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This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically

trapped Bose–Einstein condensate. Based on the divergence-free analytical solutions for ground-state wavefunction of

the condensate and eigenvalues and eigenfunctions for thermally excited quasiparticles, obtained beyond Thomas–Fermi

approximation, this paper calculates the coupling matrix elements describing the interaction between the collective mode

and the quasiparticles. With these analytical results this paper evaluates the Landau damping rate of a monopole mode

in a spherical trap and discusses its dependence on temperature, particle number and trapping frequency of the system.
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1. Introduction

Due to the remarkable experimental realization

of Bose–Einstein condensation in weakly interacting

atomic gases, much effort has been devoted to the

linear and nonlinear collective excitations in trapped

Bose–Einstein condensates (BECs).[1−5] One of the

challenging problems in this research direction is the

temperature dependence of the damping rate and fre-

quency shift of a collective mode, which has been re-

ceived considerable attention in recent years in both

experiment.[6−12] and theory.[13−21]

The dynamics of collective excitations in a BEC

displays very rich behaviours, depending on the tem-

perature and density of system. At high temperature

and high density, the system is in a collisional regime

and thus in a local thermodynamic equilibrium. The

damping mechanism of a collective excitation is of dis-

sipative type and the dynamics of the system may be

described by a theory of two-fluid hydrodynamics.[13]

In contrast, if the system is very dilute and at very

low temperature the collisions between the excitations

play a minor role. The damping mechanism in this

collisionless regime is not related to thermalization

processes but related to coupling between the exci-

tations and thus can be described by a mean-field

approach.[1,13−20] Up to now, most experiments with

trapped Bose-condensed gases have been performed in

this regime.

The present work is focused on the damping of a

low-energy collective mode in the collisionless regime.

The main damping mechanism in the regime is Lan-

dau damping, which arises by the process of a collec-

tive mode being absorbed by a quasiparticle (thermal

excitation), and then turned into another quasiparti-

cle. In recent years many theoretical techniques have

been put forward to calculate the Landau damping

of collective modes in trapped BECs.[1,14−20] Among

them the time-dependent mean-field theory is widely

employed since it gives an accurate description on the

coupled dynamics of condensate and non-condensate

components.[16] For evaluating Landau damping rate

various coupling matrix elements describing the inter-

action between the collective mode and quasiparticles

must be calculated, which, however, requires to solve

Gross–Pitaevskii (GP) equation and Bogoliubov–de

Gennes (BdG) equations in order to get the ground

state wavefunction of condensate and the eigenvalues

and eigenfunction of quasiparticles respectively. Due

to the existence of trapping potential, it is very diffi-

cult to obtain the analytical solutions of these eigen-

functions. As far as we know, up to now nearly

all works on this problem are based on numerical
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simulations.[14,15,17,18] Analytical work can be done

for repulsive atomic interaction and a large parti-

cle number by using a Thomas-Fermi approximation

(TFA), but the results obtained for the Bogoliubov

amplitudes of quasiparticles and the coupling matrix

elements display uncontrollable divergence.[22] Thus

the Landau damping cannot be calculated based on

such simple approach. In this work, we propose a

new method for investigating the Landau damping of a

low-energy collective mode in a harmonically trapped

BEC. By using the divergence-free analytical solutions

of ground-state wavefunction of condensate and eigen-

values and eigenfunctions of quasiparticles, obtained

recently beyond TFA,[23,24] we can get divergence-free

coupling matrix elements. For testing our method

we calculate the Landau damping rate of a monopole

mode in a spherical trap and discuss its dependence on

temperature, particle number and trapping frequency

of the system.

