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Quantum depletion of a soliton condensate
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Abstract

We present rigorous results on the diagonalization of Bogoliubov Hamiltonian for a soliton condensate. Using the complete and orthonormalized
set of eigenfunction for the Bogoliubov–de Gennes equations, we calculate exactly the quantum depletion of the condensate and show that two
degenerate zero-modes, which originate from a U(1) gauge- and a translational-symmetry breaking of the system, induce the quantum diffusion
and transverse instability of the soliton condensate.
© 2006 Elsevier B.V. All rights reserved.
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The study of matter waves and elementary excitations has re-
ceived much attention because of the remarkable experimental
realization of Bose–Einstein condensation in trapped, weakly
interacting atomic gases [1–3]. In the past few years, several
paths have been explored in studying elementary excitations in
Bose–Einstein condensates (BECs). The most followed method
is to use the Gross–Pitaevskii (GP) equation which is suitable
to describe a zero-temperature BEC. One of the deficiency of
this approach, in addition to the constraint of zero temperature,
is the neglect of the quantum fluctuations of condensate, which
is an important aspect of elementary excitation [4]. The eigen-
modes of the elementary excitations thus obtained so far [1,2]
are not complete and their orthonormalities have never been
proved.

A different approach on elementary excitations is to use
Bogoliubov theory [5] that was originally formulated for ho-
mogeneous Bose systems but is also valid for inhomogeneous
ones. In this approach one makes a canonical transformation for
boson operators to diagonalize the quantum Hamiltonian of sys-
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tem and hence the quantum fluctuations of condensate are taken
into account [6]. An added advantage of the Bogoliubov theory
is that it can be easily generalized to the case of finite temper-
ature (with, e.g., the Hartree–Fock and Popov approximations)
[1,2], therefore can be compared directly with experiments car-
ried out at non-zero temperature environment.

In this Letter we apply the Bogoliubov theory to the inves-
tigation of the elementary excitations generated from a quasi-
one-dimensional (1D) soliton condensate. It is known that a
quasi-1D BEC can form in the presence of a transverse con-
finement, which introduces a cutoff for long wavelength fluc-
tuations in the transverse directions and hence an off-diagonal-
long-range order can establish, as have been reported in the case
of low-dimensions BEC systems [7] and in the case of matter-
wave bright solitons in quasi-1D systems [8,9] and the cor-
responding flourished theoretical activities [10–13]. The main
contribution of our present work is the rigorous diagonalization
of quantum Bogoliubov Hamiltonian and the exact calculation
of quantum depletion of the soliton condensate and related con-
clusions on soliton stability.

We consider a quasi-1D attractive, weakly interacting Bose
gas condensed in a trap with tight transverse confinement and
negligible trapping potential in the axial direction. The grand
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canonical Hamiltonian of the system can be written as the fol-
lowing dimensionless from

K̂ = Ĥ − μN̂

(1)

=
∫

dz Ψ̂ †(z, t)

[
− ∂2

∂z2
− μ − Ψ̂ †(z, t)Ψ̂ (z, t)

]
Ψ̂ (z, t),

where Ψ̂ (z, t) is the field operator satisfying [Ψ̂ (z, t),

Ψ̂ †(z′, t)] = δ(z−z′) (with other commutators being zero). The
chemical potential μ assures the conservation of the average
particle number N̂ = ∫

dz Ψ̂ †(z, t)Ψ̂ (z, t). In the expression
(1) the coordinate, time, field operator, and energy (includ-
ing chemical potential) are scaled by l = h̄2/(m|U0|), 2ml2/h̄,
l−1/2, and h̄2/(2ml2), respectively. U0(< 0) is the interatomic
interaction constant and m is the atomic mass. The model (1)
has been used in Ref. [12] to study the quantum phase transition
from a homogeneous ground state to a bright-soliton ground
state when the strength of the attractive interaction is increased.

Letting Ψ̂ (z, t) = ψg(z) + ψ̂(z, t) and assuming ‖ψ̂‖ � ψg

we obtain the Bogoliubov form (quadratic for ψ̂ and ψ̂†) of
the grand canonical Hamiltonian K̂ = Kg + K̂2 with Kg =∫

dzψg(−∂2/∂z2 −μ−ψ2
g )ψg and K̂2 = ∫

dz [ψ̂†(−∂2/∂z2 −
μ − 4ψ2

g )ψ̂ − ψ2
g (ψ̂ψ̂ + ψ̂†ψ̂†)], where the ground-state wave

function satisfies the equation (−∂2/∂z2 − μ − 2ψ2
g )ψg = 0.

