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Weak-light solitons and their active control in a parity-time-symmetric atomic system
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We propose a realistic physical scheme to produce one-dimensional and two-dimensional weak-light solitons
in an atomic system with PT symmetry. The system we suggest is a cold three-level atomic gas with two species
and is driven by control and probe laser fields. We show that by the interference of two Raman resonances a
highly adjustable probe-field refractive index with PT symmetry in one and two dimensions can be realized.
We further show that it is possible to produce various light solitons when the weak nonlinearity of the probe
field is taken into account. Due to the resonant character of the system, the light solitons obtained in one and
two dimensions have extremely low light power (at the level of nanowatts). In addition, we demonstrate that the
stability of these light solitons can be actively controlled via PT phase transition of the system.
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I. INTRODUCTION

Non-Hermitian Hamiltonians can exhibit entirely real
spectra provided they respect PT symmetry [1–4]. Due to the
similarity between the Schrödinger equation and the Maxwell
equation under paraxial approximation, optics provides a
fertile ground where PT -related concepts can be realized
and experimentally tested [5,6]. Since the complex, space-
dependent refractive index of a medium n(x) plays the role
of the optical potential, the PT condition implies that real
part of the index Re[n(x)] must be even while the imaginary
part of the index Im[n(x)], which may have the property of loss
or gain, must be odd. That is to say, PT symmetry requires
n(x) = n(−x)∗.

Due to the significant progress achieved in recent years
by developing optical materials with an adjustable refractive
index, PT -symmetric optical systems made of solid-state
waveguides and fiber networks [7–10], multilevel atomic sys-
tems [11–15], and microcavities [16,17] have been suggested
or realized experimentally. Particularly, a PT -symmetric
system based on atomic gas and laser fields [11–15] possesses
unique advantages in that it has the authentic PT -symmetric
refractive index, i.e., balanced gain and loss in the whole space,
and can be actively controlled and precisely manipulated by
changing the system parameters in situ. These advantages
may be useful to applications such as a PT -symmetric
laser absorber [18], unidirectional invisibility [19], invisible
cloaking [20], and so on.

On the other hand, recently, much attention has been
paid to the light solitons formed in PT -symmetric media.
Various light solitons have been suggested in different types
of PT -symmetric models such as the nonlinear Schrödinger
(NLS) equations with linear and/or nonlinear PT -symmetric
potentials [21–31], PT -symmetric couplers [32,33], χ (2)

systems with PT -symmetric potentials [34], discrete NLS
equations with PT -symmetric lattices [35,36], vector NLS
equations with PT -symmetric potentials [37], etc. Since a
PT -symmetric multilevel atomic system can be made highly
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nonlinear due to the existence of Raman resonances [14,15], it
allows incorporating thePT symmetry into a nonlinear system
and may serve as a nice test bed for different types of light
solitons by using low light intensity.

In this article, we propose a realistic physical scheme
to produce one-dimensional (1D) and two-dimensional (2D)
weak-light solitons in a system with PT symmetry. The
system we suggested is a cold three-level atomic gas with
two species and is driven by control and probe laser fields.
We show that, by the interference of two Raman resonances,
a highly adjustable, periodic probe-field refractive index with
PT symmetry in one and two dimensions can be realized.
Different from the result in Ref. [11], the PT -symmetric
refractive index obtained here can be continuously tunable,
and only a weak Stark laser field is needed. We further show
that it is possible to create 1D and 2D light solitons when the
weak nonlinearity of the probe field is considered. Due to the
resonant character of the system, the light solitons obtained
have extremely low light power (at the level of nanowatts).
In addition, we demonstrate that the stability of these light
solitons can be actively controlled via the PT phase transition
of the system.

This article is arranged as follows. In Sec. II, the physical
model under study is described. Expressions of the linear and
nonlinear optical susceptibilities are presented. In Sec. III, the
formation and stability of light solitons in 1D PT -symmetric
potential are investigated, and the threshold power for gener-
ating these light solitons is estimated. In Sec. IV, the active
control on the stability of the solitons via the PT -symmetric
phase transition is discussed. In Sec. V, the weak-light solitons
in the 2D PT -symmetric potential is studied. In Sec. VI we
summarize the main results obtained in this work.

