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Stable High-Dimensional Weak-Light Soliton Molecules and
Their Active Control

Lu Qin, Chao Hang, Boris A. Malomed, and Guoxiang Huang*

Bound states of solitons, alias soliton molecules (SMs), are well known in 1D
systems, while making stable bound states of multidimensional solitons is a
challenging problem because of the underlying instabilities. Here, a scheme
for the creation of stable (2+1)D and (3+1)D optical SMs in a gas of cold
Rydberg atoms is proposed, in which electromagnetically induced
transparency (EIT) is induced by a control laser field. It is shown that, through
the interplay of the EIT and the strong long-range interaction between the
Rydberg atoms, the system gives rise to giant nonlocal Kerr nonlinearity,
which in turn supports stable (2+1)D spatial optical SMs, as well as
ring-shaped soliton necklaces, including rotating ones. They feature a large
size, low generation power, and can be efficiently manipulated by tuning the
nonlocality degree of the Kerr nonlinearity. Stable (3+1)D spatiotemporal
optical SMs, composed of fundamental or vortex solitons, with low power and
ultraslow propagation velocity, can also be generated in the system. These
SMs can be stored and retrieved through the switching off and on of the
control laser field. The findings reported here suggest applications to data
processing and transmission in optical systems.
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1. Introduction

Solitons are self-trapped wave packets
maintained by the interplay between
dispersion (and/or diffraction) and
nonlinearity of host media.[1,2] They
are ubiquitous in nature, having been
discovered in many areas, including hy-
drodynamics and plasmas,[3] optics,[4–14]

Bose–Einstein condensates,[15–18]

superconductivity,[19] solid-state physics,
magnetic media, etc.[20–22] While in
(nearly) integrable systems solitons
interact elastically,[1,2] collisions be-
tween them in nonintegrable settings
exhibit a variety of outcomes, includ-
ing, in particular, fusion, fission, and
annihilation.[23–35] In this context, bound
states of solitons[36–46] often referred
as soliton molecules (SMs), are objects
of great interest, as they demonstrate
unique properties and offer various
potential applications for working with

mode-locked fiber lasers, matter waves, optical microresonators,
polariton superfluids, and other physical realizations.[47–79] Es-
pecially promising applications of SMs in the area of photon-
ics include the design of new laser schemes, switchers, and data
carriers.[55,58,62,77]

Previous studies of SMs were chiefly limited to 1D systems
with local nonlinearity, such as temporal SMs in fiber lasers. In
such systems, the interaction between solitons in the SM is deter-
mined by the overlap of “tails” of the wave functions of adjacent
solitons, which rapidly decays as the separation between the soli-
tons increases. As a result, the size of SMs in locally nonlinear
media usually does not exceed two or three widths of the sin-
gle soliton, and they may be readily subject to instability against
long-wavelength transverse perturbations when the 1D setting is
embedded in the 3D space. In fact, unlike 1D solitons, which are
normally stable states, stability of 2D and 3D solitons is a problem
as the usual cubic self-focusing gives rise to the critical and super-
critical collapse in the 2D and 3D space, respectively,[3,80–83] which
makes multidimensional solitons unstable in these simple mod-
els. Stillmore unstable, against spontaneous splitting, are 2D and
3D solitons with embedded vorticity.[84–86] Therefore, identifica-
tion of physically relevant mechanism for stabilizing fundamen-
tal and vortex solitons is a problem of fundamental significance.
In recent years, it was addressed in various models, leading
to predictions of stable multidimensional solitons in relatively
sophisticated settings.[82,86–89] Experimentally, stable 2D spatial
solitons were created in an optical medium with cubic-quintic
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nonlinearity,[90] and in various forms of quasi-soliton “quantum
droplets” in BECs.[91–96] As for 2D solitons with embedded vortic-
ity, so far they were experimentally demonstrated only in a tran-
sient form, being temporarily stabilized in an optical material
with the saturable self-focusing and three-photon absorption.[97]

Another promising possibility is the use of optical media with
nonlocal interactions, which make it possible to support stable
multidimensional solitons[98–113] and long-range interactions be-
tween them.[114,115] The objective of the present work is to elab-
orate a scenario for the creation of stable 2D and 3D optical
SMs in a cold Rydberg atomic gas, under the condition of the
electromagnetically induced transparency (EIT).[116] The large
electric-dipole moments of Rydberg atoms give rise to strong
long-range interactions between them.[117–119] The interplay of
Rydberg–Rydberg interactions with EIT gives rise to a giant non-
local Kerr nonlinearity.[120–123] In this work, we find that the sys-
tem supports stable 2D spatial optical SMs that can be built of
fundamental or vortex solitons, with the size more than six times
the soliton’s width (≈ 100 μm). Furthermore, the power required
to generate SMs is found to be at microwatts, which is, at least,
three orders of magnitude smaller than SM-generation power
in fiber-laser systems and solid-state media such as, lead glass,
where it may be up to several watts;[67–70,75,114] moreover, proper-
ties of the Rydberg-EIT medium make it possible to efficiently
control the size of SMs by tuning the degree of the nonlocality of
the Kerr nonlinearity.
In addition to two-solitonmolecules, stable ring-shaped bound

states built of several solitons (“necklaces”), fundamental or vor-
tex ones, carrying overall phase circulation, are constructed too,
including rotating necklaces.
We also find that stable bound states of fundamental and vortex

3D spatial-temporal solitons, with ultralow propagation velocity
(≈ 10−5 c, where c is the light speed in vacuum) and ultralow gen-
eration power, can be created by means of an appropriate combi-
nation of nonlocal and local Kerr nonlinearities in such a Rydberg
gas. An essential asset of the system under the consideration is
that it is highly controllable, admitting one to store and retrieve
the predicted 3D spatiotemporal SMswith high fidelity by switch-
ing the control field off and on. The results reported here suggest
the realization of novel SMs at weak-power levels, and implemen-
tation of their effective manipulation, with potential applications
to optical data processing and transmission.
The following presentation is arranged as follows. In Section 2,

we describe the physical model and derive an envelope equa-
tion governing the propagation of the probe field. In Section 3,
we address the interaction between spatial solitons, formation of
SMs, and necklace-shaped bound states, and manipulation with
them by adjusting the nonlocal Kerr nonlinearity. The possibili-
ties to create and manipulate stable spatiotemporal SMs are re-
ported in Section 4. The work is summarized in Section 5.