2. Time-dependent mean-field th-

eory for Landau damping

We consider an interacting Bose gas trapped

in an external potential Vext(r). The grand-

canonical Hamiltonian of the system in terms

of bosonic creation and annihilation ψ(r, t) and

ψ†(r, t) takes the form H =
∫

drψ†(r, t)H0ψ(r, t) +

(g/2)
∫

drψ†(r, t)ψ†(r, t)ψ(r, t)ψ(r, t), where H0 =

−h̄2∇2/(2m) + Vext(r) − µ with µ being the chemical

potential, g = 4πh̄2asc/m with asc being the s-wave

scattering length. The Heisenberg equation of motion

for ψ(r, t) reads

ih̄∂ψ(r, t)/∂t =H0ψ(r, t)

+ gψ†(r, t)ψ(r, t)ψ(r, t). (1)

For a Bose-condensed gas one can use self-

consistent time-dependent Hartree–Fock–Bogoliubov

mean-field approximation, which corresponds to

taking: (i) ψ(r, t) = Φ(r, t) + ψ̃(r, t), where

Φ = 〈ψ〉 and ψ̃ represent condensate and

noncondensate components, respectively, the sym-

bol 〈· · ·〉 (〈· · ·〉0) represents nonequilibrium (equi-

librium) average; (ii) 〈ψ̃†(r, t)ψ̃(r, t)〉 = ñ(r, t),

〈ψ̃(r, t)ψ̃(r, t)〉 = m̃(r, t), where ñ(r, t) and m̃(r, t)

denote normal and anomalous (thermal) particle den-

sities respectively; (iii) ψ̃†(r, t)ψ̃†(r, t)ψ̃(r, t)ψ̃(r, t)=

4ñ(r, t)ψ̃†(r, t)ψ̃(r, t) + m̃(r, t)ψ̃†(r, t)ψ̃†(r, t) + m̃∗

(r, t)ψ̃(r, t)ψ̃(r, t); (iv) 〈ψ̃(r, t)ψ̃(r, t)ψ̃(r, t)〉 = 〈ψ̃†

(r, t) ψ̃(r, t)ψ̃(r, t)〉 = 0. Note that in (iv) we have

set all averages of cubic products of the noncondensate

operators to be zero. This is expected to be a good

approximation for a dilute system[16]. Using above

prescription we get the equation of motion for the con-

densate wavefunction

ih̄∂Φ/∂t =H0Φ + g|Φ|2Φ

+ 2gΦñ(r, t) + gΦ∗m̃(r, t). (2)

We see that there is a dynamical coupling between the

condensate and noncondensate particles. The above

equation reduces to GP equation if neglecting the ef-

fect of the thermal particles.

Take the Bogoliubov transformation

ψ̃(r, t) =
∑

j

[uj(r)αj(t) + v∗j (r)α+
j (t)]

and

ψ̃†(r, t) =
∑

j

[u∗j (r)α†
j(t) + vj(r)αj(t)],

where the quasiparticle operator αj , α
†
j satisfy Bose

commutation relations and the Bogoliubov amplitudes

uj and vj satisfy the normalization condition
∫

dr[u∗i (r)uj(r) − v∗i (r)vj(r)] = δij .

The time evolutions of the normal and anomalous den-

sities ñ(r, t) and m̃(r, t) are reflected by the following

equations of motion:

ih̄∂fij(t)/∂t = 〈[α†
i (t)αj(t), H ]〉 , (3a)

ih̄∂gij(t)/∂t = 〈[αi(t)αj(t), H ]〉 , (3b)

where fij(t) = 〈α†
i (t)αj(t)〉 and gij(t) = 〈αi(t)αj(t)〉,

f0
i is the equilibrium density of quasiparticles, whose

explicit expression will be given below.

To study the damping of a collective mode of the

condensate we assume Φ = Φ0(r) + δΦ(r, t), where

δΦ(r, t) is a small fluctuation. Then from Eq. (2) we

get

(H0 + gn0(r))Φ0(r) = 0, (4a)

ih̄∂δΦ/∂t = (H0 + 2gn0)δΦ + gn0δΦ
∗

+ gΦ0

∑

ij

{2[u∗iuj + v∗i + v∗i uj ]fij(t)

+ [2viuj + uiuj]gij(t)