II. MODEL

We start with the physical setting reported in [11], which
consists of an atomic gas with two isotopes, 87Rb (species
1) and 85Rb isotopes (species 2), as shown in Fig. 1(a). The
atoms are loaded into a cell at low temperature (∼μK). Each
isotope is represented by a three-level configuration with two
ground-state sublevels, |g,s〉 and |a,s〉, and one excited state,
|e,s〉 (s = 1,2 indicates the specie of the atoms). A weak
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FIG. 1. (Color online) (a) Energy-level diagram and Raman reso-
nance scheme of the mixture of two three-level � systems. Ep: probe
field (with the frequency ωp and wave vector kp). Ec: control field
(with the frequency ωc and wave vector kc). �s (s = 1,2): one-photon
detunings; δ1: two-photon detunings. The black points indicate the
levels initially populated. (b) Possible experimental arrangement. The
control (Stark) field Ec (ES) consists of a z-direction laser beam [i.e.,
Ec0 (ES0)] and two pairs of laser beams [i.e., E±

cj (E±
Sj ), j = 1,2] with

cross angle θc (θS).

pulsed probe field Ep and a strong continuous control field
Ec, propagating along the z direction with wave numbers kp

and kc, couple ground-state sublevels |g,s〉 and |a,s〉 to excited
level |e,s〉, respectively. For the mixture of rubidium isotopes
we assign |g,s〉 = |5S1/2,F = 1〉, |a,s〉 = |5S1/2,F = 2〉, and
|e,s〉 = |5P1/2,F = 1〉. The half Rabi frequencies of the probe
and control fields are �p = |ep · peg|Ep/(2�) and �c = |ec ·
pea|Ec/(2�), respectively. Here peg (pea) represents the electric
dipole matrix element associated with the transition from |e,s〉
to |g,s〉 (|e,s〉 to |a,s〉), which is assumed to be approximately
equal for both isotopes. ep and ec (Ep and Ec) are, respectively,
the polarization unit vectors (envelopes) of the probe and
control fields.

Under electric dipole and rotating-wave approximations,
the Hamiltonian of the system in the interaction picture reads

Ĥint =
2∑

s=1

{�[δs |a,s〉〈a,s| + (�s + δs)|e,s〉〈e,s|]

− �(�p|e,s〉〈g,s| + �s |e,s〉〈a,s| + H.c.)}, (1)

where �s = ωs
e − ωs

a − ωc is the one-photon detuning and
δs = ωs

a − ωs
g − (ωp − ωc) is the two-photon detuning, with

ωs
l (l = g,a,e) being the eigenfrequency of the level |l,s〉.

The motion of atoms is governed by the master equation
for the atomic density matrix [38]:

∂ρ

∂t
= 1

i�
[Ĥint,ρ] + �eg

2

2∑
s=1

(
2σ̂ s

geρσ̂ s
eg − σ̂ s

eeρ − ρσ̂ s
ee

)

+ �ea

2

2∑
s=1

(
2σ̂ s

aeρσ̂ s
ea − σ̂ s

eeρ − ρσ̂ s
ee

)

+ γa,deph

2

2∑
s=1

(
2σ̂ s

aaρσ̂ s
aa − σ̂ s

aaρ − ρσ̂ s
aa

)

+ γe,deph

2

2∑
s=1

(
2σ̂ s

eeρσ̂ s
ee − σ̂ s

eeρ − ρσ̂ s
ee

)
, (2)

where σ̂ s
jk = |j,s〉〈k,s| is the atomic projection operator

(j, k = g, a, e). �ea and �eg are the spontaneous-emission
decay rates from the excited state |e,s〉 to ground-state
sublevels |a,s〉 and |g,s〉, respectively. They are assumed to
be approximately equal for both isotopes. The decay rate
from |a,s〉 to |g,s〉 is about four orders smaller than �eg

or �ea and hence can be safely neglected. We have also
introduced the energy-conserving dephasing processes with
rates γa,deph and γe,deph. Thus, the coherence decay rates are
defined as γeg = (�eg + �ea + γe,deph)/2, γea = (�eg + �ea +
γe,deph + γa,deph)/2, and γag = γa,deph/2.

As the isotopes are loaded in a cell at low temperature, the
spontaneous-emission decay rates are given by �eg ≈ �ea ≈
π × 5.75 MHz for rubidium atoms [39], while the dephasing
rates can be very small. In addition, for simplicity the two-
photon detuning of the second isotope is taken as zero, i.e.,
δ2 = 0, which can be achieved by tuning the frequency of the
probe field ωp and the elimination of the Doppler broadening
due to low temperature.

Taking into account the above considerations, the Bloch
equation describing the motion of atoms is given by

iρ̇s
gg = i�egρ

s
ee − �∗

pρs
eg + �pρs∗

eg , (3a)

iρ̇s
aa = i�eaρ

s
ee − �∗

cρ
s
ea + �cρ

s∗
ea , (3b)

iρ̇s
ee = −i(�eg + �ea)ρs

ee + �∗
pρs

eg − �pρs∗
eg

+�∗
cρ

s
ea − �cρ

s∗
ea , (3c)

iρ̇s
ag = −ds

agρ
s
ag + �pρs∗

ea − �∗
cρ

s
eg, (3d)

iρ̇s
eg = −ds

egρ
s
eg + �p

(
ρs

ee − ρs
gg

) − �cρ
s
ag, (3e)

iρ̇s
ea = −ds

eaρ
s
ea + �c

(
ρs

ee − ρs
aa

) − �pρs∗
ag, (3f)

where the overdots stand for the time derivative and we have
defined ds

ag = δs,1δ1 + iγag (δi,j = 1 for i = j ; δi,j = 0 for
i �= j ), ds

ea = −�s + iγea , and ds
eg = δs,1δ1 − �s + iγeg , with

δ1 � �s . Note that we are interested in the case where a
semiclassical theory can be applied, i.e., both control and probe
laser fields contain a large number of photons and hence can
be treated as classical fields.

