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Abstract
The statistical properties of Bose-condensed gas in a magnetic trap and an
optical lattice are investigated within the microcanonical ensemble. It is found
that, due to the unique statistical behaviour of the thermal atoms in different
lattice sites, we cannot describe the thermodynamics of the system by the usual
boson statistics. The number of states for a fixed energy and number of atoms is
given, and is used to investigate the distribution of the thermal atoms in different
lattice sites.

The realization of Bose-condensed gas in a magnetic trap and an optical lattice [1] has opened
up many new opportunities to develop a general theory to interpret the unique property of the
ultra-low atomic gas [2]. In contrast to the BEC (Bose–Einstein condensation) in a magnetic
trap, due to the presence of the optical lattice potential, there are a lot of condensates confined
in the lattice sites. Especially, one can control the coherent properties of the condensates in
different lattice sites by increasing the depth of the optical lattice. This sort of manipulation
has led to the experimental realization of the quantum transition from a superfluid to a Mott
insulator [3]. Statistical behaviour is a fundamental problem for the Bose-condensed gas in
the combined potentials. The statistical properties of the ideal and weakly interacting Bose-
condensed gases in a magnetic trap have been studied in a lot of theoretical works [4–17].
As far as we know, there is still no theoretical research on the statistical properties of Bose-
condensed gas in the combined potentials. In particular, it is found that we cannot describe
the statistical properties of Bose-condensed gas in the combined potentials by the usual boson
statistics due to the different statistical behaviour of the thermal atoms and condensates.

For the Bose-condensed gas in an optical lattice, if the depth of the optical lattice is chosen
so that the condensates are in a superfluid state and the tunnel effect for the thermal atoms
in different wells can be omitted, the statistical properties in this case cannot be described
by the usual boson statistics. For this situation, which has been realized in the experiments
for the Bose-condensed gas in 1D (one-dimensional) [18, 19], 2D [20] and 3D [3, 21] optical
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lattices, the thermal atoms in different lattice sites are distinguishable, due to the fact that the
overlap between the wavefunction of the thermal atoms in different lattice sites can be omitted
safely. Note that, due to the superfluid behaviour of the condensates, through the exchanges
between thermal atoms and condensates, there are still exchanges between the thermal atoms
in different lattice sites. Thus the distribution of the thermal atoms in different lattice sites
can be investigated by regarding the system as an equilibrium state. In addition, it is worth
pointing out that the thermal atoms in a lattice site are indistinguishable.

Assuming that the overall number of atoms in the system is N and the overall number of
atoms in the condensates is N0, the overall number of thermal atoms is then NT = N − N0.
Assuming further that NT i is the number of thermal atoms in the i th lattice site, we have
NT = �i NT i . For the thermal atoms in the lattice site, assuming that n j

T i is the number of
thermal atoms in the energy level indexed by j and the i th lattice site indexed by i , we have
NT i = � j n

j
T i . In the microcanonical ensemble, based on the above analysis, the number of

states of the system described by the distribution set {n j
T i , N0} is given by

W {n j
T i , N0} = �NT !

�i NT i !
, (1)

where � is a constant factor which should be investigated carefully. The factor NT i ! in the
above expression is due to the indistinguishable behaviour for the thermal atoms in a lattice
site. In the case of NT → 0, all the atoms are in the condensates (this is a system that can be
investigated by boson statistics) and therefore are indistinguishable, thus W {n j

T i , N0} → 1.
Under this consideration, we have � = 1. Note that, although the form of W {n j

Ti , N0} is similar
to the case of Boltzmann statistics, it is in fact different from Boltzmann statistics in essence. In
the usual Boltzmann statistics, all the particles are regarded as distinguishable. In the problem
discussed here, however, only the thermal atoms in different lattice sites are distinguishable.

In the microscopic ensemble, the overall number of atoms N and the overall energy E are
fixed. The number of states for N and E is then

W {N, E} =
∑
n j

T i

′ NT !

�i NT i !
, (2)

where the prime in the sum denotes the following confinement conditions in the summation
of the above equation:

N = N0 +
∑
i, j

n j
T i , (3)

and

E = E0 +
∑
i, j

ε
j
i n j

T i . (4)

In equation (4), E0 denotes the overall energy of the condensates, while ε
j
i represents energy

level j of the thermal atoms in the i th lattice site. For this confinement condition about E , we
have omitted the interaction energy between thermal atoms and the interaction energy between
thermal atoms and condensates.