For small |U0| the ground state is a homogeneous condensate
and hence the Hamiltonian can be easily diagonalized and the
elementary excitation exhibits a gapless phonon spectrum. For
large |U0|, however, this homogeneous condensate is dynami-
cally unstable [12] and the system undergoes a quantum phase
transition into the soliton ground state

(2)ψg(z) = (N0/2) sech
[
(N0/2)(z − z0)

]
with chemical potential μ = −N2

0 /4, where z0 is an arbitrary
constant, indicating that the quantum phase transition results in
a translational symmetry breaking of the system.

Our first objective is to search for a rigorous diagonaliza-
tion of the Hamiltonian of the soliton condensate (2). Letting
(N0/2)(z − z0) → z and ψ̂ = (N0/2)1/2φ̂ we get

(3)K̂ = Kg + (
N2

0 /4
)∫

dz
[
φ̂†L̂φ̂ − sech2 z

(
φ̂φ̂ + φ̂†φ̂†)],

where L̂ = −∂2/∂z2 − 4 sech2 z + 1 and φ̂ satisfies [φ̂(z, t),

φ̂†(z′, t)] = δ(z − z′) (with other commutators being zero). To
diagonalize K̂ we make the canonical transformation

(4)φ̂ =
∑
j

[
uj (z)ĉj + v∗

j (z)ĉ
†
j

] +
∑
k �=0

[
uk(z)ĉk + v∗

k (z)ĉ
†
k

]
,

where ĉj and ĉk are usual boson operators. The first and second
terms on the right-hand side (RHS) of (4) are respectively the
contributions from the discrete (j ) and continuum (k) spectra
of the excitations generated from the soliton condensate. The
key for diagonalizing K̂ is to find a complete set of the eigen-
functions {uq(z), vq(z);q = k, j} with which the expansion of
φ̂ can be made. The discrete modes are in fact the eigenmodes
with a zero eigenvalue, as shown below.
Substituting (4) into (3) and assuming that uq and vq fulfill
the following eigenequations:

(5)L̂2L̂1φq(z) = E2
qφq(z), L̂1L̂2ψq(z) = E2

qψq(z),

where ψq(z) = uq(z)+vq(z), φq(z) = uq(z)−vq(z) and L̂j =
d2/dz2 + (2δj1 + 6δj2) sech2 z − 1 (j = 1,2), by a detailed
calculation we obtain a diagonalized K̂ = Kg + (N2

0 /4)K̂20,
with

(6)

K̂20 = 2

3
−

∑
k �=0

∫
dzEk

∣∣vk(z)
∣∣2 − P̂ 2

1 + Q̂2
2 +

∑
k �=0

Ekĉ
†
k ĉk,

where we have introduced the operators [6] P̂j = (ĉj +
ĉ

†
j )/

√
2 and Q̂j = i(ĉj − ĉ

†
j )/

√
2. Eq. (5) is equivalent to the

Bogoliubov–de Gennes (BdG) eigenvalue problem:

(7)L̂uq(z) − 2 sech2 zvq(z) = Equq(z),

(8)L̂vq(z) − 2 sech2 zuq(z) = −Eqvq(z).

The solutions of Eq. (5) has been known in classical soliton per-
turbation theory [14,15]. Thus we can use the result obtained in
Refs. [14,15] to get the following solutions of the BdG equa-
tions (7) and (8):

uk(z) = − 1√
2π(k2 + 1)

[
k2 + 2ik tanh z − 2 tanh2 z

]
(9)× exp(ikz),

(10)vk(z) = − 1√
2π(k2 + 1)

sech2 z exp(ikz),

with

(11)Ek = k2 + 1

for k �= 0 (continuous spectrum). Eqs. (7) and (8) admit also the
following zero-mode solutions (j = 1,2):

(12)uj (z) = δj1 sech z
2 − z tanh z

2
+ δj2 sech z

z + tanh z

2
,

(13)vj (z) = −δj1(z/2) sech z tanh z + δj2 sech z
tanh z − z

2
.