The susceptibility of the probe field is defined by χp =
p2

eg(N1ρ
1
eg + N2ρ

2
eg)/(ε0��p), where Ns is the density of the

sth isotope and the coherence ρs
eg can be computed from

the Bloch equation (3). Using the smallness of the intensity
of the probe field, i.e., |�p/�c| � 1 (|�p/�c| ≈ 10−3/2;
see the discussion below), we employ the expansions ρs

jk =∑∞
m=0 ρs

jk,m (j,k = g,a,e), where ρs
jk,m is of the order of

|�p/�c|m. Substituting the expansions into the Bloch equation
(3) and neglecting the derivative with respect to time (we are
interested in stationary states), Eq. (3) in the leading order are
solved by ρ1

gg,0 = ρ2
aa,0 = 1 and ρ2

ea,0 = −�c/d
2
ea , with other

leading elements of the density matrix being zero. In higher
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orders, we obtain the recurrent equations:(
ds

ag �∗
c

�c ds
eg

)(
ρs

ag,m

ρs
eg,m

)
= �p

(
ρs∗

ea,m−1
ρs

ee,m−1 − ρs
gg,m−1

)
, (4a)

⎛
⎜⎜⎝

i�eg i�eg 0 0
i�ea i�ea �∗

c −�c

�c 2�c ds
ea 0

−�∗
c −2�∗

c 0 −ds∗
ea

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ρs
gg,m

ρs
aa,m

ρs
ea,m

ρs
ae,m

⎞
⎟⎟⎠ = Mm−1, (4b)

with Mm = (�pρs∗
eg,m − �∗

pρs
eg,m,0,−�pρs∗

ag,m,�∗
pρs

ag,m)T .
When obtaining Eq. (4) the conservation relation ρs

ee,m =
δ0,m − ρs

gg,m − ρs
aa,m is used.

The expression of coherence ρs
eg up to the third order

(|�p/�c|3 order) was computed in Ref. [11]. The result
showed that the probe-field susceptibility has the form
χp ≈ χp,1 + |�p/�c|2χp,3, where the first- and third-order
susceptibilities are, respectively, given by

χp,1 = p2
eg

ε0�
(N1D1 + N2D2), (5)

χp,3 ≈ −p2
eg

ε0�

{
N1

�1
+ N1

4|�c|2 − 3δ2
1 + iδ�

�2
1δ

+ 3N2

�2
− iN2

�

�2
2

}
, (6)

with D1 = δ1/[δ1(δ1 + �1 − i�) − |�c|2] and D2 = 1/(�2 +
i�). Here we have assumed that �ea ≈ �eg = � within the
required accuracy. In addition, we have used the scalings
�s ∼ |�p/�c|−1/2� and �c ∼ δ1 ∼ � to obtain expression
(6), which correspond to a realistic choice of the system
parameters given below.

The spatial distribution of the PT -symmetric probe-field
susceptibility, χp(x) = χ∗

p(−x) [and hence thePT -symmetric
refractive index n(x) = √

1 + χp(x) = n∗(−x)], is obtained
by applying a far-detuned laser field (i.e., the Stark field),
ES(x) cos(ωSt) [11], which induces energy shifts of levels
|j,s〉, i.e., �Ej,S(x) = −αjE

2
S(x)/4 (here αj is the scalar

polarizability). In addition, the control field is assumed to
be x dependent, i.e., �c = �c(x). For the selected levels
of rubidium atoms, αe − αg ≈ 2π� × 0.1223 Hz/(cm/V)2

and αg ≈ αa [39]. That means the difference of the Stark
shifts between the ground-state sublevels is negligible, i.e.,
the two-photon detuning δ1 is not affected by the Stark field,
while the one-photon detunings become x dependent, �s(x) =
�s − (αe − αg)E2

S(x)/(4�). Note that the characteristic scale
of the �s(x) modulation is comparable to the Stark-field
wavelength λS.

In what follows, we focus on the values of detunings:
�1 = 8 �, �2 = 8.72 �, and δ1 = 1.81 �. The electric dipole
matrix element is peg = 2.5377 × 10−27 C cm [39]. The
atomic densities of the first and second isotopes are N1 ≈
2.23 × 1014 cm−3 and N2 ≈ 4.81 × 1014 cm−3, respectively.