+ [2u∗i v
∗
j + v∗i v

∗
j ]g∗ij(t)}, (4b)

where n0 = |Φ0(r)|2. Equation (4a) is a time-

independent GP equation determining the ground



No. 8 Landau damping of collective modes in a harmonically trapped Bose–Einstein condensate 1873

state wavefunction Φ0(r) of the condensate. In above

equations the static distributions of the normal and

anomalous particle densities have been assumed to be

zero. This is reasonable because for the excitations

at low temperature the static normal and anomalous

particle densities are negligible.[17] If uj and vj are

chosen to satisfy the BdG equations

Luj(r) + gn0(r, t)vj(r) = ǫjuj(r) , (5a)

Lvj(r) + gn0(r, t)uj(r) = −ǫjvj(r) , (5b)

where L = −h̄2∇2/(2m) + Vext(r) − µ+ 2gn0(r), the

Hamiltonian of the system can be expressed as the

form

H = constant +
∑

j

ǫjα
†
jαj +H ′,

where ǫj is the energy of the quasiparticles and H ′

represents their interaction. Equations (3a) and (3b)

now become

ih̄∂fij(t)/∂t =(ǫj − ǫi)fij(t) + 2g(f0
i − f0

j )

×

∫

drΦ0{[δΦ + δΦ∗] × [uiu
∗
j + viv

∗
j ]

+ δΦviu
∗
j + δΦ∗uiv

∗
j }, (6a)

ih̄∂gij(t)/∂t =(ǫj + ǫi)gij(t) + 2g(1 + f0
i + f0

j )

×

∫

drΦ0{[δΦ + δΦ∗] × [u∗i u
∗
j + v∗i v

∗
j ]

+ δΦu∗i u
∗
j + δΦ∗v∗i v

∗
j } . (6b)

where f0
j = 〈α+

j αj〉0 = [exp(ǫj/(kBT )) − 1]−1.

Equations (4a), (6a) and (6b) can be solved by

Fourier transform. We suppose that a collective

mode of the condensate with oscillating frequency

ω0 is excited, i.e. δΦ(r, t) = uosc(r)exp(−iω0t) and

δΦ∗(r, t) = vosc(r)exp(−iω0t). It is easy to show that

(uosc, vosc) obeys also the BdG Eq.(5). Then by us-

ing the Fourier-transformed form of Eqs.(4b), (6a) and

(6b), we can get the frequency correction of the col-

lective mode, which includes real and imaginary parts,

i.e. ω = ω0 + η − iγ. According to the expression of

the imaginary part, one can readily get the Landau

damping rate as

γL =
∑

ij

γijδ(ω0 + ωi − ωj), (7)

where ωj = ǫj/h̄, and

γij = (4πg2/h̄2)|Aij |
2(f0

i − f0
j ), (8)

which is called damping strength of the transition from

state |i〉 to state |j〉,[17] where Aij are the coupling ma-

trix elements describing the energy transfer between

the collective modes and quasiparticles, given by

Aij =

∫

drΦ0[uosc(uiu
∗
j + viv

∗
j + viu

∗
j )

+ vosc(uiu
∗
j + viv

∗
j + uiv

∗
j )]. (9)

From the expression[7] we see that only the three-mode

resonant interactions which fulfil the resonant condi-

tion (i.e. phase-matching condition) ω0 + ωi − ωj = 0

will contribute to the Landau damping rate of the col-

lective mode.

3. Divergence-free solutions of

the BdG equations

In order to evaluate the Landau damping rate[7]

one must calculate the coupling matrix elements Aij ,

which, however, requires to solve the GP Eq.(4a) and

the BdG Eqs.(5a) and (5b) for determining the ground

state wavefunction Φ0 and the eigenvalues and eigen-

functions uj and vj of the quasiparticles respectively.

Exact analytical solutions for them are not available

because of the existence of trapping potential. Up to

now most results obtained are based on TFA, which

however can not avoid the appearance of divergence in

the Bogoliubov amplitudes and hence also in the cou-

pling matrix elements.[22] In recent works this prob-

lem has been investigated in detail and divergence-free

solutions have been obtained beyond the TFA[23,24].

