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We investigate the collective excitations of a harmonically trapped superfluid Fermi gas at varying coupling
strengths across a BCS-BEC crossover. Using a hydrodynamic approach, we solve analytically the eigenvalue
problem of collective modes and provide explicit expressions for all eigenvalues and eigenfunctions, which are
valid for both BCS and BEC limits and also for the whole crossover regime. Both spherical- and axial-
symmetric traps are taken into account, and the features of these collective modes in the BCS-BEC crossover
are discussed and compared with available experimental and numerical data.

DOI: 10.1103/PhysRevA.74.013609 PACS number�s�: 03.75.Ss, 67.40.Db, 03.75.Kk

I. INTRODUCTION

The crossover from a Bose-Einstein condensate �BEC� to
a Bardeen-Cooper-Schrieffer �BCS� superfluid has attracted
considerable attention for decades �1�. Ultracold Fermi sys-
tems provide an excellent opportunity for exploring the prop-
erty of BCS-BEC crossovers in a controllable way. Recently,
investigation of the BCS-BEC crossover of two-component
fermionic atoms—i.e., 6Li or 40K—has become a topic of
much interest both experimentally and theoretically �for de-
tails, see Ref. �1� and references therein�.

The theory of elementary excitations, pioneered by Lan-
dau, Bogoliubov, and Feynman, is of primary importance in
quantum many-body physics �2�. After the remarkable ex-
perimental realization of condensed fermionic pairs in re-
gimes of BEC �3�, BCS �4�, and the crossover �5�, much
attention has been paid to experimental and theoretical stud-
ies of excitations in harmonically trapped, interacting super-
fluid Fermi gases �6–17�. In the present experiments �3–9�,
the interaction of dilute fermion atoms, characterized by the
s-wave scattering length asc, can be tuned by a magnetic-
field-induced scattering resonance �known as the Feshbach
resonance �18��, allowing one to manipulate the interaction
strength over the range −� �1/ �kFasc���, where kF is the
Fermi wave number, and hence giving a possibility to inves-
tigate the nature of the elementary excitations in different
superfluid regimes.

There are several theoretical approaches to study the col-
lective excitations of superfluid Fermi gases in the BCS-BEC
crossover. One of them—microscopic theory �called reso-
nance superfluid theory� based on a model Hamiltonian,
which includes fermionic and bosonic degrees of freedoms
and their coupling—has been proposed by several authors
�19–21�. Because the fermion atomic pairs are trapped in a
finite space, the inhomogeneous feature of the system makes
the microscopic approach difficult. Notice that at very low

temperature a low-frequency collective mode does not decay
into fermions because of the existence of an energy gap.
Since no thermal excitation is present, the system is a perfect
superfluid and can be well described by the local particle
density ��r , t� and local velocity v�r , t�. It is known that the
interaction between particles in a homogeneous system is
characterized by a chemical potential ���� �or called the
equation of state�, which can be obtained by using a quantum
Monte Carlo simulation �10,22,23� or some other techniques
�11–15,23�. For fermions confined in a trapping potential
V�r�, the density profile ��r , t� changes slowly in space if the
particle number of the system is large enough. Under such
conditions a local density approximation can be applied to
the equation of state and hence one can suggest a hydrody-
namic approach to investigate the physical properties of col-
lective excitations at low temperatures. In fact, theoretical
studies of the collective excitations in the BCS-BEC cross-
over have appeared recently based on the hydrodynamic ap-
proach �10–17�, and all eigenspectra and eigenfunctions for
the collective modes in an isotropic �spherical� trap have
been obtained under a Thomas-Fermi �TF� approximation,
valid for a large particle number. However, for an anisotropic
trap, which is used in most of the recent experiments �3–9�,
only several particular eigenmodes �i.e., breathing modes�
have been given in the literature �11–17,21,23�. Thus it is
necessary to develop a general method to obtain all explicit
solutions for the eigenspectra and eigenfunctions that are not
only valid for an anisotropic trap but also for all superfluid
regimes. It is this topic that will be addressed in this work.
Note that an analytical method for finding various eigenval-
ues and eigenfunctions for condensed bosons �i.e., an atomic
BEC with �=1, where � is a polytropic index defined in Eq.
�4� below� has been proposed in Ref. �24�. In the present
work, we generalize this method to the situation for any
value of �. We solve analytically the related eigenvalue prob-
lem for linear excitations and provide explicit solutions of
the eigenspectra and eigenfunctions for entire collective
modes of a superfluid Fermi system with the results being
valid for different superfluid regimes.