The equation of motion for the probe-field Rabi fre-
quency �p can be obtained by using the Maxwell equa-
tion ∇2Ep − (1/c2)∂2Ep/∂t2 = [1/(ε0c

2)]∂2P/∂t2, where the
polarization intensity of the probe field is given by P =∑2

s=1 Nspeg,sσeg,se
i(kpz−ωpt) + c.c. Thus, under paraxial and

slowly varying envelope approximations, �p satisfies

i
k2
p

k2
S

∂�p

∂ζ
+ 1

2

∂2�p

∂ξ 2
+ k2

p

2k2
S

χp(ξ )�p = 0, (7)

where ζ = kpz and ξ = kSx (kS = 2π/λS). The term 1
2

∂2�p

∂ξ 2

describes the diffraction of the probe beam in the x direction;
however, the diffraction in the y direction is neglected. This can
be realized by choosing the incident probe field more focused
in the x direction than that in the y direction.

The first-order susceptibility can be expressed as χp,1(ξ ) =
χ̄p,1 + χ̃p,1(ξ ), where χ̄p,1 and χ̃p,1(ξ ) are, respectively, the
constant and modulated parts of χp,1(ξ ). With the given pa-
rameters, the modulated part χ̃p,1(ξ ) is two orders smaller than
the homogeneous part χ̄p,1, i.e., |χ̃p,1(ξ )/χ̄p,1| ∼ |�p/�c|2.
Using the transformation �p(ξ,ζ ) = u(ξ )U0e

ibζ (b is the
propagation constant; U0 is the typical Rabi frequency) and
preserving the terms up to the third order (∼|�p/�c|3 order),
the propagation equation (7) can be written into the equation

∂2u

∂ξ 2
+ V (ξ )u + G(ξ )|u|2u = βu, (8)

where V (ξ ) = k2
p

k2
S

χ̃p,1(ξ ) represents the optical potential,

G(ξ ) = k2
pU 2

0

k2
S |�c|2 χp,3(ξ ) is the coefficient characterizing the

magnitude of the nonlinearity, and the eigenvalue β = k2
p

k2
S

(2b −
χ̄p,1).

The third-order probe-field susceptibility χp,3 is given by
Eq. (6), which can also be separated by a constant part
and a space-modulated part. Although the space-modulated
part generally violates the PT symmetry, it is, however,
much smaller than the constant part. Consequently, under
the required accuracy the space-modulated part can be safely
neglected. In addition, the imaginary part of χp,3 is much
smaller than its real part and can also be neglected.

For the parameters given above we obtain χp,3 ≈ −16.99,
which results in G ≈ −1 after taking U0 = 0.08� and kS =
0.13kp (i.e., λS ≈ 5 μm for λp ≈ 658 nm). Notice that the
wavelength of Stark field is inside the mid-infrared spectral
range, which can be generated by a quantum cascade laser
working at room temperature and continuous-wave operation
[40,41]. Since the sign of G is negative, the system possesses a
defocusing Kerr nonlinearity. We should emphasize that a very
weak probe-field intensity is needed to obtain such nonlinearity
in the present system (see the discussion below). This is
because the third-order susceptibility is largely enhanced due
to the existence of two nearly resonant Raman transitions. This
is very different from any passive optical materials for which
intensive laser fields are usually required to obtain enough non-
linearity to balance the dispersion or diffraction of the system.

III. WEAK-LIGHT SOLITONS IN 1D
PT -SYMMETRIC POTENTIAL

Since for the present active system the physical parameters
are tunable, we can obtain various potentials V (ξ ) with PT
symmetry [11]. For illustration purposes, we first consider the
possibility of weak-light solitons and study their stability for
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the 1D periodic PT -symmetric potential

V (ξ ) = V0 cos2(ξ ) + iW0 sin(2ξ ). (9)

Generally, the band structure of a complex periodic potential
is complex. For a PT -symmetric periodic potential, however,
the band diagram can be entirely real as long as the system
operates below thePT phase-transition point. For the potential
(9), purely real bands are possible in the range of 0 � W0/V0 <

1/2 [21].
In our system, the PT -symmetric potential (9) can be

realized by choosing

χp,1(ξ ) = 0.460 − 10−3[V0 cos2(ξ ) + iW0 sin(2ξ )]. (10)

This gives the order of magnitude of the small parameter
|�p/�c|2 ∼ 10−3 and hence defines the accuracy of the
expansion. The susceptibility (10) can be created by using
the following control and Stark fields shaped as

�c(ξ )/� ≈ 2.553 − 0.002V0 sin2(ξ ) − 0.032W0 sin(2ξ ),

(11)

ES(ξ )/E0 ≈ 0.97 + 0.008V0 sin2(ξ ) + 0.021W0 sin(2ξ ),

(12)

with E0 = 104 V/cm−2 (more details are given in the
Appendix). Note that in expressions (11) and (12) we have
preserved undetermined parameters V0 and W0, which allows
the possibility of tuning the potential in a continuous way.