2. The Model

2.1. The Physical Setup

We start by considering a laser-cooled, dilute three-level atomic
gas, interacting with a weak probe laser field Ep with center
frequency 𝜔p (wavenumber kp = 𝜔p∕c), driving the transition|1⟩ ↔ |2⟩, and a strong, continuous-wave control laser field Ec

Figure 1. Schematics of the model. a) Energy-level diagram and excitation
scheme of two ladder-type three-level atoms. |1⟩, |2⟩, and |3⟩ are respec-
tively the ground, intermediate, and Rydberg states; Γ12 and Γ23 are re-
spectively decay rates of |2⟩ and |3⟩; Ωp and Ωc are respectively half Rabi
frequencies of the probe and control laser fields; Δ2 and Δ3 are respec-
tively one- and two-photon detunings. The interaction between the two
Rydberg atoms is described by the van der Waals potential VvdW(r

′ − r) =
−ℏC6∕|r′ − r|6. b) Top part: possible experimental geometry. Bottom part:
the contactless interaction between two optical vortices, which form a sta-
ble vortex molecule.

with frequency 𝜔c (wavenumber kc = 𝜔c∕c), driving the transi-
tion |2⟩ ↔ |3⟩; see Figure 1a.
Here |1⟩, |2⟩, and |3⟩ denote, respectively, the ground, interme-

diate, and high-lying Rydberg states;Γ12 andΓ23 are spontaneous-
emission decay rates from |2⟩ to |1⟩ and from |3⟩ to |2⟩, respec-
tively. The interaction between the two Rydberg atoms respec-
tively at positions r and r′ is described by the van derWaals (vdW)
potential

VvdW = ℏV(r′ − r) ≡ −
ℏC6|r′−r|6 (1)

with C6 the dispersion coefficient.[117,118] The initial atomic pop-
ulation is prepared in the ground state |1⟩. The total electric-field
vector in the system is given by E = Ec + Ep ≡ ∑

l=c,pel l exp[i(kl ⋅
r − 𝜔lt)] + c.c., where c.c. stands for the complex conjugate, while
ec and ep (c and p) are, respectively, polarization unit vec-
tors (envelopes) of the control and probe fields. To suppress
the Doppler effect, the probe and control fields are assumed to
counter-propagate along the z-direction, that is, kp = kpez and
kc = −kcez, with ez being the unit vector of the z direction.
The Hamiltonian of the system is given by Ĥ =

a ∫ d3r̂0(r, t) + (a∕2) ∫ d3r̂1(r, t). Here d3r = dxdydz,
a is atomic density, ̂0(r, t) is the Hamiltonian density de-
scribing the atoms and the coupling between the atoms and
light fields, ̂1(r, t) is the Hamiltonian density describing the
Rydberg–Rydberg interaction. Under the electric-dipole and
rotating-wave approximations, ̂0 and ̂1 have the forms

̂0 = −
3∑

𝛼=2
ℏΔ𝛼Ŝ𝛼𝛼 (r, t) − ℏ

[
ΩpŜ12 + ΩcŜ23 + h.c.

]
(2)

̂1 = a ∫ d3r′Ŝ33(r
′, t)ℏV(r′ − r)Ŝ33(r, t) (2)
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Here Δ2 = 𝜔p − (E2 − E1)∕ℏ and Δ3 = 𝜔p + 𝜔c − (E3 − E1)∕ℏ
are, respectively, the one- and two-photon detunings, with
E𝛼 being the eigenvalue of the energy of the state |𝛼⟩;
Ŝ𝛼𝛽 ≡ 𝜎𝛽𝛼 exp{i[(k𝛽 − k𝛼) ⋅ r − (𝜔𝛽 − 𝜔𝛼 + Δ𝛽 − Δ𝛼)t]} is the
atomic transition operator[124]; Ωp = (ep ⋅ p12)p∕(2ℏ) and
Ωc = (ec ⋅ p23)c∕(2ℏ) are, respectively, half Rabi frequencies of
the probe and control fields, with p𝛼𝛽 the electric-dipole matrix el-
ements associated with the transition |𝛽⟩ ↔ |𝛼⟩. The potential V
in the expression of ̂1 is taken as per Equation (1).

[117,118,120,121]

The atomic dynamics is governed by the Heisenberg equa-
tion of motion for the operators Ŝ𝛼𝛽 (r, t), that is, iℏ

𝜕

𝜕t
Ŝ𝛼𝛽 (r, t) =

[Ĥ, Ŝ𝛼𝛽 (r, t)]. Taking expectation values on the both sides of this
equation, we obtain the optical Bloch equation involving one- and
two-body reduced density matrices, with the form

𝜕𝜌

𝜕t
= − i

ℏ

[
Ĥ0, 𝜌

]
− Γ

[
𝜌
]
+ R̂ [𝜌2body] (3)

where 𝜌(r, t) is reduced one-body density matrix (DM) with ma-
trix elements 𝜌𝛼𝛽 (r, t) ≡ ⟨Ŝ𝛼𝛽 (r, t)⟩, Γ is a 3 × 3 relaxation matrix
describing the spontaneous emission and dephasing. Due to the
existence of the Rydberg–Rydberg interaction, two-body reduced
DM, that is, 𝜌2body(r

′, r, t) (with DM elements 𝜌𝛼𝛽,μ𝜈(r
′, r, t)), is in-

volved in Equation (3), represented by the last term R̂ [𝜌2body]. The
explicit formof Equation (3) is given in Section S1, Supporting In-
formation.
From Equation (3), we see that to get the solution of one-body

DM elements 𝜌𝛼𝛽 , equations for two-body elements 𝜌𝛼𝛽,μ𝜈 are
needed, which, in turn, involve three-body DM element 𝜌𝛼𝛽,μ𝜈,𝛾𝛿 ,
and so on. As a result, one obtains a hierarchy of infinite equa-
tions for N-body DM elements (N = 1, 2, 3,⋯) that must be
solved simultaneously. To solve such a chain of equations, a
suitable treatment beyond mean-field approximation must be
adopted. A powerful one is the reduced density-matrix expansion,
by which the hierarchy of the infinite equations is truncated con-
sistently and the problem is reduced to solving a closed system of
equations for the one- and two-body DM elements, as elaborated
recently.[113,122,125]

The propagation of the probe field is governed by the Maxwell
equation, which, under the slowly-varying-envelope approxima-
tion, is reduced to[122]

i
(
𝜕

𝜕z
+ 1

c
𝜕

𝜕t

)
Ωp +

c
2𝜔p

∇2
⟂Ωp + 𝜅12 𝜌21 = 0 (4)