These zero-modes belong to the discrete spectrum of the sys-
tem with a zero eigenvalue, which is two-fold degenerate.
Physically, such degenerate zero-modes originate from a U(1)

gauge- as well as a translational-symmetry breaking of the
system and thus open a gap in the excitation spectrum (see
Eq. (11)). This is very different from the result obtained for
homogeneous condensates. It can be shown that the eigenfunc-
tion set obtained above form a complete function set and they
are also orthogonal.1

With the above results we find that Kg = 2N3
0 /3 and∑

k �=0 Ek

∫
dz |v(z, k)|2 = (π − 1)/(6π) and obtain diagonal-

ized (dimensional) Bogoliubov quantum Hamiltonian

1 A detailed discussion on the completeness and the orthonormalities of the
eigenfunction set {uq(z), vq (z); q = k, j} and their application will be given
elsewhere.
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The zero modes here are not the zero mode solutions of Eqs. (7) and (8)! That is to say, the zeromode solutions of the BdG eqs (7) and (8) are not the ones we need. What we need are the zero modes which can help us to obtain a complete and orthonormal function set.
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Ĥ = − 1

24

m|U0|2
h̄2

N3
0 + 1

8

m|U0|2
h̄2

N2
0

(14)×
[

2

3
+ π − 1

6π
− P̂ 2

1 + Q̂2
2 +

∑
k �=0

Ekĉ
†
k ĉk

]
.

Note that each term on the RHS of (14) has clear physical mean-
ing. The first term describes the ground state energy of the sys-
tem, which for large N0 agrees with the result of Bethe ansatz
solution [16]. The first term in the square bracket comes from
the zero-modes whereas the second term is the contribution of
the depletion of the condensate. The terms −P̂ 2

1 + Q̂2
2 are orig-

inated from the quantum fluctuations of the condensate and the
last term represents the contribution from phonons. Because
the continuous spectrum of the excitations Ek for the soliton
condensate opens a gap, thus the phonons are massive due the
breaking of translational symmetry of the system. This is very
different from the case of homogeneous condensates where a
phonon is non-massive.

Our next objective is to investigate the quantum dynamics
of the soliton condensate. For the zero-modes we obtain the
equations of motion

(15)
dP̂1

dτ
= 0,

dQ̂1

dτ
= −2P̂1,

(16)
dP̂2

dτ
= −2Q̂2,

dQ̂2

dτ
= 0,

where τ = (N2
0 /4)t . The Hermitian operators P̂j and Q̂j satisfy

the commutation relation [Q̂j , P̂j ′ ] = iδjj ′ , and they are asso-
ciated with the collective motion of the solition condensate [6].
The exact solutions of the above equations read P̂1(τ ) = P̂1(0),
Q̂1(τ ) = Q̂1(0) − 2P̂1(0)τ , P̂2(τ ) = P̂2(0) − 2Q̂2(0)τ , and
Q̂2(τ ) = Q̂2(0). Using the zero-mode solutions and the rela-
tions between ĉj , ĉ

†
j and P̂j , Q̂j we obtain

Ψ̂ (z, t) ≈ Â(z, τ ) sech

[
z − 1√

N0
P̂2(τ )

]

(17)× exp

{
− i√

N0

[
Q̂1(τ ) + zQ̂2(τ )

]}
,

with Â(z, τ ) ≈ (N0/2)[1+ (1− z tanh z)P̂1(τ )/
√

N0 ]. Eq. (17)
clearly shows quantum fluctuations in the amplitude, position
and phase of the soliton condensate due to the existence of the
zero-modes. This is again very different from the case of a ho-
mogeneous condensate.

The above results can be used to calculate the quantum de-
pletion of the soliton condensate [17]. Let |N0,N1,N2,Nexc〉
denote the state with N0 atoms in the condensate. N1 and N2
are number of atoms occupying the first and the second zero-
modes, and Nexc are the number of atoms being in the contin-
uous modes. Assume that the initial (t = 0) state of the system
is a Bogoliubov (quasiparticle) vacuum |N0,0,0,0〉. We con-
sider the time evolution of the particle numbers occupying in
different modes. Noting that the particle number density oper-
ator of the system is given by n̂(z, t) = l−1Ψ̂ †(z, t)Ψ̂ (z, t) and
using the expression of the field operator, we get the particle-
number density for the condensate mode n0(z) = 〈n̂0(z)〉 =
l−1(N0/2)2 sech2 z, which gives rise naturally the total particle
number N0 in the condensate. Here 〈· · ·〉 denotes the average
over the Bogoliubov vacuum. It is easy to show that the particle-
number densities in the first and the second zero-modes are
given by

nj (z, τ ) = N0

2l

[
v2
j (z) + [

uj (z) + (−1)j vj (z)
]2

τ 2],
(18)j = 1,2.