The paper is arranged as follows. For completeness, in
Sec. II we give a review of the chemical potential ���� in
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various superfluid regimes. The hydrodynamic form of the
equation of motion for collective excitations is presented; in
Sec. III we provide explicit solutions of the eigenspectra and
eigenfunctions of the collective modes for both spheric and
spheroidal symmetric traps. Section IV contains a brief dis-
cussion and a conclusion of our results.

II. EQUATION OF STATE AND HYDRODYNAMIC
FORMULAS FOR COLLECTIVE EXCITATIONS

At temperature T=0, a Fermi gas is in superfluid state and
all particles are paired with � /2 being the number density of
these pairs �1,25,26�. In a study of ultracold Fermi gases,
these pairs, referred as condensed fermionic atomic pairs,
originate from two-component fermionic atomic systems
�i.e., 6Li or 40K� with different internal states. By means of a
magnetic-field-induced Feshbach resonance, the magnitude
and sign of the s-wave scattering length asc can be tuned and
hence provide the possibility of realizing the transition from
the BCS to BEC regimes in a controllable way. It is known
that, when asc�0 �asc�0�, the system is in a BCS �BEC�
regime. Passing through the BCS-BEC crossover, a smooth
transition is expected theoretically from BCS superfluidity to
BEC superfluidity �1,25,26�. By defining a dimensionless
quantity y=1/ �kFasc�, with kF= �3�2��1/3 being the Fermi
wave vector, one can distinguish several different superflu-
idity regimes �22�.

�i� BEC regime �y�1�. In this case, bounded molecules
�or called dimers� can form by two fermions at some high
temperature T* due to two-body interactions. These pre-
formed fermionic pairs have a small size in space and un-
dergo a BEC phase transition at T=Tc��T*�. When T�Tc,
the system is in a BEC superfluid state. The particular case
y�1 is called the deep BEC regime.

�ii� BCS regime �y�−1�. In this situation, the fermions of
the system form weakly bounded Cooper pairs below a criti-
cal temperature Tc due to many-body effects of the system.
These condensed fermionic pairs undergo a BCS transition
when the temperature is lower than Tc. Note that both the
formation of Cooper pairs and the condensation of these fer-
mionic pairs occur simultaneously at T=Tc. In particular,
y�−1 is called the deep BCS regime.

�iii� BCS-BEC crossover regime �−1�y�1�. This is the
regime intermediating between the BEC and the BCS super-
fluidity. The condensed fermionic pairs in this case have the
character of both BEC molecules and BCS Cooper pairs, or
their mixing. Especially, the point y=0 is called the unitarity
limit, corresponding to asc= ±�. At this limit, the average
spacing of particles, d0= �3�2N0�1/3 /kF, is still a typical
length, with N0 being the condensed particle number of the
system.

At zero temperature, the ground-state energy per particle,
�, of a dilute Fermi gas can be written as

���� =
3

5
	F���	�y� , �1�

where 	F���=

2kF

2

2M = 
2

2M �3�2��2/3 is the Fermi energy with M
the mass of fermions of the system. 	�y� is a yet unknown

function of the interaction parameter y=y���
=1/ ��3�2��1/3asc�. Some asymptotic expressions of 	�y� can
be obtained by fitting the data from some calculating tech-
niques �such as the quantum Monte Carlo method�
�10,22,27�. Interpolating these asymptotic expressions for
small and large �y� one can obtain the following general for-
mula:

	�y� = �1 − �2 arctan��3y
�1 + �y�
�2 + �y�� . �2�

The fitting parameters � j �j=1,2 ,3� and �l �l=1,2� in Eq.
�2� have been given by Manini and Salasnich �15�. Note that
these parameters are different in the regions y�0 and y�0.
In terms of the ���� given above, the chemical potential of
the Fermi gas can be obtained by using Gibbs-Duhem rela-
tion �2�, which reads

