We see that
g0 and g4 are not sensitive to �0, but g1, g2, and g3 decrease
rapidly when �0 increases. Thus, in different pulse duration

FIG. 2. �Color online� The absolute value of the coefficients gj

�j=0–4� of Eq. �19� as functions of the pulse length �0. Parameters
are given in the text.
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regions, we can reduce Eq. �19� into different models. From
the figure we obtain the following conclusions: �1� If �0
�8.0�10−6 s, all gj are small and hence the terms on the
right-hand side of Eq. �19� can be taken as high-order cor-
rection terms. In this case Eq. �19� can be taken as a NLS
equation plus perturbations, so the perturbed soliton solution
�22� is valid. �2� When �0�4.0�10−6 s, g1, g2, and g3 be-
come order unity and the condition g0 ,g4�g1 ,g2 ,g3 is sat-
isfied. Consequently, Eq. �19� in this case can be reduced to
Eq. �23� and so the system allows the soliton solution given
by �24�.

It is instructive to discuss and compare the physical prop-
erties of the solitons given by Eqs. �22� and �24�. We study
this problem by using numerical simulations. The results are
presented in Figs. 3 and 4. From Fig. 2 we see that to make
the perturbed NLS equation �20� be valid the pulse length �0
should be around 10−5 s. Shown in Fig. 3�a� is the time evo-
lution of the soliton obeying the perturbed NLS equation
�20� by taking u�0,��=sech � as input condition. The pulse
length is chosen as �0=1.0�10−5 s and the other parameters
are the same as those in Fig. 2. We see that in this case the

soliton is fairly stable during propagation. However, there is
a small increase of the soliton amplitude when propagating
to large distance, contributed from the perturbed term R�u�
on the right-hand side of Eq. �20�. R�u� is in fact a gain due
to the gain character of the system.

Figure 3�b� shows the simulation result based on the per-
turbed NLS equation �20� but taking the pulse length �0
=1.0�10−6 s. One can see that the soliton radiates many
ripples even propagating to only a small distance. The reason
for such instability is that in this case the perturbed NLS
equation �20� is no longer valid. This point can be clearly
seen in Fig. 2, which shows that for the pulse length �0
around 10−6 s, the coefficients gj �j=1,2 ,3� become larger
and hence break down the validity condition of Eq. �20�.

To check the stability of the soliton solution of the high-
order NLS equation, we have made additional numerical
simulation based on Eq. �23�. Shown in Fig. 4�a� is the simu-

FIG. 3. �Color online� Evolution of superluminal optical soliton
based on the perturbed NLS equation �20�. �u�s ,���: Dimensionless
amplitude. s: Dimensionless propagating distance. �: Dimension-
less delay time. The input condition is taken as u�0,��=sech �. �a�
�0=1.0�10−5 s. �b� �0=1.0�10−6 s. Other parameters are the
same as those in Fig. 2.

FIG. 4. �Color online� Evolution and collision of superluminal
optical soliton based on the high-order NLS equation �23� with
pulse length �0=1.0�10−6 s and other parameters the same as Fig.
2. �u�s ,���: Dimensionless amplitude. s: Dimensionless propagating
distance. �: Dimensionless delay time. �a�: Soliton evolution with
input condition u�0,��=1.23 sech � exp�i2.12��. �b� Two-soliton
collision with input condition u�0,��=1.23 sech��
−5.0�exp�i2.12��−5.0��+2.71 sech�2.21��+5.0��exp�i2.12��
+5.0��.

LI et al. PHYSICAL REVIEW A 78, 023822 �2008�

023822-6



lation result for the single soliton solution of Eq. �23� by
choosing u�0,��=1.23 sech � exp�i2.12�� as input condi-
tion. We choose �=−2.73 and the other parameters are the
same as those in Fig. 2. We see that the soliton is fairly stable
after propagating a long distance. The reason is that in this
case there is exact balance between high-order dispersion
and high-order nonlinearity in Eq. �23�.

We have also investigated the two-soliton collision of the
high-order NLS equation �23�. The result is demonstrated in
Fig. 4�b�. The input condition is taken as u�0,��
=1.23 sech��−5.0�exp�i2.12��−5.0��+2.71 sech�2.21��
+5.0��exp�i2.12��+5.0��. One can see that the solitons pre-
serve their wave shapes after the collision.

We have made also a numerical simulation based directly
on the Maxwell-Schrödinger equations �3� and �4� to check
the validity of the approximations used in our analytical ap-
proach given in Secs. II and III. Shown in Fig. 5 is the
soliton evolution when taking the soliton solution �24� as an
input condition. From the figure we see that the soliton so-
lution of the high-order NLS equation is fairly stable for a
very long propagating distance. Different from the EIT-based
systems �7–10�, where solitons always have a small decay in
amplitude due to inherent absorption, the soliton in the
present gain-assistant system has a growth in amplitude.
However, the increase in amplitude can be suppressed by
using a large one-photon detuning ��3�.