The atoms in these zero-modes are incoherent ones, represent-
ing the quantum depletion of the soliton condensate. There are
two features for the quantum depletion: (i) The spatial dis-
tributions of the incoherent atoms in the zero-modes are lo-
calized because uj (z) and vj (z) are localized functions of z;
(ii) The distribution densities of the incoherent atoms are time-
dependent and proportional to τ 2, which implies that the de-
pleted atoms grow algebraically as time increases and hence the
soliton condensate loses atoms spontaneously even in the ab-
sence of thermal cloud. This is a manifestation of the quantum
diffusion of the soliton condensate implied in (17). The exact
expressions of the total particle numbers depleted in the first
and the second zero-mode are N1(t) = ∫ ∞

−∞ dzn1(z, t) = (12+
π)/72+2τ 2 and N2(t) = ∫ ∞

−∞ dzn2(z, t) = (2/3)(1+τ 2). The
particle-number density in all continuous modes is given by

(19)nexc(z, t) = N0

2l

∑
k �=0

∣∣vk(z)
∣∣2 = N0

2l

(
1

4
− 1

2π

)
sech4 z.

Thus, the total particle number depleted in the continuous
modes is Nexc(t)=Nexc(0)= ∫ ∞

−∞dznexc(z, t) = (π −2)/(3π)

a small number in comparison with that depleted in the zero
modes.

We can also obtain the exact expressions of the average val-
ues for P̂j and Q̂j . They are given by 〈P̂1(τ )P̂1(τ )〉 = 1/2,
〈P̂2(τ )P̂2(τ )〉 = (1/2)(1 + 4τ 2), 〈Q̂2(τ )Q̂2(τ )〉 = (1/2)(1 +
4τ 2) and 〈Q̂2(τ )Q̂2(τ )〉 = 1/2. These expressions reflect again
the diffusion property of the soliton condensate. It should be
noted that the instability of the soliton condensate shown above
is based on a linear Bogoliubov approach. The inclusion of the
nonlinear effect between the quasiparticle excitations may mod-
ify these results.

Our third objective is to study the stability of the soli-
ton condensate under a long wavelength transverse pertur-
bation. Assuming the confinement in the x and y direc-
tions is relaxed the operator ∂2/∂z2 in (1) and (3) is re-
placed by ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. To diagonalize the
Hamiltonian in this case we use the canonical transformation∑

k⊥
∑

q [uq,k⊥(z) exp(ik⊥ · r⊥)ĉq,k⊥ + v∗
q,k⊥(z) exp(−ik⊥ ·

r⊥)ĉ
†
q,k⊥], where r⊥ = (x, y) and q = (kx, ky, q) = (k⊥, q)

with q = k (for continuous modes) or j (for discrete modes).
The eigenequations (5) are replaced by

(20)
(
L̂2 − k2⊥

)(
L̂1 − k2⊥

)
φq(z) = σqφq(z),

(21)
(
L̂1 − k2⊥

)(
L̂2 − k2⊥

)
ψq(z) = σqψq(z),

where σq ≡ E2
q. We consider a long wavelength perturbation in

the transverse (x and y) directions, thus k2 is a small quantity
⊥
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which can be taken as a small parameter to solve Eqs. (20)
and (21) using a perturbation theory. Taking φq = φ

(0)
q +

k2⊥φ
(1)
q + k4⊥φ

(2)
q + · · ·, ψq = ψ

(0)
q + k2⊥ψ

(1)
q + k4⊥ψ

(2)
q + · · ·

and σq = σ
(0)
q + k2⊥σ

(1)
q + k4⊥σ

(2)
q + · · ·, we get a hierarchy

of the equations on φ
(l)
q , ψ

(l)
q and σ

(l)
q (l = 0,1,2, . . .). The

leading-order solutions, including the zero-modes and the con-
tinuous modes, are just those obtained given above. We are
interested in what will happen for the zero-modes (σ (0)

q = 0)
when the transverse perturbation is applied to the system.
Thus in the following we consider the dynamics of one zero-
mode (say φ