Here we apply these analytical results to calculate the

Landau damping rate of a collective mode in a trapped

BEC.

For simplicity we consider a trapping poten-

tial of spherical symmetry with the form Vext(r) =

mω2
hor

2/2, where r2 = x2 + y2 + z2. We rescale the

variables by introducing r̄ = r/R0, ∇̄ = R0∇, and

ζ = h̄ωho/2µ, where R0 =
√

2µ/Mω2
ho is the charac-

teristic radius of the condensate. Then the GP equa-

tion (4a) takes the dimensionless form

ζ2σ(r̄) + r2 − 1+ | Φ0(r̄)/Φ0(0) |2= 0, (10)

where σ(r̄) = −[∇̄2Φ0(r̄)]/Φ0 is a quantity propor-

tional to zero-point pressure. With the definitions

φ±j = uj ± vj and ω = ωj/ωho, the BdG Eqs.(5a)

and (5b) become

−∇̄2(1 − r̄2)φ+
j − (1 − r̄2)σφ+

j

+
ζ2

2
[∇̄4 + 3∇̄2σ + σ∇̄2 + 3σ2]φ+

j = 2ω̄2
jφ

+
j , (11a)

−∇̄2(1 − r̄2)φ−j − (1 − r̄2)σφ−j
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+
ζ2

2
[∇̄4 + ∇̄2σ + 3σ∇̄2 + 3σ2]φ−j = 2ω̄2

jφ
−
j . (11b)

We solve Eq.(10) beyond TFA by using a Fetter-

like variational wavefunction for ground state as[23,24]

Φ0(r̄) = C0(1 − r̄2)(q+1)/2Θ(1 − r), where C0 =

[N0/(2πR
3
0B(3/2, 2 + q))]1/2 is a normalized con-

stant, with B(p, q) being Beta function and N0 =
∫

dr|Φ0(r)|2 = R3
0

∫

d r̄|Φ0(r̄)|2 being the particle

number in the condensate. The ratio R0/aho and the

chemical potential take the simple forms R0/aho =

[4P/B(3/2, 2 + q)]1/5 and µ = h̄ωho[4P/B(3/2, 2 +

q)]2/5/2 in TF regime, where P = N0asc/aho is di-

mensional atom-atom interaction strength. The varia-

tional parameter q is chosen by minimizing the ground

state energy of the system.[23,24]

Using the analytical solution of the ground state

wavefunction Φ0(r̄) one can get the expression of σ(r̄).

Then solving Eqs. (11a) and (11b) by taking ζ2 as a

small parameter we obtain the leading-order solution:

φ±nlm(r̄) = [2/(InlR
3
0)]

1/2(ζω̄nl)
± 1

2

(1 − r̄2)
q∓1

2 × r̄lPnl(r̄
2)Ylm(θ, ϕ), (12)

where Ylm(θ, ϕ) is spherical harmonic function, Inl =
∫ 1

0 dxxl+1/2(1 − x)qP 2
nl(x) is normalized integration,

and the function P (x) satisfies the hypergeometric dif-

ferential equation

2x(1 − x)d2P/dx2 + [2l + 3 − (2l+ 5 + 2q)x]dP/dx

+ [(ω̄nl)
2 − l − lq]P = 0 . (13)

The solutions of Eq.(13) are nth-order Jacob polyno-

mials P
(l+1/2,q)
n (1 − 2x) which form an orthonormal

function set in the interval 0 ≤ x ≤ 1 with weight

xl+1/2(1 − x)q . The eigenvalues are given by

(ω̄nl)
2 = (ω̄TF

nl )2 + (2n+ l)q, (14)

where (ω̄TF
nl )2 = 2n2 + 2nl + 3n + l are TFA eigen-

frequencies. Here the quantum numbers n = 0, 1, . . .;

l = 0, 1, . . .; and m = 0,±1, . . . ± l. It should be no-

ticed that for the mode with quantum number (n, l)

there is (2l + 1)-fold degeneracies. Note that in the

present problem the eigenvalues and eigenfunctions

are labelled by j = (n, l,m), where n is principal quan-

tum number denoting the number of nodes in the ra-

dial direction, l is orbital angular momentum number

with m being its projection.