���� = ��������/�� . �3�

Alternately, a simple approach for the equation of state is
to take a polytropic approximation; i.e., one assumes �11,12�

���� = c��, �4�

where c is a constant but � �called effective polytropic index�
is a function of y:

��y� =
2
3	�y� − 2y

5 	��y� + y2

15	��y�

	�y� − y
5	��y�

. �5�

There are two well-known limits for the value of the poly-
tropic index �. One is �=2/3 at y=−� �BCS limit� and
another one is �=1 at y=� �BEC limit�. Note that at y=0
�unitarity limit� one has also �=2/3. The minimum value of
� is approximately 0.6, located at y=−0.55. The maximum
value of � is around 1.35, located at y=0.5. Mathematically,
the polytropic approximation, Eq. �4�, is a little rough but it
has the advantage of allowing one to get analytical expres-
sions for the eigenfunctions and eigenfrequencies of collec-
tive modes �10–12,14� for all superfluid regimes in a unified
way.

Assume that a dilute Fermi gas is confined in a trapping
potential V�r�. At zero temperature, the evolution of the sys-
tem can be described by the following nonlinear Schrödinger
equation �28�:

i 
 ̇�r,t� = �−

2

2M
�2 + V�r� + �„��r,t�…	�r,t� , �6�

where �r , t� is superfluid wave function, ���� is the chemi-
cal potential given by Eq. �3�, and the dot over  represents
the derivative with respect to time. Notice that in writing Eq.
�6�, a local density approximation for the chemical potential
is used �13–15�. Taking �r , t�=
��r , t�ei��r,t�, Eq. �6� is
transferred into the following hydrodynamic equations:

�̇�r,t� + � · ���r,t�v�r,t�� = 0, �7�
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Mv̇�r,t� + ��Tqp + V�r� + �„��r,t�… +
1

2M
�v�r,t��2	 = 0,

�8�

where v�r , t�=−�
 /M����r , t� is the superfluid velocity and
Tqp=−
2��2
��r , t�� / �2M
��r , t�� is the quantum pressure.

For the ground state of the system, one has v�r , t�=0 and
��r , t�=�0�r�. Then Eqs. �7� and �8� are reduced to

−

2

2M
�2
�0�r� + �V�r� + �„�0�r�…�
�0�r� = �G


�0�r� ,

�9�

with �G the chemical potential at the ground state.
To study the linear excitations from the ground state, we

write ��r , t�=�0�r�+���r , t� and v�r , t�=�v�r , t�, where
���r , t� and �v�r , t� are small quantities. Differentiating Eq.
�7� with respect to time yields

��̈�r,t� + � · ���̇�r,t��v�r,t� + ��r,t��v̇�r,t�� = 0. �10�

Here ��̇=−����v� is obtained from Eq. �7� and �v is deter-
mined by Eq. �8�. Using Eq. �9� and neglecting small quan-
tities of higher order, such as ��v�2 , ��v �� · ���v� and
�� �����, Eq. �10� becomes

− M��̈�r,t� + � · ��0�r����� + �Tqp�� = 0, �11�

where ����−�0 and �Tqp=Tqp−Tqp
�0� are the deviation of

the chemical potential and quantum pressure from the
ground state, respectively. Taking ���r , t�= ���r�ei�t, under
the TF approximation �i.e., neglecting the quantum pressure
term� Eq. �11� becomes

M�2���r� + � · ��0�r������� = 0. �12�

This is the dynamic equation for the linear collective excita-
tions with the density eigenfunction �� and the square eigen-
value �2. Note that Eq. �12� can be reduced to the following
form:

Ĥ0�� = �2�� , �13�

with “Hamiltonian” Ĥ0=− 1
M � · ��0�� ��

�� .
Under the polytropic approximation, we have

���� = ��������/��

= 3
2/�10M��3�2�2/3���0��2/3�� + 1�	�y���/��0���,

with the expressions ��y� and 	�y� given by Eqs. �5� and �2�,
respectively. Then the �� term in Eq. �11� becomes ���
��+1�c���−�0

������+1��0�� /�0. The trapping potential in
the experiments �3–9� is the harmonic one