The experimental realization of the control and
Stark field equations (11) and (12) can be realized in
the following way. Assume the control field consists
of a z-direction laser beam with the form Ec0 =
eyEc0e

ikcz−iωct and two pairs of laser beams with the
forms E±

cj = ey(Ecj/2)eikc(±x sin θc+z cos θc)−iωct±iφj (j = 1,2; θc

is the cross angle, which is the same for all the pairs), as shown
in Fig. 1(b). Here Ecj and φj are, respectively, the amplitudes
and phases of the j th pair of laser beams. If θc is very
small, i.e., sin θc � 1 and cos θc ≈ 1, the control field can be
written as Ec = eye

ikcz−iωct [Ec0 + Ec1 cos(xkc sin θc + φ1) +
Ec2 cos(xkc sin θc + φ2)], which further leads to �c(x) =
�c0 + �c1 cos(xkc sin θc + φ1) + �c2 cos(xkc sin θc + φ2),
where �c0 = |ey · pea|Ec0/(2�) and �cj = |ey · pea|Ecj/(2�).
Thus, if taking

�c0 = (2.553 − 0.001V0)�, �c1 = 0.001V0�,
(13)

�c2 = 0.032W0�,

with sin θc = 2kS/kc, φ1 = 0, and φ2 = π/2, we obtain the
control field (11).

The Stark field (12) can also be realized by using the
same method. We assume the Stark field consists of a z-
direction laser beam, ES0 = eyES0e

−ikSz−iωS t , and two pairs
of laser beams, E±

Sj = ey(ESj/2)e−ikS (∓x sin θS+z cos θS )−iωS t±iφj ,
as shown in Fig. 1(c). If the cross angle θS is very small,
the Stark field can be written as ES = eye

−ikSz−iωS t [ES0 +
ES1 cos(xkS sin θS + φ1) + EcS cos(xkS sin θS + φ2)]. Thus,
when taking

ES0 = (0.97 + 0.004V0)E0, ES1 = 0.004V0E0,

ES2 = 0.021W0E0, (14)

with θS = θc, φ1 = −π , φ2 = −π/2, we obtain the Stark
field (12).

From Eqs. (11) and (12) we can estimate the powers re-
quired for generating the control and Stark fields. The control-
field amplitude Ec ≈ 2.7 V cm−1 (�c ≈ 4.6 × 107 Hz), while
the amplitude of the Stark field ES ≈ 97 V cm−1. Being
focused onto a spot with a radius ≈0.1 mm, this requires
laser power ≈3.9 mW. Thus, the laser power of the Stark
field required here is much smaller than that required in
Ref. [11]. That is because a cold atomic system is used
here.

In Fig. 2(a) we plot the real and imaginary parts of the
refractive index n(ξ ) as functions of kSx/π for V0 = 3.0 and
W0 = 0.75, which is below the PT phase-transition point.
The control and Stark fields required for the PT -symmetric
refractive index as functions of kSx/π are plotted in Fig. 2(b).
In order to estimate the accuracy of the refractive-index PT
symmetry, we define the error function ν(ξ ) = n(ξ ) − n∗(−ξ ).
Its real and imaginary parts are of the order of 10−7 and 10−6,
respectively; that is, a very high accuracy for thePT symmetry
is obtained.

We also show the associated band-gap structure for various
values of the potential parameter W0 by taking W0 = 0.75
(below the PT phase-transition point), 1.5 (on the PT
transition point), and 2.25 (above the PT phase-transition
point). The real part of the “energy” band Re(β) as a function
of lattice momentum q is plotted in Fig. 2(c). One sees that
as W0/V0 increases, the band gap becomes narrower and two
bands become merged when crossing the critical transition
value W0/V0 = 1/2. The imaginary part of the energy band
Im(β) as a function of q is plotted in Fig. 2(d) for V0 = 3.0 and
W0 = 2.25. In particular, Im(β) is zero for all q for W0 = 0.75
and 1.5.

With the band-gap structure obtained above, we seek the
soliton solutions of Eq. (8) for the given complex potential
Eq. (9) and for the nonlinear coefficient G = −1. It is known
that self-defocusing nonlinearity combined with a real periodic
potential can support stable gap solitons of the bright type
[42]. Thus, we anticipate that the conclusion is still valid for
a periodic potential with PT symmetry if it works below the
PT -symmetric phase-transition point (i.e., without the PT -
symmetry breaking).

We have obtained a family of nonlinear localized solutions
numerically for W0 = 0.75. Since W0/V0 = 0.25, i.e., below
the PT transition point, the linear eigenvalue problem has a
purely real spectrum (i.e., β is real) with eigenvalues located
within the first band gap −0.1 < β < 1.2 (gap soliton). The
real and imaginary parts of gap-soliton amplitude, Re(�p) and
Im(�p) , as a functions of ksx/π are shown in Fig. 3(a) for
β = 0.5. The evolution of the gap soliton, after adding random
noises on both amplitude and phase to the initial condition, is
given in Fig. 3(b), indicating that the soliton is fairly stable.