4. Results for Landau damping

rate

In this section we apply the analytical results pre-

sented in the last two sections to investigate the Lan-

dau damping rate of a collective mode excited in a

BEC.

4.1. Expressions of dimensionless cou-

pling matrix elements and Landau

damping

For the convenience of later calculation, it is use-

ful to write the coupling matrix elements and the Lan-

dau damping rate in dimensionless forms. BecauseAij

has a dimension of inverse volume and γij has dimen-

sion of frequency square, we define Āij = Aij/a
3
ho and

γ̄ij = γij/ω
2
ho, both of them are thus dimensionless.

Then one obtains the dimensionless Landau damping

rate as

γ̄L ≡ γL/ωho =
∑

ij

γ̄ijδ(ω̄0 + ω̄i − ω̄j) (15)

with

γ̄ij = 4π(4πasc/aho)
2|Āij |

2(f0
i − f0

j ). (16)

Āij =
[4P/B(3/2, 2 + q)]1/10

4π[I0IiIj ω̄0ω̄iω̄j ]1/2

(N0

P

)1/2

×

∫

d r̄{(1 − r̄2)2qW0WiW
∗
j

× [3ζ2 ω̄0ω̄iω̄j

1 − r̄2
+ (ω̄0 + ω̄i − ω̄j)(1 − r̄2)]}, (17)

where Wj(r̄) = r̄lPnl(r̄
2)Ylm(θ, ϕ) and f0

j is expressed

as f0
j = [exp(2ζω̄j/T̄ ) − 1]−1, where T̄ = kBT/µ is

the dimensionless temperature. Note that, different

from the numerical approaches in Refs.[14,15,17,18],

in our present method Āij can be calculated analyti-

cally based on the variational ground state wavefunc-

tion of the condensate and the eigenfunctions of quasi-

particle given in the last section.

In a practical calculation, one must has a

way to calculate the Dirac delta function appear-

ing in Eq.(15). Noting that δ(ω̄0 + ω̄i − ω̄j) =

(1/π) lim∆̄→0(∆̄/2)/[(ω̄0+ ω̄i− ω̄j)
2+(∆̄/2)2], we have

γ̄L = lim
∆̄→0

γ̄L(∆̄), (18)

where

γ̄L(∆̄) =
1

π

∑

ij

γ̄ij
∆̄/2

[(ω̄0 + ω̄i − ω̄j)2 + (∆̄/2)2]
. (19)
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4.2.Damping strength for various tran-

sitions

We consider a gas of 87Rb atoms (asc = 5.82 ×

10−9 m) in a spherically symmetric harmonic trap

with trapping frequency ωho = 1000 Hz, thus aho =

8.52 × 10−7 m. The collective excitation under study

is the monopole mode (n, l,m) = (1, 0, 0) and hence

we have uosc = (φ+
100 + φ−100)/2 and vosc = (φ+

100 −

φ−100)/2. From the expression of coupling matrix el-

ements Eq.(17) we see that there is a selection rule

∆l = 0 and ∆m = 0 for quasiparticle transitions and

thus the related integration in Eq.(17) involves only in

radial part. The particle number in the condensate at

temperature T is given by N0(T ) = N [1 − (T/T 0
c )3],

whereN is the total particle number of the system and

T 0
c is the critical temperature of the BEC transition.

Since practically the frequency of the collective mode

has a finite line-width, the phase-matching condition

for three-mode resonant interactions, ω0+ωi−ωj = 0,

can not be exactly satisfied. Thus a small mis-match

for the three-mode resonant condition should be intro-

duced. Under such consideration, we assume that the

resonances contributing the Landau damping occur in

the interval 0.82ω0 < ωij < 1.18ω0.
[17] Therefore, the

quantum numbers n and l should be chosen by all

possible transitions allowed in this interval.