V�r� =
1

2
M��

2 �s2 + �2z2� , �14�

where s2=x2+y2, �� is the harmonic oscillator frequency in
the x and y directions, and �=�z /�� is the frequency ratio
of the z-axis to the xy plane. In the TF limit �i.e., N→��, the
kinetic energy term can be neglected with respect to the in-
teraction terms. Under this limit Eq. �9� admits the following
solution:

�0�r� = �0�0��1 − s̄2 − �2z̄2�1/�, �15�

where we have used the dimensionless coordinates �s̄ , z̄�
= �s ,z� /R�, with R�= �2��+1�c�0

��0� / �M��
2 ��1/2 being the

TF radius of the fermionic cloud in the ground state.

III. EIGENVALUE SOLUTIONS
FOR LINEAR EXCITATIONS

We now consider the solutions of Eq. �13� under the poly-
tropic approximation �29�. We shall give all eigenmodes for
the trapping potentials with spherical �30� and axial symme-
tries. The solutions for a highly anisotropic trap will also be
provided.

A. Spherically symmetrical solutions „�=1…

For a spherically symmetrical trap, the spheroidal conden-
sate reduces to a spherical one. In this case the orbital angu-
lar momentum l and its projection in the z axis, m, are two
good quantum numbers. Therefore, the hydrodynamic equa-
tion �13� is separable in spherical polar coordinates �r ,� ,��,
where r2=x2+y2+z2. The linear excitation of the system is
determined by a radial expansion into a polynomial of order
nr. The eigenmodes of the excitation can be labeled by the
entire quantum numbers nr, l, and m, but the eigenfrequen-
cies are independent of the axial quantum number m.

By introducing �̄=R��, the eigenequation �13� is simpli-
fied to the dimensionless form

−
2�̄2

�
�� = �̄ · ��̄0��̄�̄0

�−1���� , �16�

with the dimensionless density �̄0=�0 /�0�0� and dimension-
less frequency �̄=� /��. Its solutions have the form ���r�
= r̄l�̄0

1−�P�r̄�Ylm�� ,��, where Ylm are the spherical-harmonic
functions and the radial function P�r̄� can be written as �1
−x�1/�−1Q�x�, where x= r̄2=r2 /R�

2 and Q�x� satisfies a hyper-
geometric differential equation

x�1 − x�Q� + �l +
3

2
− �l +

3

2
+

1

�
�x	Q� +

1

2�
��̄2 − l�Q = 0.

�17�

The solutions of Eq. �17� are a special hypergeometric series
�11� Pnrl

�x�=F�−nr ,nr+ l+1/�+1/2 , l+3/2 , r̄2�—i.e., a clas-
sical �ns�th-order Jacobi polynomial Pnrl

�x�=nrB�nr , l
+3/2�Pns

�l+1/2�,1/�−1��1−2x� with B�x ,y� being a � function.
The energy spectrum is given by

�̄nrl
2 = l + nr��2nr + 2l + 1� + 2nr, �18�

with nr=0,1 ,2 , . . ., and l=0,1 ,2 , . . .. The energy is indepen-
dent of m but the eigenfunction has �2l+1�-fold degeneracy
for a given l.

Notice that the above results cover several important
cases studied before. In the deep BEC regime, one has �
=1 and thus Eq. �18� reduces to �̄nrl

2 = l+nr�2nr+2l+3�,
which was obtained first by Stringari �31�. In the deep BCS
region, one has �=2/3. Equation �18� becomes �̄nrl

2 = l
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+ 4
3nr�nr+ l+2�, which is the same as that obtained by Bara-

nov and Petrov �32� �also see Ref. �33��. Especially, in the
unitarity limit where asc= ±� and �=2/3, the spectrum also
has the finite form of �̄nrl

2 = l+ 4
3nr�nr+ l+2� in the TF limit.