In comparison to the stable gap soliton described in
Figs. 3(a) and 3(b), we have also obtained nonlinear localized
structures for β located outside the band gap. Shown in
Fig. 3(c) are the real and imaginary parts of such a solution for
β = 1.3, which is within the second energy band. Its evolution
is given in Fig. 3(d), indicating that it is highly unstable. This
can be understood because in this case the potential cannot
balance the defocusing nonlinearity.
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FIG. 2. (Color online) (a) Real (solid line) and imaginary (dashed line) parts of the refractive index n(ξ ) − 1.208 as functions of kSx/π .

(b) Control field �c(ξ )/� − 2.55 (solid line) and Stark field ES(ξ )/E0 − 0.97 (dashed line) as functions of kSx/π , required for the refractive
index (a). (c) Re(β) as a function of q for V0 = 3.0 and W0 = 0.75 (solid lines), 1.5 (dotted lines), and 2.25 (dashed lines). (d) Im(β) as a
function of lattice momentum q for V0 = 3.0 and W0 = 2.25. Im(β) is zero for all q for W0 = 0.75 and 1.5.

The threshold of the optical power Pth for generating the
stable soliton described in Figs. 3(a) and 3(b) can be estimated
by using Poynting’s vector. Taking a beam radius ≈0.1 mm,
we obtain

Pth ≈ 3.7 nW. (15)

Thus, very low input power is needed to generate such light
solitons in the present system.

IV. CONTROL OF STABILITY OF THE
WEAK-LIGHT SOLITONS

In the last section, based on a realistic atomic system, we
have constructed a nonlinear physical model with a 1D periodic
complex potential with PT symmetry and with a defocusing
Kerr nonlinearity. We have also shown that a weak-light bright
soliton is indeed possible to produce in such a system and
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FIG. 3. (Color online) (a) Real part [Re(�p); solid line] and imaginary part [Im(�p); dashed line] of the stable gap soliton as functions of
ksx/π for β = 0.5. (b) Stable propagation of the gap soliton in the x-z plane. (c) Re(�p) (solid line) and Im(�p) (dashed line) for the unstable
soliton by taking β = 1.3 located within the second “energy” band. (d) Evolution of the unstable solution. The solid gray curves in (a) and (c)
are the real part of the lattice.
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such a soliton is stable (unstable) if its propagation constant
β is located inside (outside) the first band gap. An interesting
problem that deserves to be explored is what will happen to
the evolution of the soliton when the system passes through
the PT phase-transition point. Because our system is an
active one, we can manipulate the system parameters to make
the system work below and above the PT phase-transition
point to realize an active control of soliton stability.

The control upon the state of PT symmetry of our system
can be realized in many ways. One is to change the relative
amplitude of the imaginary part of the PT potential by
continuously tuning W0 while keeping V0 fixed.

As an example, we focus on the case where V0 = 3.0 and
W0 is a z-dependent function modeled by the combination of
two hyperbolic tangent functions with the form

W0(ζ )/V0 = 0.25 + W1

6
{tanh[10(ζ − Z1)]

− tanh[10(ζ − Z2)]}, (16)

which can be experimentally achieved by choosing the control
and Stark fields with �c0 = 2.55�, �c1 = 0.003�, ES0 =
0.982E0, ES1 = 0.012E0, and

�c2/� = 0.024 + 0.016W1{tanh[10(ζ − Z1)]

− tanh[10(ζ − Z2)]}, (17)

ES2/E0 = 0.016 + 0.011W1{tanh[10(ζ − Z1)]

− tanh[10(ζ − Z2)]}. (18)

From Eq. (16) we see that the value of W0/V0 changes from
0.25 to 0.25 + W1/3 at around ζ = Z1 and changes back to
0.25 at around ζ = Z2. The system works below thePT phase-
transition point in the range Z1 < ζ < Z2 if W1 < 0.75 (i.e.,
W0/V0 < 1/2) and works above thePT phase-transition point
in the range Z1 < ζ < Z2 if W1 > 0.75 (i.e., W0/V0 > 1/2).

Figure 4 shows W0/V0 as a function of kpz for
(W1,Z1,Z2) = (0.7,20,22) (black solid line), (0.8,20,22)
(green dash-dotted line), (0.8,20,21) (red dashed line), and

W
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0.3

0.4
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0.6

0.7

0.8

0.9

broken 
PT-symmetry 

unbroken 
PT-symmetry 

FIG. 4. (Color online) W0/V0 as a function of kpz for
(W1,Z1,Z2) = (0.7,20,22) (black solid line), (0.8,20,22) (green
dash-dotted line), (0.8,20,21) (red dashed line), and (1.6,20,21)
(purple dotted line). The white (gray) domain is the one where the
system works below (above) the PT phase transition. The boundary
between the white and gray regions (i.e., W0/V0 = 0.5) corresponds
to the PT phase-transition point.