Here ∇2
⟂ = 𝜕2x + 𝜕2y and 𝜅12 = a𝜔p|p12|2∕(2𝜀0cℏ)

2.2. The Nonlinear Envelope Equation

Since the probe field is much weaker than the control field,
the depletion of the atomic population in the ground state is
small and a standard perturbation method can be applied to
solve the system ofMaxwell–Bloch (MB) equations (Equations (3)
and (4)). To include the many-body correlations produced by
the strong Rydberg–Rydberg interactions in a reasonable way,
a beyond mean-field approximation[113,122,125] mentioned above
must be used. Then, in the leading-order approximation, we

obtain the solution for the probe field Ωp = F(x, y, z, t)eiK(𝜔)z−i𝜔t,
where F denotes a slowly varying envelope function and K(𝜔)
stands for the linear dispersion relation, K(𝜔) = 𝜔∕c + 𝜅12(𝜔 +
d31)∕[|Ωc|2 − (𝜔 + d21)(𝜔 + d31)].
At the third-order approximation (details are given in Sec-

tion S2, Supporting Information), we obtain the nonlinear equa-
tion for the probe-field envelope

i 𝜕
𝜕z

Ωp +
c

2𝜔p
∇2

⟂Ωp −
K2

2
𝜕2

𝜕T2
Ωp +W|||Ωp

|||2Ωp + Ωp

∫ ∫ dxdyG(x′ − x, y′ − y)|||Ωp(x
′, y′, z, T)|||2 = 0 (5)

where T = t − z∕Vg, with Vg = (𝜕K∕𝜕𝜔)−1 being the group veloc-
ity of the envelope, and K2 = 𝜕2K∕𝜕𝜔2 defines the group-velocity
dispersion. The last two terms in Equation (5) contributed, re-
spectively, from the local and nonlocal optical Kerr nonlineari-
ties in the system. Explicit expressions of the coefficientsW and
G (nonlocal nonlinear response function) are given in Section
S2, Supporting Information. The local optical Kerr nonlinear-
ity is contributed to by the short-range interaction between pho-
tons and atoms, proportional to the atomic densitya, whereas
the nonlocal optical Kerr nonlinearity is contributed by the long-
range Rydberg–Rydberg interaction, which scaled quadratically
with the atomic density (i.e., proportional to 2

a ).
Equation (5) can be further written into the non-dimensional

form

i𝜕u
𝜕𝜁

+
(

𝜕2

𝜕𝜉2
+ 𝜕2

𝜕𝜂2

)
u + d 𝜕

2u
𝜕𝜏2

+ w|u|2u + u

∫ ∫ d𝜉′d𝜂′g(𝜉′ − 𝜉, 𝜂′ − 𝜂)|||u (𝜉′, 𝜂′, 𝜁 , 𝜏)|||2 = 0 (6)

where u = Ωp∕U0, 𝜁 = z∕(2Ldiff ), (𝜉, 𝜂) = (x, y)∕R0, 𝜏 =
T∕𝜏0, d = −sgn(K2)Ldiff∕Ldisp, w = 2Ldiff |U0|2W, and
g = 2LdiffR

2
0|U0|2G(𝜉′ − 𝜉, 𝜂′ − 𝜂), with the diffraction and

dispersion lengths respectively given by Ldiff = 𝜔pR
2
0∕c and

Ldisp = 𝜏20∕|K2|. Here U0, R0, and 𝜏0 are typical half Rabi fre-
quency, beam radius in the transverse plane (x, y), and temporal
duration of the probe-field envelope, respectively.
To address a typical example, we consider laser-cooled stron-

tium 88Sr atoms, with atomic levels |1⟩ = |5s2 1S0⟩, |2⟩ =|5s5p 1P1⟩, and |3⟩ = |5sns 1S0⟩. For the principal quan-
tum number n = 60, the dispersion parameter C6 ≈ 2𝜋 ×
81.6GHz μm6 (which implies the Rydberg–Rydberg interaction
is attractive). The spontaneous emission decay rates are Γ12 ≈
2𝜋 × 32 MHz and Γ23 ≈ 2𝜋 × 16.7 kHz, while the detunings are
taken to be Δ2 = −2𝜋 × 240 MHz and Δ3 = −2𝜋 × 0.16 MHz.
The density of the atomic gas isa = 9 × 1010 cm−3, and the half
Rabi frequency of the control field is Ωc = 2𝜋 × 5 MHz. Since
Δ2 ≫ Γ12, Δ3, which makes the system works in a dispersive
nonlinearity regime, the imaginary parts of coefficients in Equa-
tion (5) are much smaller than the corresponding real parts, and
hence Equation (6) can be approximately considered as a real-
coefficient one.
The nonlocal nonlinear response function g(𝜉′ − 𝜉, 𝜂′ − 𝜂) has

a very complicated expression. For the convenience of the sub-
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sequent variational calculation for the interaction force between
solitons, we approximate it by a Gaussian function, that is,

g ≈ gF ≡ g0

(0.64 𝜎
√
𝜋)

2
e
− (𝜉−𝜉′ )2+(𝜂−𝜂′ )2

(0.64 𝜎)2 (7)

(details of relations between g and gF are given in Section S3,
Supporting Information), where g0 = ∫ ∫ d𝜉d𝜂g(𝜉′ − 𝜉, 𝜂 − 𝜂) is
a constant and 𝜎 characterizes the nonlocality degree of the non-
linearity, defined as

𝜎 = Rb∕R0 (8)

Here Rb = (|C6∕𝛿EIT|)1∕6 denotes the Rydberg blockade radius,
where 𝛿EIT ≈ |Ωc|2∕|Δ2| is the linewidth of the EIT transmis-
sion spectrum for |Δ2| ≫ Γ12.[120,121] With the values of param-
eters adopted above, we get Rb ≈ 9.6 μm. If Rb ≪ R0 (i.e., 𝜎 → 0,
the local limit), the nonlocal response reduces to the delta func-
tion, that is, g0𝛿(𝜉 − 𝜉′, 𝜂 − 𝜂′). In this limit, the nonlocal Kerr
nonlinearity is reduced to the usual local term, g0|u|2u. If Rb ≫
R0 (𝜎 → ∞, the strongly nonlocal limit), the nonlocal response,
given by Equation (7), reduces to a linear term g0Pu, where P =
∫ ∫ d𝜉d𝜂 |u|2 is the power of the probe field (this limit corre-
sponds to the so-called “accessible-soliton” model, which is actu-
ally a limit one[98,100]).
The susceptibility of the probe field is defined by 𝜒p =a(ep ⋅ p12)