B. Axially symmetric solutions „�Å1…

Solving Eq. �13� for the case of axial symmetry is not
easy as it is for the case of spherical symmetry. However, the
axially symmetric case is more important than the spheri-
cally symmetric one because axially symmetric traps are
used in almost all experiments made recently on the collec-
tive excitations in superfluid Fermi gases �3–9�. For an axi-
ally symmetric trap, the axial component of the angular mo-
mentum, m, is still a good quantum number. One expects that

there exists an additional conserved quantity �24� B̂ which

commutes Ĥ0 and Lz=−i
� /�� since the system has three
degrees of freedom. The coupling between the radial and
axial degrees of freedom leads to quantum numbers of the
excitation modes that depend on the choice of coordinates. In
cylindrical coordinates �s̄ , z̄ ,��, along the line of treatment
for the case of �=1 �24,34�, we assume that the eigenfunc-
tion takes the following form:

��np

�2ns��z̄, s̄,�� = �1 − s̄2 − �2z̄2�1/�−1s̄�m�Pnp

�2ns��z̄, s̄�eim�,

�19�

since �̄0= �1− s̄2−�2z̄2�1/� and the coupling occurs between
the z axis and xy plane with fast varying � in the different
BCS-BEC crossovers. Here the coupled axial and radial
function P= Pnp

�2ns��s̄ , z̄� satisfies the two-dimensional differ-
ential equation

�1 − s̄2 − �2z̄2�� �2

� s̄2 + �1 + 2�m��
�2

� s̄2 +
�2

� z̄2	
−

2

�
�s̄

�

� s̄
+ �2z̄

�

� z̄
� +

2

�
��̄2 − �m��P�s̄, z̄� = 0, �20�

and the corresponding eigenfunction takes the form

Pnp

�2ns��z̄, s̄� = �
k=0

np

�
n=0

int�k/2�

bk,nz̄k−2ns̄2n, �21�

where np is the principal quantum number for the total en-
ergy. From Eq. �21� we know that for a fixed np, ns is the
radial quantum number for the series of modes 2ns and ns
=0,1 ,2 , . . . , int�np /2�; nz is correspondingly the axial quan-
tum number satisfying the relation nz=np−2ns in cylindrical
coordinates.

By using techniques of decoupling and dimension reduc-
tion, one can generalize the solution obtained in Refs.
�24,34� for �=1 to any value of �. The details of the calcu-
lation have been provided in the Appendix . For a fixed np
�=0,1 ,2 , . . . �, we can label the excitation spectrum �̄2

= �̄2�np, �m � ,�2 ,�� by the modes �nznsm�. Once the coeffi-
cients bk,n are obtained in Eq. �A2�, one can get all eigenfre-
quencies and eigenfunctions of the linear collective excita-
tions. In the following, we list some eigenmodes in low-
excited states of the system.

�i� For np=0,1, one has ns=0 and nz=0,1, respectively.
The eigenfrequencies read

�̄nz0m
2 = �m� +

1

2
�2nz��nz − � + 2� , �22�

and the eigenfunctions are given by ��np

�0��z̄ , s̄�= �1− s̄2

−�2z̄2�1/�−1eim�bnp,0z̄nps̄�m�.
�ii� For np=2, we have ns=0,1 and nz=2,0, respectively.

In this case one gets the following solutions for the eigenfre-
quencies and eigenfunctions:

�̄nznsm
2 = �1 + ���1 + �m�� + �1 +

�

2
��2 ± ��1 + � + ��m��2

+ �− 2 − 3� + �2 + �− 2 + ����m���2

+ �1 +
�

2
�2

�4	1/2

, �23�

��2
�2ns��z̄, s̄� = �1 − s̄2 − �2z̄2�1/�−1eim�

� �b0,0 + b2,0z̄2 + b2,1s̄2�s̄�m�, �24�

with

b2,1/b0,0 = − ��m� − �̄2�/�2 + �m� − �̄2� �25�

and

b2,0/b0,0 = �2 + 2�m� +
1

�
�2 + �m� − �̄2�	

� ��m� − �̄2�/�2 + �m� − �̄2� . �26�

In Eq. �23�, + �−� represents either the 20m �01m� mode
for ��1 or the 01m �20m� mode for ��1. In these modes,
the ratio of the axial and radial amplitudes is �b20/b21 �
= �2+2 �m � + �2+ �m �−�̄2� /� � � ���1 for �� ���1. There-
fore, the condensate oscillates along the z-axial �xy-plane�
direction. Note that the special solutions found by Heiselberg
�11� and Cozzini and Stringari �35� for the breathing modes
are the special case here for m=0. These m=0 breathing
modes have been investigated experimentally by Grimm’s
group and Thomas’s group�6–8�. In Fig. 1 we show, respec-
tively, the experimental and theoretical results of the radial
and axial breathing modes for a highly elongated trap with
�=0.05, where � as a function of the interaction parameter
1 / �kFasc� is given by Eq. �5�. In both figures, the dot-dashed
lines are, respectively, the 1/ �kFasc� dependence of the
eigenfrequencies for the radial and axial breathing modes by
using the theoretical result given above.