(1.6,20,21) (purple dotted line). The white (gray) domain is
the one in which the system works below (above) thePT phase
transition. The boundary between the white and gray regions
(i.e., W0/V0 = 0.5) corresponds to the PT phase-transition
point. We see that for the case (W1,Z1,Z2) = (0.7,20,22)
(black solid line), the system works below the PT phase-
transition point for all values of z; for the cases (W1,Z1,Z2) =
(0.8,20,22) (green dash-dotted line), (0.8,20,21) (red dashed
line), and (1.6,20,21) (purple dotted line), the system works
above the PT phase-transition point for Z1 < kpz < Z2 but
below the PT phase-transition point otherwise.

The propagation of a weak-light soliton in the x-z plane
below and above the PT phase-transition point is shown in
Fig. 5. The initial condition is taken as the soliton solution
given in Fig. 3(a). Illustrated in Fig. 5(a) is the result for
(W1,Z1,Z2) = (0.7,20,22), which corresponds to the case of
the black solid line in Fig. 4 (i.e., the system works below the
PT phase-transition point for all values of z). We see that in
this case the soliton is fairly stable during propagation.

Figure 5(b) shows the evolution result for (W1,Z1,Z2) =
(0.8,20,22) (i.e., the case of the green dash-dotted line in
Fig. 4). This case is obtained by lifting the values of W0/V0

in the region Z1 < kpz < Z2 from the case (W1,Z1,Z2) =
(0.7,20,22) (i.e., the black solid line in Fig. 4). We see that
the soliton is stable in the region kpz < 20, but it becomes
unstable for kpz > 20. It seems that the loss of the stability
of the soliton for kpz > 20 is due to the existence of a region
(i.e., 20 < kpz < 22) where the system works above the PT
phase-transition point.

Interestingly, the instability of the soliton can be controlled
and can even be effectively suppressed by reducing the size of
the region Z1 < kpz < Z2. In Fig. 5(c) we show the soliton
evolution for (W1,Z1,Z2) = (0.8,20,21) (the case of the red
dashed line in Fig. 4). We see that the soliton is basically stable
during propagation for nearly all z, although the system works
above the PT transition point in 20 < kpz < 21.

However, when fixing Z1 = 20 and Z2 = 21 but increasing
W1 from 0.8 to 1.6 (i.e., in Fig. 4 the red dashed line
is changed into the purple dotted line), we find that the
soliton becomes unstable again [see Fig. 5(d)]. The insta-
bility of the soliton is induced by the deeper PT -symmetry
breaking.

From the results displayed in Fig. 5, we see that it is
indeed possible to realize an active control on a series of
stability-instability transitions of the weak-light soliton in the
present PT -symmetric system through actively manipulating
the system parameters V0, W0, W1, Z1, and Z2. This property
may be useful for designing a novel soliton switching in
optics.

V. WEAK-LIGHT SOLITONS IN 2D
PT -SYMMETRIC POTENTIAL

Equation (7) can be easily extended into the two-
dimensional case by taking ξ → (ξ,η) with η = kSy, i.e.,

i
k2
p

k2
S

∂�p

∂ζ
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
�p + k2

p

2k2
S

χp(ξ,η)�p = 0,

(19)
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FIG. 5. (Color online) Stability control of the weak-light soliton by changing system parameters W1, Z1, and Z2. (a) The soliton is stable
for (W1,Z1,Z2) = (0.7,20,22). (b) The soliton is unstable for (0.8,20,22). (c) The soliton is stable for (0.8,20,21). (d) The soliton is unstable
for (1.6,20,21).

where χp(ξ,η) has the same expression as before and its
dependence on η can be obtained by choosing �c = �c(ξ,η)
and ES = ES(ξ,η). Then Eq. (8) is changed into

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u + V (ξ,η)u + G(ξ,η)|u|2u = βu, (20)

where the ξ and η dependence of G is very weak and hence
can be neglected.

As a particular case, we consider the 2D periodic PT -
symmetric potential with the form

V (ξ,η) = V0[cos2(ξ ) + cos2(η)] + iW0[sin(2ξ ) + sin(2η)].

(21)

The corresponding first-order susceptibility of the probe field is

χp,1(ξ,η) = 0.460 − 10−3{V0[cos2(ξ ) + cos2(η)]

+ iW0[sin(2ξ ) + sin(2η)]}, (22)
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which can be realized by using the control and Stark fields
shaped as

�c(ξ,η)/� ≈ 2.553 − 0.002V0[sin2(ξ ) + sin2(η)]

− 0.032W0[sin(2ξ ) + sin(2η)], (23)

ES(ξ,η)/E0 ≈ 0.97 + 0.008V0[sin2(ξ ) + sin2(η)]

+ 0.021W0[sin(2ξ ) + sin(2η)]. (24)