(0)
q (z) = φ1(z) = u1(z) − v1(z) = sech z).2 Be-

cause the leading-order solutions are a set of complete and
orthonormalized functions, all high-order solutions can be
obtained exactly. In the orders l = 1 and 2, for frequency
correction we get σ

(1)
q = −2

∫ ∞
−∞ φ2

1(z) = −4 and σ
(2)
q =

1+ ∫ ∞
−∞ dk a

(1)
k

∫ ∞
−∞ dz [(k2 +1)ψ1(z)ψk(z)−2φ1(z)φk(z)] =

3/2. Here a
(1)
k = −√

π/2k/[(k2 + 1)2 sinh(πk/2)]. Thus under
the long wavelength transverse perturbation the eigenfrequency
corresponding to the zero-mode reads

(22)E1,k⊥ =
√

−4k2⊥ + 3k4⊥/2 = i2k⊥
√

1 − 3k2⊥/8,

which is pure imaginary for k2⊥ < 8/3 and hence the time

growth rate of the zero-mode is Im(E1,k⊥) = 2k⊥
√

1 − 3k2⊥/8.
Another zero-mode displays also similar behavior (see foot-
note 1). Consequently, if there is no confinement in x and y

directions, the soliton condensate will be dynamically unsta-
ble under the long wavelength (i.e. for small k⊥) transverse
perturbation. The origin of this instability comes from the zero-
modes. Thus to repress this instability a confinement in the x

and y directions is necessary. This is why for observing a sta-
ble soliton condensate in experiment one must use a quasi-1D
trapping potential.

We now briefly discuss the experimental aspects of quasi-
1D condensate. Low dimensional BECs have been realized ex-
perimentally [7] and the dark solitons in the BECs have been
investigated intensively [18–20]. Bright solitons and bright soli-
ton trains for attractive atomic interaction have been observed
recently [8,9]. These works will further stimulate intensive
studies on elementary excitations in inhomogeneous Bose sys-
tems. Experimentally, a quasi-1D BEC, as those suitable for the
present work, can be obtained by tightening the confinement in
two transverse directions so that the energy-level spacings in
those directions exceed the interaction energy. Consequently,
the motion of the atoms in the transverse directions is frozen
out and the system is essentially one-dimensional. Note that the
results presented above can be applied to a quasi-1D Bose gas
with attractive atomic interaction. By assuming the 3D field op-
erator with the form Φ̂(r, t) = Φ0(r⊥)Ψ̂ (z, t), where Φ0(r⊥)

is the single-particle ground state wave function in the trans-

2 From (9)–(13) one has φ1(z) = sech z, φ2(z) = z sech z, ψ1(z) =
(1 − z tanh z) sech z, ψ2(z) = tanh z sech z, φk(z) = eikz(1 − k2 −
2ik tanh z)/(

√
2π(k2 + 1)) and ψk(z) = −eikz(1 + k2 + 2ik tanh z −

2 tanh2 z)/(
√

2π(k2 + 1)).
verse directions, one can obtain a quasi-1D Hamiltonian with
the same form of (1) but the coordinate z should be scaled by
l = h̄2/(mI0|U ′

0|) with U ′
0 = U0

∫
dr⊥|Φ0(r⊥)|4.

In conclusion, we have presented rigorous results on the di-
agonalization of a Bogoliubov quasiparticle Hamiltonian for a
inhomogeneous soliton condensate. Based on the set of com-
plete and orthonormalized eigenfunction of the Bogoliubov–
de Gennes equations, we have calculated exactly the quantum
depletion of the condensate. We have shown explicitly that two
degenerate zero-modes, appearing due to the U(1) gauge- and a
translational-symmetry breaking of the system, are the origin of
the quantum diffusion and the transverse instability of the soli-
ton condensate. We should point out that, in our study presented
above, a negligible axial trapping potential has been assumed
thus the results are valid only for a very long cigar-shaped con-
densate. If the axial trapping potential, which breaks also the
translational symmetry of the system, cannot be neglected and
taken as a slowly-varying function, a rigorous result on the
diagonalization of the Bogoliubov Hamiltonian and quantum
depletion of a BEC remains to be a challenge.
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