Of course, our general solution provided here may give
more theoretical predictions of the character of eigenexcita-
tions of the system. As examples, in Fig. 2 �Fig. 3� we plot
the density fluctuation distributions of the radial �axial�
breathing mode as a function of 1/ �kFasc� for a highly elon-
gated trap �=0.1 and b0,0=1 along the x �z� direction with
y=z=0 �x̄=0.5,y=0�. It can be seen that, on the BCS side of
the BCS-BEC crossover, the radial mode �012 dominates the
xy-plane oscillation and the axial mode �202 has a strong
coupling between the z direction and the xy plane. However,
on the BEC side of the BCS-BEC crossover, the radial mode
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�012 mainly takes place in the xy plane and the axial mode
�202 dominates the z-direction oscillation with a coupling to
the xy plane.

Shown in Fig. 4 is the 1/ �kFasc� dependence of the radial
mode �202 �Fig. 4�a�� and axial mode �012 �Fig. 4�b�� for
different � values �with ��1�. Figure 5 shows the 1/ �kFasc�
dependence of the radial breathing mode �012 for ��1. We
see that the value of the anisotropic parameter � in the trap-
ping potential displays an obvious effect on the oscillating
frequency of the collective excitations. We hope these inter-
esting features found in this work can be explored in newly

designed experiments of superfluid Fermi gases in the BCS-
BEC crossover.

�iii� For np=3, one has ns=0,1 and nz=3,1, respectively.
The frequency spectrum is given by

�̄nznsm
2 = �1 + ���1 + �m�� + �2 +

3�

2
��2 ± ��1 + � + ��m��2

+ �− 2 − 5� + 3�2 + �− 2 + 3����m���2

+ �1 +
3�

2
�2

�4	1/2

, �27�

and the corresponding functions are

��3
�2ns��z̄, s̄� = �1 − s̄2 − �2z̄2�1/�−1eim�

� �b1,0 + b3,0z̄2 + b3,1s̄2�z̄s̄�m�, �28�

with b3,1 /b1,0=−��m � +�2− �̄2� / �2+ �m � +�2− �̄2� and

FIG. 1. The dimensionless interaction parameter 1 /kFasc depen-
dence of the dimensionless frequency: �a� the radial breathing mode
�010/�� and �b� the axial breathing mode �200/�z. The dot-dashed
line is plotted by using the theoretical result of this work for the
eigenfrequency with anisotropic parameter �=0.05, the value used
in most of experiments. The solid line is the result of a parametri-
zation based on Monte Carlo data �15�. Dots are the results from
experiments �7� in �a� and Ref. �6� in �b�.

FIG. 2. �Color online�. The theoretically predicted dimension-
less density fluctuation of the breathing mode �̄012 in the xy plane
vs dimensionless 1 /kFasc and x̄=x /R� in the TF region for �=0.1
and b0,0=1 with y=z=0.

FIG. 3. �Color online�. The theoretically predicted dimension-
less density fluctuation of the breathing mode �̄202 in the z direction
vs dimensionless 1 /kFasc and z̄=z /R� in the TF region for �=0.1
and b0,0=1 with x̄=0.5 and y=0.

FIG. 4. The theoretically predicted dimensionless breathing
mode frequencies vs the dimensionless interaction parameter
1 /kFasc for ��1. �a� �̄202 in the xy plane and �b� �̄012 in the z axis
in the Thomas-Fermi limit with the long-dashed line, solid line, and
short-dashed line for �=
3, 
8, and 
24, respectively.
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b3,0/b1,0 = 1
3�2 + 2�m� + 1

� �2 + �m� + �2 − �̄2��

���m� + �2 − �̄2�/��̄2 − 2 − �m�− �2� .