2𝜌21∕(𝜀0ℏΩp), which can be further expressed as 𝜒p ≈
𝜒 (1) + 𝜒

(3)
loc|p|2 + 𝜒

(3)
nloc|p|2. In this expansion, 𝜒 (1) represents the

linear susceptibility; 𝜒 (3)
loc and 𝜒

(3)
nloc are respectively the local and

nonlocal third-order nonlinear susceptibilities, associated to the
coefficients of Equation (5) as

𝜒
(3)
loc

=
2(ep ⋅ p12)

2

kpℏ2
W, 𝜒

(3)
nloc

=
2(ep ⋅ p12)

2

kpℏ2 ∫ ∫ dx′dy′G(x′ − x, y′ − y)

(9)

With the system’s parameters introduced above, we obtain 𝜒
(3)
loc ≈

10−11 m2 V−2 and 𝜒
(3)
nloc ≈ 10−8 m2 V−2, that is, the nonlocal op-

tical Kerr nonlinearity is three orders of magnitude stronger than
the local one due to the Rydberg–Rydberg interaction.

3. Nonlocal (2+1)D Spatial Solitons and Vortex
Molecules

3.1. The Interaction between Two Nonlocal (2+1)D Spatial
Solitons

We now address the interaction force between two nonlocal
(2+1)D[126] spatial solitons. By setting d = 0 (which implies that
time duration 𝜏0 of the probe field is large enough to make the
dispersion of the system negligible, valid for Ldisp ≫ Ldiff ), Equa-
tion (6) reduces to the form

i𝜕u
𝜕𝜁

+
(

𝜕2

𝜕𝜉2
+ 𝜕2

𝜕𝜂2

)
u + w|u|2u + u

∫ ∫ d𝜉′d𝜂′g(𝜉′ − 𝜉, 𝜂′ − 𝜂)|||u (𝜉′, 𝜂′, 𝜁)|||2 = 0 (10)

The Lagrangian corresponding to this equation is L =
∫ ∫ ∞

−∞d𝜉d𝜂 , with the density  = i
2
(uu∗

𝜁
− u∗u𝜁 ) + |u𝜉|2 +|u𝜂|2 − w

2
|u|4 − 1

2
|u|2 ∫ ∫ g(𝜉 − 𝜉′, 𝜂 − 𝜂′)|u(𝜉′, 𝜂′, 𝜁 )|2d𝜉d𝜂.

The bound state of two solitons (i.e., the two-soliton
“molecule”) is sought by means of the ansatz

u(𝜉, 𝜂) = u+(𝜉, 𝜂) − u−(𝜉, 𝜂) (11)

with each soliton approximated by a Gaussian, that is,

u± = A e−[(𝜉±∕2)2+𝜂2]∕(2a2)+ib(𝜉2+𝜂2)+i𝜙 (12)

It includes two identical Gaussian beams, located at different
positions (−∕2, 0) and (∕2, 0), with a 𝜋 phase difference.
Variational z-dependent parameters are A (amplitude),  (spa-
tial separation), b (chirp), and 𝜙 (phase), while the total power
P = 2𝜋a2A2[1 − e−2∕(4a2)] is a conserved quantity. Due to the 𝜋
phase difference, there is a repulsive interaction between the
two solitons. Such a repulsive interaction is expected to bal-
ance the attractive interaction induced by the self-focusing nonlo-
cal optical Kerr nonlinearity (induced by the attractive Rydberg–
Rydberg interactions), and thus help to form a stable two-soliton
molecule.[127]

Following the standard procedure of the variational
approximation,[113,127–129] one can derive evolution equations for
the variational parameters A, , b, and 𝜙, and hence the
equation of motion for the spatial separation  between center-
of-mass positions of the interacting solitons

d
d𝜁

=
16b

[
1 − e−2∕(4a2)] [(a2 +2∕4)e2∕(4a2) − a2

]
[(e2∕(4a2) − 1) −2∕(4a2)]

(13)

This equation can be cast in the form of the equation of motion
for the Newtonian particle Ms(d

2∕d𝜁 2) = −𝜕U∕𝜕, where Ms
is the effective mass of each soliton and U = U() denotes the
effective potential which accounts for the interaction between the
two solitons.
We recall that in locally nonlinear media, the interaction be-

tween two solitons is determined by the overlap between their
wave functions, which quickly decays as the separation between
them increases. Normally, the interaction becomes negligible if
the separation between the solitons is 2–3 times greater than their
widths.[114] Nevertheless, for nonlocally nonlinear media the in-
teraction between two solitons takes place when they have no
tangible overlap, which may be called contactless interaction. To
demonstrate this clearly, we introduce an overlap parameter

J =
∫ ∫ ∞

−∞d𝜉d𝜂|u+u−|2
∫ ∫ ∞

−∞d𝜉d𝜂|u+|2 ∫ ∫ ∞
−∞d𝜉d𝜂|u−|2 (14)

where u+ and u− are introduced in Equation (12). Figure 2a shows
J as a function of 𝜎 for the ansatz (11), with system’s parameters
A = 2, b = 0, a = 1, and 𝜙 = 0. We see that J is non-vanishing
only for 𝜎 ⩽ 0.2.
For locally nonlinear media (for which 𝜎 ≈ 0), the interaction

between two solitons is negligible when there is no overlap be-
tween the solitons.However, the interaction between the two soli-
tons is non-zero even they has no overlap if the nonlocality degree
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Figure 2. Contactless interaction between two-soliton molecule. a) The overlap measure J, defined as per Equation (14), as a function of the nonlocality
degree 𝜎 of the Kerr nonlinearity. Inset: Amplitude |u| of the two-soliton set as a function of 𝜉. Inset: |u| for 𝜂 ≡ y∕R0 = 0. b) The effective potential U of
the soliton–soliton interaction versus 𝜆 = ∕(2a) with 𝜎 = 1.8. The black dot marks the minimum of the potential energy, Umin. Inset: The equilibrium
separation between the solitons, 0, versus the nonlocality degree 𝜎.

of the Kerr nonlinearity reaches to a critical value (i.e., 𝜎 ≥ 0.2 in
the present Rydberg gas). To characterize the size of the SM, we
define the separation-width ratio