Noting that the eigenfunctions of quasiparticles

for the levels with large quantum numbers n and l

have very fast oscillations and their maxima are far

away from the centre of the condensate, we find that

the coupling matrix elements for the transition be-

tween levels with large n and l are small. In addi-

tion, the levels with larger n and l have larger en-

ergy and hence have smaller Bose occupation fac-

tor f0
j . Therefore, the contribution to the damping

strength by the energy levels of large n and l is not

significant. By a suitable estimation, in our calcula-

tion we choose n = 0, 1, 2, 3, and consider the tran-

sitions (n = 1, l) −→ (n = 0, l) for l from 2 to 8,

(n = 2, l) −→ (n = 1, l) for l from 6 to 16, and

(n = 3, l) −→ (n = 2, l) for l from 10 to 12. In Fig.1

we show that the histogram of the damping strength

γij (in unit of ω2
ho), which is taken as a function of the

transition frequencies ωij (in unit of ωho), is allowed by

monopole selection rules. We takeN0 = 2×104 for the

spherical trap with ωho = 1000 Hz and for kBT = 1.0µ

(corresponding to T = 101.8 nK). The monopole fre-

quency is ω0 = 2.24 (in unit of ωho) and the variational

parameter for the ground state wavefunction is given

by q = 1.05. The arrow in the figure points to the fre-

quency of the collective mode ω0 (in unit of ωho). The

position of bars corresponds to allowed transition fre-

quency ωij (in unit of ωho), whereas their heights de-

fine the calculating values of γij . The relatively large

values of γij correspond to the transitions between the

lowest levels (n = 1 −→ n = 0) for different values of

l (l from 2 to 8 from left to right). The transitions

between the higher levels (n = 2 −→ n = 1) and

(n = 3 −→ n = 2) give the relatively small value of

γij .

Fig.1. Histogram of the damping strength γij (in

unit of ω2
ho) as a function of resonance frequencies

ωij (in unit of ωho), allowed by monopole selection

rules for N0 = 2 × 104 in a spherical harmonic trap

with ωho = 1000 Hz, at kBT = 1.0 µ. The monopole

frequency is ω0 = 2.24 (in unit of ωho). The varia-

tional parameter for the ground state wavefunction is

q = 1.05.

Fig.2. Same as Fig.1 but for N0 = 6 × 107 and

kBT = 0.05 µ. The variational parameter in this case

is q = 0.089.

Figure 2 shows the result for the damping

strength for N0 = 6 × 107 at kBT = 0.05µ (corre-

sponding to T = 101.6 nK) with other parameters
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which are the same as those in Fig.1. We see that in

this case the difference of the damping strength be-

tween strong and weak transitions is more impressive

than that for a smaller condensate (Fig.1). The strong

transitions comes mainly from n = 1 to n = 0 for l=2

and 3. Obviously, these strong transitions give signif-

icant contributions to the Landau damping rate.

4.3. The result for Landau damping

In order to evaluate the Landau damping rate of

the collective mode, one must first calculate γ̄L(∆̄),

which is given by Eq.(19). If the variation of γ̄L(∆̄)

with respect to ∆̄ is weak, an extrapolation back to

∆̄ → 0 can be made and hence the value of γ̄L can thus

be obtained.[17]

Fig.3. Landau damping rate γL (in unit of ωho) as a

function of the Lorentzian width ∆̄, for N0 = 2 × 105

atoms in the spherical trap with ωho = 1000 Hz for dif-

ferent temperatures. Triangles, solid dots, and squares

are numerical values calculated at kBT/µ = 0.22,

0.8, 0.88 respectively. The variational parameter is

q = 0.47.