In Eq. �27�, + �−� represents either the 31m �11m� mode for
��1 or the 11m �31m� mode for ��1.

C. Circinally symmetric solutions „�\0…

We now discuss the solutions for a highly anisotropic
trap—i.e., �z���. In this case the hydrodynamic equation
�13� in �→0 limit has a solution of the form ��nsm

�s�
= s̄�m�eim�P�s̄2�, expressed by plane polar coordinates �s̄ ,��,
where the radial function P�x� �x= s̄2� satisfies the differen-
tial equation

x�1 − x�P� + ��1 + �m�� − �1 + �m� +
1

�
�x	P�

+
1

2�
��̄2 − �m��P = 0. �29�

The eigenfunctions of Eq. �29� are a special hypergeometric
series Pnsm

�x�=F�−ns ,ns+ �m � +1/� ,1+ �m � , s̄2�—i.e., a clas-
sical �ns�th-order Jacobi polynomial Pnsm

�x�=nsB�ns ,1
+ �m � �Pns

��m�,1/�−1��1−2x�. The eigenvalues are given by

�̄nsm
2 = 2ns��ns + �m�� + 2ns + �m� , �30�

where the radial quantum number ns takes the values
0 ,1 ,2 , . . .. The energy levels are the same for ±m. Figure 6
plots the 1/ �kFasc� dependence of the radial �11 and �12

modes �i.e., ns=1 and m=1 and 2, respectively, for �=0�. All
of these plots are sensitive to the interaction parameter
1 / �kFasc�, which essentially originate from the relation
��1/ �kFasc�� in the BCS-BEC crossover.

IV. CONCLUSION

We have investigated the collective excitations of a har-
monically trapped superfluid Fermi gas in a BCS-BEC cross-
over. Starting from an equation of the superfluid wave func-
tion, we have solved analytically the linear eigenvalue
problem for the collective modes of the system under a TF

approximation. We have provided explicit analytical expres-
sions for all eigenvalues and eigenfunctions, which are valid
for both the BEC and BCS limits and also for the whole
crossover regime. In our study, trapping potentials with both
spherical and axial symmetries have been taken into account,
and the solutions obtained cover some special solutions of
breathing modes for an anisotropic trap, given by several
authors previously. The features of these breathing modes in
the BCS-BEC crossover have also been discussed and com-
pared with related experimental and numerical results ap-
pearing recently. Further work is needed to go beyond the TF
limit and consider a kinetic energy correction to both the
ground state and collective excitations. Other work is to
study the possible resonant interactions between the collec-
tive excitations based on the complete eigenmodes of collec-
tive excitations �36�, which may improve our understanding
of the physical properties of superfluid Fermi gases and lead
to new experimental findings in the future.
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APPENDIX: EIGENVALUE SOLUTIONS FOR AN
AXIALLY SYMMETRIC TRAPPING POTENTIAL „�Å1…

It can be shown that a good operator

B̂ = − �1 − s̄2�
�2

� s̄2 − �1

s̄
− 4s̄� �

� s̄
−

�2

s̄2 � �2 − � 1

�2 − z̄2� �2

� z̄2

+ 4z̄
�

� z̄
+ 2s̄z̄

�2

� s̄ � z̄
�A1�

commutes Ĥ0 and Lz=−i
� /��, and B̂ corresponds to
Pnp

�2ns��z̄ , s̄�-like eigenfunctions, Eq. �21�. By substituting Eq.
�19� together with Eq. �21� into Eq. �13�, an equation is
rendered regarding the coefficients of the term z̄k−2ns2n+�m�:

FIG. 5. The theoretically predicted dimensionless oscillating
frequencies vs the dimensionless interaction parameter 1 /kFasc for
the �̄012 mode in the case of ��1. The long-dashed line, solid line,
and short-dashed line correspond to �=0.1, 0.5, and 0.9,
respectively.