𝜆 = ∕(2a), (15)

that is, the ratio of the separation of the two solitons, , to the
width of a single soliton, 2a (see Figure 2a). Shown in Figure 2b
is the effective interaction potential U (calculated following ref.
[127]) as a function of 𝜆 for the ansatz (11) with 𝜎 = 1.8, A = 2,
b = 0, a = 1, and 𝜙 = 0. It is seen thatU has a minimumUmin at
𝜆 ≈ 4.6, which corresponds to separation  = 0 ≈ 9.2 between
the two solitons. Thus, it is possible to expect the existence of
the SM with size close to 0. Because the width of each soli-
ton in the SM is 2a = 2, and the separation between them at
the equilibrium position is0 = 9.2, the effective soliton interac-
tion is indeed contactless. The reason for the occurrence of such
a contactless interaction between the solitons is due to the gi-
ant nonlocal Kerr nonlinearity, which induces significant inter-
action between the solitons while their wave functions exhibit
no overlap in space. On the other hand, in media with the lo-
cal Kerr optical nonlinearity, the interaction between solitons,
and hence the formation of SMs, is determined by the overlap
of “tails” of the wave functions of adjacent solitons, and becomes
negligible when there is no overlap between the solitons. Conse-
quently, SMs in locally nonlinear media usually have only a small
separation-width ratio.
Shown in the inset to Figure 2b is the equilibrium separation

0 between the two solitons as a function of the degree of the
nonlocality of the Kerr nonlinearity 𝜎. It is seen that, as 𝜎 in-
creases, 0 grows at first, reaches its maximum, and decreases,
eventually saturating to a small value. Thus, by changing 𝜎, one
can control0 and thus the size of the SM. The maximum value
of 0 is obtained at 𝜎 ≈ 1.6, which is about 13.6, and the cor-
responding size of the SM in physical units is 13.6R0 ≈ 82 μm.
Such a value is a realistic one for the experimental observation in
Rydberg gases.[130]

3.2. The Formation and Propagation of Nonlocal (2+1)D Spatial
Soliton Molecules

3.2.1. Two-Soliton Molecules

We proceed to the investigation of the formation and propagation
of stable (2+1)D spatial SMs by means of numerical simulations
of Equation (6). Figure 3a shows the amplitude of a typical two-
soliton molecule at 𝜁 = 0 and 12, the latter value corresponding,
in physical units, to z ≈ 1.2 cm for Ldiff ≈ 0.49 mm. The initial
condition for the simulation are chosen as per ansatz (11) with a
small random perturbation introduced by the factor

Random = 1 + 𝜀R(𝜉, 𝜂) (16)

multiplying the initial configuration. Here, 𝜀 ≪ 1 is the ampli-
tude of the perturbation, and R is a random variable uniformly
distributed in the interval [0,1]. Parameters of the initial condi-
tion are taken as 𝜎 = 1.8, A = 2, a = 1,  = 0 = 9.2 (𝜆 ≈ 4.6),
b = 𝜙 = 0, and 𝜀 = 0.05. The SM is found to be stable as it re-
laxes to the self-cleaned form close to the unperturbed one and
undergoes no apparent distortion during propagation.
Shown in Figure 3b is the case where the two solitons are ini-

tially placed in their equilibrium positions. We see that the SM is
stable and without conspicuous intrinsic oscillations. However,
when the two solitons are slightly shifted from their equilibrium
positions (by taking  = 12 > 0 = 9.2 at 𝜁 = 0), they perform
a small oscillation around the equilibria, if no additional pertur-
bations are introduced; see Figure 3c. The existence of such an
excited state of the SM clearly corroborates that the static coprop-
agation of the two solitons in Figure 3a (as well as in Figures 3e,
5a, and 6 below) is indeed provided by the fact that they form the
stable bound state, rather than by trivial absence of interaction
between two well-separated solitons.
Figure 3d illustrates the same outcome of the evolution, ex-

cept that we have added initial velocities v = ±0.5 to the soli-
tons, to admit the consideration of the generation of the two-
soliton molecule under experimentally relevant conditions, and
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Figure 3. The propagation of a (2+1)D spatial two-soliton molecule. a) Amplitude profiles |u|, at different propagation distances, 𝜁 = z∕(2Ldiff ) = 0 and
12. When two solitons are placed in their equilibrium positions, they form a stable molecule. Here 𝜎 = 1.8, A = 2, a = 1, b = 0, 𝜙 = 0, and = 0 = 9.2.
b) When the solitons are placed in their equilibrium positions, they form a stable (2+1)D spatial SM. Parameters are the same as in (a). c) When the
solitons are initially shifted from their equilibrium positions, they perform a small oscillation around the equilibria, if no additional perturbations are
introduced. Parameters are the same as (a). d) Amplitude profiles |u| with nonzero initial velocity v = ±0.5 at propagation distances 𝜁 = z∕(2Ldiff ) = 0
and 12. In that case, white arrows designate the direction of the rotation of the emerging SM. e) The buildup of stable (2+1)D spatial SMs. It display
the first (0 ⩽ 𝜁 ⩽ 10) and second stages (10 ⩽ 𝜁 ⩽ 20) of the evolution. Shown in (b,c,e) are for |u| in the cross section 𝜂 ≡ y∕R0 = 0.

the study of the role of the incident velocity of the solitons, see ref.
[131]). In this case, the SM exhibits persistent rotation, keeping
its stability in the course of the propagation. As the rotation re-
sults in an additional centrifugal force acting on each soliton, the
size of the rotating SM is larger than that of the non-rotating one.
Another way for spontaneous generation of (2+1)D spatial

SMs is provided by the modulational instability (MI). Figure 3e
shows the MI-driven buildup of stable (2+1)D SMs. The ini-
tial condition for the simulations is chosen as a slightly per-
turbed plane-wave state, that is, 1 + 𝜀 cos(0.5𝜉) with 𝜀 = 10−4. It
is seen that, at the first stage of the evolution, 0 ⩽ 𝜁 ⩽ 10, the
MI develops and two bright solitons appears, which bind into a
soliton molecule along with some small radiations. At the sec-
ond stage, 10 ⩽ 𝜁 ⩽ 20, we propagate the emerging SM after
filtering out small radiation. It is found that the SM, built at
the first stage of the evolution, remains stable over a very long
distance.