Now we turn to calculate the most probable distribution set {n j
T i , N0} by investigating

W {n j
T i , N0}. For equation (1), we have

ln W {n j
T i , N0} = NT (ln NT − 1) −

∑
i

NT i (ln NT i − 1). (5)

In deriving the above equation, we have used the well known Stirling formula ln x! =
x(ln x − 1). Because NT i is the overall number of atoms in the i th well, we have NT i � 1
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for finite temperatures. This means that the Stirling formula can be used in the problem
discussed here. Let {ñ j

T i , Ñ0} denote the distribution of the atoms that maximizes
ln W {n j

T i , N0}. By using the well known method of Lagrange multipliers we have

δ ln W {n j
T i , N0} − α

(
δN0 +

∑
i, j

δn j
T i

)
− β

(
∂ E0

∂ Ñ0

δN0 +
∑
i, j

ε
j
i δn j

T i

)
= 0, (6)

where

δ ln W {n j
T i , N0} = ln ÑT

∑
i, j

δn j
T i −

∑
i, j

ln(ÑT i )δn j
T i . (7)

In addition, α and β are Lagrangian multipliers which will be determined by the confinement
conditions given by equations (3) and (4). The overall energy of the condensates E0 =
Eint + N0ε0, with Eint the interaction energy and N0ε0 the energy due to the presence of the
optical lattice potential. In this situation, ∂ E0/∂ Ñ0 = µ + ε0, with µ = ∂ Eint/∂ Ñ0 (i.e., the
chemical potential of the system) and ε0 the ground state energy level due to the presence of
the optical lattice potential. For equation (6), since δn j

T i and δN0 are independent variations
when the method of Lagrangian multipliers is used, we have

α + β(µ + ε0) = 0, (8)

and

ln(ÑT i) = ln ÑT − β(ε
j
i − ε0 − µ). (9)

The most probable value of the number of atoms in the condensates is then

Ñ0 = N −
∑

i

ÑT i . (10)

Generally speaking, the constants Ñ0 and β can be obtained by using the confinement conditions
given by equations (3) and (4).

From equation (9), one gets

ÑT i = ÑT e−β(ε
j
i −ε0−µ). (11)

From this form, we have β = 1/kB T , with kB the Boltzmann constant and T the temperature.
In equation (11), ε

j
i is j -dependent, while ÑT i is j -independent. For this formula to have

physical significance, we must request that the thermal atoms can only exist in the first excited
state. Assuming ε

f irst
i denotes the energy level of the first excited state, we have

ÑT i = ÑT e−(ε
f irst

i −ε0−µ)/kB T . (12)

Due to the unique statistical property for the Bose-condensed gas in an optical lattice,within the
microcanonical ensemble, the high excited states of thermal atoms are frozen out. Nevertheless,
there is still the possibility that the thermal atoms can exist in the high excited states when
the fluctuations are considered, and especially when there is an energy exchange between the
system and the external environment, where the canonical ensemble should be used. For the
Bose-condensed gas in optical lattices, the thermal atoms can exist in different lattice sites.
Assuming (2kT M +1) is the number of lattice sites that have thermal atoms,kT M can be obtained
by the normalization condition �i ÑT i = ÑT , i.e.,

kT M∑
i=−kT M

e−(ε
f irst
i −ε0−µ)/kB T = 1. (13)



L124 Letter to the Editor

Now we turn to discuss the experiment of the Bose-condensed gas in a 1D optical lattice
by using the theory developed here. For the Bose-condensed gas in 1D optical lattices, µ can
be regarded as the chemical potential of the system, and is given by [19, 22]

µ = 1
2 mω2

x k2
Md2, (14)

where (2kM + 1) is the total number of condensates in the optical lattice potential. Note that
kM is different from kT M . When the harmonic potential of the magnetic trap is considered, we
have ε

f irst
i − ε0 = h̄ω̃x + mω2

x i2d2/2. The normalization condition is then

kT M∑
i=−kT M

e−(h̄ω̃x +mω2
x d2(i2−k2

M )/2)/kB T = 1. (15)

By using the experimental parameters ωx = 2π × 9 Hz, ω̃x ≈ 2π × 14 kHz and kM ≈ 100,
T ≈ 200 nk [19], we have kT M = 12. This shows that kT M � kM , i.e., the thermal atoms
exist mainly in the central lattice sites in the thermal equilibrium. When the overall number
of thermal atoms NT is approximated as 5 × 103, the number of thermal atoms in each lattice
site is estimated to be 21, which shows that the Stirling formula can be used safely. For the
experimental parameters used in [19], the result of kT M � kM makes it possible to test the effect
obtained here, i.e., the thermal cloud would exist mainly in the centre of the one-dimensional
optical lattice.

In conclusion, the statistical property of the Bose-condensed gas in a magnetic trap and
a 1D optical lattice is investigated within the microcanonical ensemble. It is obvious that the
theory proposed here can be developed to investigate the case of 2D and 3D optical lattices.
When 2D and 3D optical lattices are used, one expects that there will be some new effects
due to the different confinement conditions of the lattice sites. For example, for a 2D optical
lattice whose radial trapping angular frequency is much larger than the angular frequency of
the magnetic trap, the subcondensate in each lattice site would be a quasi-1D case. When
canonical and grand canonical ensembles are used to investigate the thermodynamics of the
system, we should also consider the distinguishable behaviour of the thermal atoms in different
lattice sites.
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