[Figure 6(a) and 6(b)] shows the real (imaginary) part
of the 2D PT -symmetric refractive index n as a
function of ξ ≡ kSx/π and η ≡ kSy/π for V0 = 3.0
and W0 = 0.75, which is below the PT phase-transition
point. The real and imaginary parts of the error function
ν(ξ,η) = n(ξ,η) − n∗(−ξ,−η) are of the order of 10−7 and
10−6, respectively. The transverse distributions of the control
(Stark) field required for the refractive index are plotted in
[Fig. 6(c) and 6(d)].
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and (b) imaginary parts of the soliton amplitude, Re(u) and Im(u), for β = 2. (c) Light-intensity distribution of the soliton after adding random
noises at kpz = 40 on both amplitude and phase to the initial condition of the soliton.
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The associated band-gap structure of the 2D PT potential
(21) as a function of lattice momentum q is shown in Fig. 7
for V0 = 3.0. Figures 7(a)–7(c) give the results of Re(β) for
W0 = 0.75 (below the PT phase-transition point), 1.5 (on
the PT phase-transition point), and 2.25 (above the PT
phase-transition point), respectively. We see that as W0 in-
creases, the band gap becomes narrower and closed completely
when crossing the critical transition value W0/V0 = 1/2. The
imaginary part of the energy band Im(β) is shown in Fig. 7(d).
One sees that Im(β) = 0 for W0 = 0.75 and 1.5 in the whole
space, but it becomes nonzero for W0 = 2.25.

To obtain soliton solutions in 2D, Eq. (20) is numerically
solved for W0/V0 = 0.25 (below the PT phase-transition
point), for which the corresponding linear eigenvalue equation
has a purely real spectrum [i.e., Im(β) = 0] located within the
first band gap (i.e., 1.1 < β < 2.4). Two-dimensional solitons
are found, with the result illustrated in Fig. 8. Shown in
Figs. 8(a) and Fig. 8(b) are, respectively, the real part [Re(u)]
and imaginary part [Im(u) ] of u of a 2D soliton for β = 2.0
as functions of kSx/π and kSy/π . Taking a beam radius
≈0.1 mm, the threshold power to generate the 2D soliton
is estimated as Pth ≈ 6.9 nW.

To test the stability of the 2D soliton, the evolution of the 2D
soliton is also studied by adding some random noises on both
the amplitude and phase to the initial condition of the soliton.
The result of the numerical simulation is presented in Fig. 8(c)
for a propagation distance up to z = 40/kp. We see that the
soliton is fairly stable during propagation. Consequently, stable
2D weak-light solitons are indeed possible in the proposed
system.

VI. SUMMARY

In this work, we have proposed a scheme to generate
1D and 2D weak-light solitons in an atomic system with
PT symmetry. The system we suggest is a cold three-level
atomic gas with two species and is driven by control and
probe laser fields. We have shown that by the interference
of two Raman resonances, a highly adjustable probe-field
refractive index with PT symmetry in one and two di-
mensions can be realized. We have further shown that it is
possible to produce various light solitons when the weak

nonlinearity of the probe field is taken into account. Due to the
resonant character of the system, the light solitons obtained in
one and two dimensions have extremely low light power (at the
level of nanowatts). In addition, we have demonstrated that the
stability of these light solitons can be actively controlled via a
PT phase transition of the system. Notice that the scheme we
proposed here can be used to realize other types of refractive
indexes, such as the 1D and 2D complexPT -symmetric Scarff
II potentials [21]. Our results may have potential applications
in the field of optical information at a low light level.
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APPENDIX: EQUATIONS FOR SOLVING
�c(ξ ) AND ES(ξ )

From the real and imaginary parts of Eqs. (5) and (10), we
get the following equations:

p2
eg

ε0�

(
N1δ1

[
δ2

1 + δ1�1(ξ ) − |�c(ξ )|2][
δ2

1 + δ1�1(x) − |�c(ξ )|2]2 + δ2
1�

2
+ N2�2(ξ )

�2(ξ )2 + �2

)

= 0.46 − 10−3V0 cos2(ξ ), (A1a)

p2
eg

ε0�

(
N1δ

2
1�[

δ2
1 + δ1�1(x) − |�c(ξ )|2]2 + δ2

1�
2

− N2�

�2(ξ )2 + �2

)

= −10−3W0 sin(2ξ ), (A1b)

with �s(ξ ) = �s − (αe − αg)E2
S(ξ )/(4�). Notice that at ξ = 0

the susceptibility must be real, and we obtain

N2

N1
= δ2

1

(
�2

20 + �2
)

(
δ2

1 + δ1�10 − |�c0|2
)2 + δ2

1�
2
, (A2)

where �s0 and �c0 are denoted as values of �s(ξ ) and �c(ξ ) at
ξ = 0, respectively. Equation (A2) imposes a relation between
N1 and N2. The expressions of �c(ξ ) and ES(ξ ) can be solved
from Eqs. (A1a) and (A1b) directly.
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