The input power used for the generation of (2+1)D spatial
SMs considered here can be estimated by computing the cor-
responding Poynting’s vector integrated over the cross-sectional
area of the probe beam, that is, P = ∫ dS(Ep ×Hp) ⋅ ez, where ez
is the unit vector in the propagation direction. Assuming that
Ep = (Ep, 0, 0) and Hp = (0, Hp, 0), with Hp = 𝜀0cnpEp (np is the
refractive index), one can readily obtain

Pgen = 2𝜀0cnpS0

(
2ℏ
p13

)2|Ωp|2 ≈ 3.6 μW (17)

where S0 denotes the cross-sectional area of the probe beam.
Thus, very low input power is sufficient for the creation of such

nonlocal (2+1)D spatial two-soliton molecules with the help of
the giant nonlocal Kerr nonlinearity in the present system. This
fact may be highly beneficial for applications to optical data pro-
cession and transmission, using low-level light powers.
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Figure 4. The simulated propagation of a (2+1)D necklace-shaped SM built of N solitons with N = 3 and 6. a) The amplitude profile of |u(𝜉, 𝜂)| with
(N,m) = (3, 1) in the plane of 𝜉 = x∕R0 and 𝜂 = y∕R0 at different propagation distances 𝜁 = z∕(2Ldiff ) = 0, 2, 4, respectively. The fourth column are
amplitude profiles |u| with nonzero initial tangential velocity v = 0.6 at propagation distances 𝜁 = z∕(2Ldiff ) = 4. In that case, white arrows designate
the direction of the rotation of the emerging SM. The rightmost panel shows the phase distribution in the (2+1)D spatial SM at 𝜁 = 0. The parameters
are A = 1.2, 𝜌0 = 5, a = 1.45, and b = 0. b) The same as in (a), but for (N,m) = (6, 2).

3.2.2. Multi-Soliton Molecules

Besides the two-soliton SMs, the Rydberg-EIT system can also
support stable nonlocal (2+1)D N-soliton molecules with N ≥ 3.
The N-soliton molecule in a ring-shape configuration (i.e., as
a soliton necklace, which may be readily supported by nonlocal
nonlinearities[132]) can be sought by using the trial solution

u = A
N∑
n=1

e−[(𝜉−𝜉n)
2+(𝜂−𝜂n)2]∕(2a2)+ib(𝜉2+𝜂2)+i(𝜙n+𝜙) (18)

where (𝜉n, 𝜂n) = 𝜌0[cos(2𝜋n∕N), sin(2𝜋n∕N)] is the center-of-
mass position of the nth Gaussian beam, with 𝜌0 being the ring’s
radius. The phase of the nth beam is 𝜙n = 2𝜋mn∕N; the overall
phase imposed on the ring-shaped configuration is 2𝜋m. Herem
is a positive integer taking in the interval (N∕4, N∕2]. In this way,
the phase difference between two adjacent beams, 𝜙n+1 − 𝜙n, is
given by 𝜋∕2 < 𝜙n+1 − 𝜙n ⩽ 𝜋, which introduces a repulsive in-
teraction between the beams and balances the attractive inter-
action due to the self-focusing nonlocal Kerr nonlinearity, and
hence is in favor of the formation of a N-soliton molecule. The
meanings of parameters A, a, b, and 𝜙 in ansatz (18) is the same
as in Equation (12). Following the variational procedure similar to
that used above, one can derive equations for parameters A, 𝜌0, b,
and 𝜙. As the number of the variational parameters forN-soliton
molecules is much larger than for the two-soliton ones, we resort
to numerical methods for solving the variational equations.
Figure 4a,b displays, respectively, the simulated propagation

of three- and six-soliton molecules. The initial conditions are
chosen as per Equation (18), respectively with (N,m) = (3, 1)
and (N,m) = (6, 2), multiplied by the random-perturbation fac-
tor (Equation (16)). The parameters of the input are taken as
A = 1.2, 𝜌0 = 5, a = 1.45, b = 𝜙 = 0, and 𝜀 = 0.05. We find that
both 3- and 6-solitonmolecules are stable, relaxing to self-cleaned
forms close to the unperturbed ones. The fourth column shows
the same outcome of the evolution, except that we have added
initial tangential velocities v = 0.6 to the solitons, hence the SM
exhibits persistent rotation, keeping its stability in the course of

the propagation. The rightmost panel shows the initial phase dis-
tribution in the (2+1)D spatial SM.

3.3. Nonlocal (2+1)D Vortex Molecules

Stable (2+1)D spatial SMs may also be composed of vortex soli-
tons. As an example, we consider a bound state of two vortex soli-
tons built as per ansatz (11), with each component u± taken as the
Laguerre–Gaussian beam

u± = A

(√
2r±
a

)|l|
e−r

2
±∕a

2
L|l|p

(
2r2±
a2

)
eil𝜑 (19)

Here A and a are the soliton’s amplitude and radius, r± =√
(𝜉 ±∕2)2 + 𝜂2, L|l|p is the generalized Laguerre–Gaussian

polynomial, with the azimuthal (radial) index l (p), and𝜑 is the az-
imuthal angle. The ansatz based on Equations (11) and (19) intro-
duces the superposition of two Laguerre–Gaussian beams with
identical shapes, opposite signs, and centers placed at points
(±∕2, 0).
Figure 5a (see also Figure 1b) shows the propagation of a typ-

ical (2+1)D two-vortex molecule. Here, we fix l = 1 and p = 0 in
the Laguerre–Gaussian polynomial in Equation (19). The input,
composed as per Equations (11) and (19), includes the pertur-
bation factor in Equation (16) too. Parameters of the input are
A = 3.9, a = 1.45, = 10, and 𝜀 = 0.05. The two-vortexmolecule
has a large size, with the equilibrium separation between pivots
of the two vortices 0 = 10, corresponding to 60 μm in physical
units (in experiments with BEC, “large” is usually a size which is
essentially larger than 10 μm[133]). Such a contactless interaction
between the two vortices and the formation of the vortexmolecule
is also due to the nonlocal Kerr nonlinearity contributed by the
long-range Rydberg–Rydberg interaction between the atoms.
We have also simulated the propagation of a three-vortex

molecule, as shown in Figure 5b. As well as its two-vortex coun-
terpart, it is found to be stable. The fourth column of Figure 5a,b
shows the same outcome of the evolution, except that we have
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Figure 5. The propagation of a (2+1)D vortex molecule with built of a two (a) or three (b) vortices. a) The amplitude profile of |u(𝜉, 𝜂)| for the two-vortex
SM in the plane of (𝜉 = x∕R0, 𝜂 = y∕R0) at different propagation distances 𝜁 = z∕(2Ldiff ) = 0, 2, 4. The fourth column are amplitude profiles |u| with
nonzero initial tangential velocity v = 0.6 at propagation distances 𝜁 = z∕(2Ldiff ) = 4. In that case, white arrows designate the direction of the rotation
of the emerging SM. The rightmost panel shows the phase distribution in the (2+1)D spatial SM at 𝜁 = 2. The azimuthal and the radial indices are l = 1
and p = 0 for the Laguerre–Gaussian polynomial, see Equation (19). Other parameters are A = 3.9, a = 1.45, and = 10. b) The same as in (a), but for
N = 3.

added initial tangential velocities v = 0.6 to the vortex, hence the
vortex molecule exhibits persistent rotation, keeping its stabil-
ity in the course of the propagation. The rightmost panel shows
the phase distribution in the (2+1)D spatial vortex molecules at
𝜁 = 2.