Figure 3 shows the result of γ̄L(∆̄) forN0 = 2×105

at kBT = 0.22µ, 0.8µ, and 0.88µ, respectively. One

can see that the variation of γ̄L(∆̄) is weak when∆̄ lies

between 0.04 and 0.20. In fact, under the condition

∆̄ω/ωho << ∆̄ << 1, γ̄L(∆̄) has only a weak depen-

dence on ∆̄, where ∆̄ω is the average distance of the

transitions. ∆̄ω is indeed small because of finite life-

time of the quasiparticles. In addition, a real system

cannot be exactly isotropic and hence the (2l+1)-fold

degeneracy of the energy-levels is broken, it results in

small energy-level separation. By fitting the data of

γ̄L(∆̄) to a straight line and extrapolating it back to

∆̄ = 0, we can obtain the Landau damping rate of the

collective mode.

In Fig.3 we have shown γ̄L(∆̄) for three different

dimensionless temperature values, i.e. T̄ (= kBT/µ) =

0.22, 0.8 and 0.88, which correspond to T = 50 nK,

182 nK, and 200 nK respectively. By extrapolation

we obtain γ̄=0.02, 0.1, and 0.11 (in unit of ωho),

and hence the dimensional Landau damping rates are

given by γL = 20 s−1, 100 s−1, and 110 s−1 respec-

tively. Our results are larger than experimental values

for an anisotropic trap[6] but more close to the theo-

retical ones obtained in Ref.[17].

4.4. N0- and ωho-dependence of the Lan-

dau Damping

With above results we can also investigate the N0-

and ωho-dependence of the Landau damping.

Fig.4. Landau damping rate γL (in unit of ωho) as a

function of kBT/µ for N0 = 2× 105 and N0 = 6× 105

respectively. The variational parameter is q = 0.47

(q = 0.34) for N0 = 2× 105 (N0 = 6× 105).

In Fig.4, we have plotted the damping rate as a

function of kBT/µ for ωho = 1000 Hz. Two cases

for different atomic number in the condensate, i.e.

N0 = 2 × 105 and N0 = 6 × 105, are considered. We

see that, as expected, the Landau damping rates in-

crease with temperature. The reason is that the num-

ber of quasiparticles available becomes larger when T

increases. In addition, the damping rates for differ-

ent atomic numbers at the same temperature display

no significant difference. This can be seen, for exam-

ple, by looking at the points a and b in Fig.4, which

represent the case of different N0 but with the same

temperature. Note that with the expression of the

chemical potential (µ = h̄ωho[4P/B(3/2, 2 + q)]2/5/2)

one has T = T̄ h̄(ωho/2kB)[4P/B(3/2, 2 + q)]2/5.

Figure 5 show the damping rates versus kBT/µ

but for different trapping frequencies. Three different
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cases for N0 = 2 × 105, i.e. ωho = 300 Hz, 1000 Hz,

and 3000 Hz, have been taken into account. We see

that the Landau damping rates increase with the trap-

ping frequency. The reason is that the atomic density

increases as the trapping frequency becomes larger.

Fig.5. Landau damping rate γL (in unit of ωho) as a

function of kB/µ for N0 = 2×105 for different trapping

frequencies. Triangles, solid dots, and squares corre-

spond respectively to ωho = 300 Hz, 1000 Hz, and 3000

Hz. The variational parameters for the ground state

wavefunction are q = 0.58, q = 0.47, and q = 0.40

respectively.

In the figure, the points a and b (also c and d)

are of the same temperature, which means that the

damping rate varies almost linearly with respect to

ωho.

5. Conclusion

In this paper we have proposed a method for cal-

culating the Landau damping rate of a low-energy col-

lective mode excited in a BEC with a harmonical trap.

By using the divergence-free analytical solutions for

the ground-state wavefunction of the condensate and

the eigenvalues and eigenfunctions for quasiparticles,

which are obtained beyond TFA, we have calculated

the coupling matrix elements describing the three-

mode resonant interactions among the collective mode

and the quasiparticles. In terms of these analytical re-

sults we have evaluated the Landau damping rate of

a monopole mode in a spherical trap and discussed

its dependence on temperature, particle number and

trapping frequency of the system. These results are in-

structive for further studies on Landau damping rates

of other low-energy collective modes and for the cases

of anisotropic traps.
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