FIG. 6. The theoretically predicted dimensionless oscillating
frequencies vs the dimensionless interaction parameter 1 /kFasc for
the �̄01m mode with �=0. The solid line and short-dashed line cor-
respond to m=1 and 2, respectively.
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4�n + 1��n + �m� + 1�bk+2,n+1 + �k − 2n + 2��k − 2n + 1�bk+2,n

= 4�2�n + 1��n + �m� + 1�bk,n+1 +  2

�
�2n + �m�

+ �2�k − 2n� − �̄2� + �2�k − 2n��k − 2n − 1�

+ 4n�n + �m���bk,n + �k − 2n + 2��k − 2n + 1�bk,n−1.

�A2�

It is easy to prove that the series bk,n is divergent for np
→�. In order to obtain a convergent solution with the form
of Eq. �21�, one must use a cutoff condition—i.e., bnp+2,n+1

=bnp+2,n=0 for the fixed np�=0,1 ,2 , . . . �. The reason is that
the expansion in Eq. �21� must be convergent at the pole
� � z̄ � =1 and that it can only be satisfied when the series
ceases at a certain term of z̄. We will not display explicitly
the subscript k in the coefficient bk,n since we have taken its
maximum value k=np. In order to get an explicit expression
for bn, we rewrite Eq. �A2� in the recurrence relation

bn+1 = �nbn + �n−1bn−1, �A3�

where all �n and �n can be easily obtained, which are given
by

�n = �2�̄2 − 2�m�/� − 4n�n + �m� + 1/��

− �2�np − 2n��np − 2n − 1 + 2/���

� �4�2�n + 1��n + �m� + 1��−1, �A4�

�n−1 = −
�np − 2n + 1��np − 2n + 2�

4�2�n + 1��n + �m� + 1�
. �A5�

When np�2, by defining fn=−�nbn /�n−1bn−1 and gn
=�n /�n�n+1, the recurrence relation is reduced to the stan-
dard continued fraction form

fn =
1

1 + gnfn+1
. �A6�

For a fixed np �=0,1 ,2 , . . . �, the expansion of Pnp

�2ns��z̄ , s̄� ter-
minates at k=np for z̄ and at n=int�np /2� for s̄. This leads to
the condition bZ=0 with Z=1+int�np /2�. After iterating
Eq. �A3� for Z times and using fZ=0, one finds a closed
equation for determining the excitation spectrum �̄2

= �̄2�np, �m � ,�2 ,�� as

− 1 =
g0

1 +
g1

1 + ¯

�

1 + gZ−2

, �A7�

where gn has the form

gn = − 4�2�n + 1��n + �m� + 1��np − 2n − 1��np − 2n�

�  2

�
��̄2 − 2n − �m� − �2�np − 2n��

− �2�np − 2n��np − 2n − 1� − 4n�n + �m���−1

�  2

�
��̄2 − 2n − �m� − 2 − �2�np − 2n − 2��

− �2�np − 2n − 2��np − 2n − 3� − 4�n + 1��n + �m�

+ 1��−1

. �A8�

Note that for any value of � and � and for the fixed value
of np�=2,3 , . . . �, Eq. �A7� is an algebraic equation of order Z
and it has possibly Z different solutions �̄nznsm

2 =�nznsm
2 /��

2

for ns=0,1 ,2 , . . . , int�np /2�, nz=np−2ns, and m=0, ±1,
±2, . . .. Therefore, we can label the excitation spectrum by
the modes �nznsm�. The eigenfunctions Pnp

�2ns��z̄ , s̄� are of the
maximum order of np in z̄ and of the maximum order of
2 int�np /2� in s̄. In general, the oscillating picture of the su-
perfluid may be characterized by the axial parity of the cor-
responding eigenmodes. For even np, possible powers of
z̄k−2n are 0 ,2 , . . . ,np, Pz= �+�, and the coefficients bk,ns

are
proportional to b0,0 �b1,0�0�. For odd np, possible powers of
z̄k−2n are 1 ,3 , . . . ,np, Pz= �−�, and the coefficients bk,ns

are
proportional to b1,0 �b0,0�0�. In both cases, the coefficients
bk,ns

satisfy the N-dimensional linear algebraic equations
with N=int� 1

2np�+�ns=0
int�np/2�ns. The existence of axial parity

provides for a simple solution of Eq. �A7� for any values of
� and �. Of course, the above results for �=1 return to the
one obtained in �24�, and here we emphasize the role of ��y�
in the BCS-BEC crossover.
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