4. Nonlocal (3+1)D Soliton and Vortex Molecules,
Their Storage and Retrieval

4.1. Nonlocal (3+1)D Soliton and Vortex Molecules

The realization of (3+1)D[134] spatiotemporal solitons is a long-
standing challenging goal of optical physics.[82,87,88] As men-
tioned above (3+1)D spatiotemporal solitons are strongly unsta-
ble in conventional optical media with the local Kerr nonlinearity.
In a recent work, it has been shown that stable (3+1)D spatiotem-
poral solitons may exist in a cold Rydberg atomic gas, being sup-
ported by a two-step self-trapping mechanism.[113]

To proceed, we first demonstrate that stable (3+1)D spa-
tiotemporal soliton/vortexmolecules are available in the Rydberg
atomic gas. To form such states, dispersion of the probe field
is necessary, which can be secured by using a probe pulse with
a short time duration. To this end, we adopt a new set of sys-
tem’s parameters: a = 1011 cm−3, Δ2 = −2𝜋 × 240 MHz, Δ3 =
−2𝜋 × 0.03 MHz, Ωc = 2𝜋 × 8 MHz, and 𝜏0 = 0.1 μs. With these
parameters, the scaled coefficients in Equation (6) are d ≈ 0.19
and w ≈ 0.25. The (3+1)D spatiotemporal two-soliton molecules
can be sought by using ansatz (12) for a single soliton, multiply-
ing it by the temporal-localization factor, sech(𝜏∕a𝜏 ) exp(ib𝜏𝜏2),
where a𝜏 and b𝜏 stand for the temporal width and chirp of the
probe pulse.
Shown in Figure 6a is the propagation of a typical (3+1)D spa-

tiotemporal two-soliton molecule. The initial condition used in
the numerical simulation again includes the small random per-
turbation. Parameters of the input are A = 1.6,  = 8, a = 1.2,
a𝜏 = 1, b = b𝜏 = 𝜙 = 0, and 𝜀 = 0.05. The (3+1)D spatiotemporal
SM is found to be stable in the course of the propagation.

With the parameters given above, the propagation velocity of
the (3+1)D spatiotemporal SM, produced by the formula Vg =
(𝜕K∕𝜕𝜔)−1 at 𝜔 = 0, is

Vg =

{
1
c
+ 𝜅12

|Ωc|2 + (𝜔 + d31)
2

[|Ωc|2 − (𝜔 + d21)(𝜔 + d31)]
2

}−1

≈ 3.4 × 10−5 c,

(20)

and the required generation power is estimated to be Pgen =
6.8 μW. Thus, the SM travels indeed with an ultraslow velocity (in
comparison to c) and may be created by a very low power, which
is due to the interplay of the EIT and giant nonlocal Kerr non-
linearity induced by the Rydberg–Rydberg interaction between
the atoms.
We have also carried out a numerical simulation for the propa-

gation of a nonlocal (3+1)D spatiotemporal two-vortex molecule,
with individual vortex solitons taken as per ansatz (19) times
sech(𝜏∕a𝜏 ) exp(ib𝜏𝜏2). Figure 6b shows the propagation of a typi-
cal two-vortex SMwith small perturbations. The parameters used
in the simulation are A = 2.5, a = 1.3, a𝜏 = 1,  = 8, b = b𝜏 =
𝜙 = 0, and 𝜀 = 0.05. The two-vortex SM is also found to be quite
stable, as well as the zero-vorticity spatiotemporal SM.

4.2. Storage and Retrieval of Nonlocal (3+1)D Soliton and Vortex
Molecules

Keepingmemory of optical pulses in atomic gases (i.e., storage of
incident pulses, with ability to retrieve them), provided by the EIT
technique, has attracted much interest.[135–146] Here we demon-
strate that the storage and retrieval of (3+1)D spatiotemporal soli-
ton/vortex molecules are possible in the present Rydberg-EIT
system. To this end, we investigate the evolution of the (3+1)D
spatiotemporal molecules, considered above, by solving the MB
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Figure 6. The simulated propagation of a (3+1)D spatial-temporal two-soliton molecule (a) and two-vortex molecule (b). a) Isosurfaces of |u| of the
(3+1)D two-soliton molecule at propagation distances 𝜁 = z∕(2Ldiff ) = 0 and 4, respectively. The parameters are A = 1.6, a = 1.2,  = 8, a𝜏 = 1, and
b = b𝜏 = 0. b) The same as in (a), but for a (3+1)D spatial-temporal two-vortex molecule, with the azimuthal and the radial indices l = 1 and p = 0 in
Equation (19). The parameters are A = 2.5, a = 1.3,  = 8, a𝜏 = 1, and b = b𝜏 = 0.

Figure 7. Storage and retrieval of (3+1)D two-soliton molecule and two-vortex molecule. a) The storage and retrieval of a nonlocal (3+1)D spatial-
temporal two-soliton molecule. The red solid line shows switching the control field |Ωc𝜏0| on and off. Curves 1, 2, and 3 are temporal profiles of the
probe pulse |Ωp𝜏0|, respectively, at z = 0 (the initial condition), z = 4Ldiff (just before the storage), and 8Ldiff (just after the retrieval), with Ldiff = 0.87
mm; the corresponding isosurface plots for |Ωp𝜏0| = 0.5 are shown. b) The same as (a) but for the storage and retrieval a nonlocal (3+1)D spatial-
temporal two-vortex molecule. c) The fidelity 𝜂 as a function of the probe-field amplitude |Ωp𝜏0| at 𝜁 = z∕(2Ldiff ) = 4. The isosurfaces of the input
probe field (upper inset) and the retrieved ones at different |Ωp𝜏0| (lower insets) are also illustrated. d) The fidelity 𝜂 as a function of the nonlocality
degree 𝜎 at 𝜁 = z∕(2Ldiff ) = 4. The isosurfaces of the input probe field (upper inset) and the retrieved ones at different 𝜎 (lower insets) are also illustrated.