We now estimate the light intensity for generating the
optical soliton �24�. It is easy to show that the peak power of
the gain-assisted superluminal optical soliton, i.e., Eq. �24�,
is given by P̄max=2�0cnSS0�� / �p23��2U0

2�3��+3q2

−2q�� / �g3
2�3c1+2c2��. Here nS is the reflective index of the

signal field and S0 is the cross-section area of the signal field.
Taking S0=1.0�10−4 cm2, �p23�=2.1�10−27 cm C, and us-

ing the parameters given above, we obtain P̄max=2.2 �W.
Consequently, to generate the gain-assisted superluminal op-
tical soliton based on the high-order NLS equation �18�, very
low input light intensity is needed. This is drastically differ-
ent from the optical soliton generation schemes in fiber-

based passive media, where much higher input power is re-
quired in order to bring out the nonlinear effect required for
the soliton formation.

V. SUMMARY

We have presented a detailed investigation on the dynam-
ics of a superluminal optical soliton in a gain-assisted three-
state system working at room temperature. By using a
method of multiple scales we have derived a higher-order
NLS equation, which includes effects of linear and differen-
tial gain, nonlinear dispersion, delay in nonlinear refractive
index, and third-order dispersion. We have shown that for a
realistic set of physical parameters and for a long pulse du-
ration the high-order correction terms obtained are small
enough and hence can be taken as perturbations. However,
for a short pulse duration these correction terms are signifi-
cant and cannot be considered as perturbations, i.e., they
must be treated on the same footing as the terms in the NLS
equation. We have provided exact soliton solutions for the
high-order NLS equation, which propagate with a superlumi-
nal propagating velocity and can be generated with very low
input light intensity. The stability of the gain-assisted super-
luminal optical solitons obtained has been checked by nu-
merical simulations. Due to their robust propagating nature
and very low generation power, the gain-assisted superlumi-
nal optical solitons predicted here may have potential appli-
cations in optical information processing and engineering.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grants No. 10434060 and No.
10674060, by the Key Development Program for Basic Re-
search of China under Grants No. 2005CB724508 and No.
2006CB921104, and by the Program for Changjiang Schol-
ars and Innovative Research Team of the Chinese Ministry of
Education.

APPENDIX: COEFFICIENTS IN SEC. III

The coefficients b1
�2� and b3

�2� in Eqs. �12� are given by

b1
�2� =

�A3
�0��2

2A1
�0���d3�2 + ��P�2�

�� − d2
*�d3

* + �� − d2�d3 − �d3�2

�� − d2�2
,

�A1a�

b3
�2� = −

A3
�0�

d3�� − d2�
−

�P

d3
b1

�2�. �A1b�

The coefficients b11
�3�, b12

�3�, b31
�3�, and b32

�3� in Eqs. �15� are

b11
�3� = −

�d3�2

2A1
�0���d3�2 + ��P�2�

	−
�A3

�0��2

�� − d2�2�� − d2
*�

+
�A3

�0��2

d3
*�� − d2

*�2 +
A3

�0�b3
*�2�

d3
* −

A3
*�0�

b3
�2�

d3

 , �A2a�

FIG. 5. �Color online� The result of numerical simulation start-
ing directly from Eqs. �3� and �4� by taking the soliton solution �24�
of the high-order NLS equation as input condition. The parameters
given are the same as in Fig. 2 �with �0=1.0�10−6 s�, the input
pulse is �S�0, t��0=40.6 sech�t /�0�exp�i2.1t /�0�.

HIGH-ORDER NONLINEAR SCHRÖDINGER EQUATION… PHYSICAL REVIEW A 78, 023822 �2008�

023822-7



b12
�3� = −

�d3�2

2A1
�0���d3�2 + ��P�2�

	 �A3
�0��2

�� − d2�2�� − d2�
−

�A3
�0��2

d3�� − d2�2

+
A3

�0�b3
*�2�

d3
* −

A3
*�0�

b3
�2�

d3

 , �A2b�

b31
�3� = −

1

d3
�b3

�2� + �Pb11
�3�� , �A2c�

b32
�3� = −

1

d3
	b3

�2� +
A3

�0�

�� − d2�2 + �Pb12
�3�
 . �A2d�

The coefficients �1 and �2 in Eq. �16� are given by

�1 = 	�A3
�0��2

e−2�̄z2

� − d2
*	 1

�� − d2�2d3
+

2

�� − d2
*�2d3

*

+
1

�� − d2�2d3
+

�

� − d2
* −

��P�2�G* + G�
�d3�2 + ��P�2 
 ,

�A3a�

�2 = 	�A3
�0��2

e−2�̄z2

� − d2
*	 ��P�2�G* + 2G�

�d3�2 + ��P�2
−

�

2�� − d2
*�

−
1

�� − d2�2d3
+

�

2d3
−

�

2d3
* +

1

�� − d2�d3
2 −

1

�� − d2
*�d3

*2

−
2

�� − d2�2d3
−

1

�� − d2
*�2d3

*
 , �A3b�

with

� =
��P�2��d3�2 − �� − d2�d3 − �� − d2

*�d3
*�

�� − d2�2�d3�2���P�2 + �d3�2�
,

G = −
1

�� − d2�2�� − d2�
+

1

�� − d2�2d3
−

1

�� − d2�d3
2

+
1

�� − d2
*�d3

*2 +
��d3 − d3

*�

2�d3�2
.
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