Equations (3) and (4) numerically, using a time-dependent con-
trol field

Ωc(t) = Ωc0

[
1 − 1

2
tanh

(
t − Toff
Ts

)
+ 1
2
tanh

(
t − Ton
Ts

)]
(21)

which provides switching action for the probe field. Here Toff
and Ton are, respectively, the times at which the control field is
switched off and on. The switching duration is Ts and the storage
time is Ton − Toff . Importantly, the switching speed of the control
laser has a marginal effect on the quality of the SM storage and
retrieval. This is because the (3+1)D spatiotemporal SM in the
present system propagates with an ultraslow velocity, due to the
EIT effect.[147]

Shown in Figure 7a is the evolution of the probe-pulse ampli-
tude |Ωp𝜏0| in the course of the storage and retrieval process. The
shapes of the probe pulse at z = 0 (before storage), z = 4Ldiff (at
the beginning of storage), and z = 8Ldiff (after the retrieval) are
shown for Ldiff = 0.87 mm. It is seen that switching off the con-
trol field provides for the storage of the (3+1)D spatiotemporal
SM in the atomic medium, which is retrieved when the control
field is switched on again. Further, the retrieved spatiotemporal

SM has nearly the same shape as the original one prior to the
storage. In the course of the storage, the information carried by
the SM is converted into that kept in the atomic spin wave (i.e.,
the coherence matrix element 𝜌13). A slight deformation affect-
ing the optical memory is due to dissipation, including sponta-
neous emission and dephasing, as well as weak imbalance be-
tween diffraction, dispersion, and nonlinearity. We have also ex-
plored the storage and retrieval of (3+1)D spatiotemporal vor-
tex molecules. Similar results are obtained for the vortex bound
states, as shown in Figure 7b.
The quality of the storage and retrieval of nonlocal (3+1)D spa-

tiotemporal SMs can be characterized by efficiency 𝜂 and fidelity
𝜂 , where 𝜂 and  are defined as

𝜂 =
∫ ∞
Ton

dt ∫ ∫ dxdy|Ωout
p (x, y, t)|2

∫ Toff
−∞ dt ∫ ∫ dxdy|Ωin

p (x, y, t)|2 (22a)

 =
| ∫ ∞

−∞ dt ∫ ∫ dxdyΩout
p (x, y, t − ΔT)Ωin

p (x, y, t)|2
∫ Toff
−∞ dt ∫ ∫ dxdy|Ωin

p |2 ∫ ∞
Ton

dt ∫ ∫ dxdy|Ωout
p |2 (22b)
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Based on the results obtained in Figure 7a,b, we obtain 𝜂 =
90.39%, = 98.81%, and 𝜂 = 89.31% for the (3+1)D spatiotem-
poral SM, and 𝜂 = 90.32%, = 97.48%, and 𝜂 = 88.05% for the
vortex molecule.
The strength of the nonlocal Kerr nonlinearity has a significant

effect on the quality of the optical memory. Figure 7c shows fi-
delity 𝜂 of the retrieved (3+1)D spatiotemporal SMas a function
of the probe-pulse amplitude. For this purpose, a set of probe-
pulse isosurfaces, |Ωp𝜏0| = 3, 11, and 19 at z = 8Ldiff ≈ 7mm are
displayed. For the moderate amplitude, |Ωp𝜏0| ≈ 11, the fidelity
reaches its maximum, with the retrieved spatiotemporal SM hav-
ing nearly the same shape as the original one prior to the storage.
For small and large amplitudes, the fidelity features small values,
that is, the retrieved SM is distorted greatly. This happens be-
cause, for the weak and strong probe-pulse amplitudes, the Kerr
nonlinearity is either too weak or too strong to balance the diffrac-
tion and dispersion.
The nonlocality degree of the Kerr nonlinearity also has a

significant effect on the memory quality for the spatiotemporal
SMs. Figure 7d shows fidelity 𝜂 of the retrieved (3+1)D SM
as a function of the nonlocality degree, 𝜎. The probe-pulse iso-
surfaces (|Ωp𝜏0| = 0.5) are displayed for 𝜎 = 0.5, 1.4, and 5.0 at
z = 8Ldiff ≈ 7 mm. The fidelity reaches its maximum in the case
of the moderate nonlocality degree, 𝜎 ≈ 1.4, letting the retrieved
SM keep nearly the same shape as the original one had. In the
cases of small and large nonlocality degrees, the fidelity may have
only small values, greatly distorting the retrieved SM. This hap-
pens because, in the limit of local response (𝜎 → 0), the Kerr non-
linearity becomes local, making all (3+1)D solitons unstable, as
mentioned above. On the other hand, in the limit of the strongly
nonlocal response (𝜎 → ∞), the nonlocal Kerr nonlinearity re-
duces to a linear potential (as in the above-mentioned “accessible-
soliton” model[98]), which cannot support stable (3+1)D SMs ei-
ther.

5. Conclusion

We have elaborated a scheme which makes it possible to create
stable optical multidimensional SMs (soliton molecules), that is,
bound states of zero-vorticity solitons, as well as bound states
of vortex solitons, in a gas of cold Rydberg atoms, in which the
laser illumination maintains the EIT setting. Due to the inter-
play of EIT and strong long-range Rydberg–Rydberg interaction
between atoms, the system gives rise to giant nonlocal Kerr non-
linearity, which provides for the stability of the (2+1)D SMs (that
would be completely unstable under the action of the local non-
linearity). The SMs feature large sizes, low generation powers,
and can be effectively controlled by means of the nonlocality de-
gree of the Kerr nonlinearity. The system allows, as well, the cre-
ation of stable (3+1)D spatiotemporal SMs, including those built
of vortex spatiotemporal solitons, moving with ultraslow veloci-
ties and requiring very low generation powers. Further, the spa-
tiotemporal solitons can be stored and retrieved through switch-
ing off and on of the control laser field. The findings reported
here provide insight into the use of long-range atomic inter-
actions for creating robust bound states of solitons and devel-
oping methods to effectively control them. The predictions re-
ported here are helpful for experimental observations of high-

dimensional soliton molecules and promising to find applica-
tions to optical data processing and transmission.
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