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We propose a scheme to demonstrate the existence of optical Peregrine rogue waves and Akhmediev and
Kuznetsov-Ma breathers and realize their active control via electromagnetically induced transparency (EIT). The
system we suggest is a cold, �-type three-level atomic gas interacting with a probe and a control laser fields
and working under EIT condition. We show that, based on EIT with an incoherent optical pumping, which can
be used to cancel optical absorption, (1+1)-dimensional optical Peregrine rogue waves, Akhmediev breathers,
and Kuznetsov-Ma breathers can be generated with very low light power. In addition, we demonstrate that the
Akhmediev and Kuznetsov-Ma breathers in (2+1)-dimensions obtained can be actively manipulated by using an
external magnetic field. As a result, these breathers can display trajectory deflections and bypass obstacles during
propagation.
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I. INTRODUCTION

Rogue waves are rare, strong wave packets that may
appear in oceans when special conditions are met [1,2]. In
recent years, they have been discovered in different physical
systems, including optical fibers and cavities [3–6], water
waves [7], plasma with negative ions [8], laser filamenta-
tion [9], Bose-Einstein condensates [10], whispering-gallery-
mode resonators [11], photorefractive crystals [12], nd so
on. On the other hand, they have been studied in differ-
ent mathematical models, including the standard nonlinear
Schrödinger (NLS) equation [13], generalized NLS equation
with variable coefficients [14], derivative NLS equation [15],
Hirota equation [16–18], Davey-Stewartson equations [19],
and so on.

The formation of a rogue wave is due to the amplification of
a wide range of initial frequency components by modulation
instability, and hence the resulting wave can reach amplitude
substantially higher than that given by initial conditions [20].
In particular, zero-frequency perturbation leads to a wave
packet with the highest amplitude, which is known as a
Peregrine rogue wave [21]. The Peregrine rogue wave belongs
to a limiting case of the one-parameter family of Kuznetsov-
Ma breathers (KMB) [22] and also of one-parameter family
of Akhmediev breathers (AB) [23], which is localized in
two dimensions and described by rational expression. Recent
studies have shown that even higher amplitudes can be reached
due to the wave packets that are described by higher-order
rational solutions [24]. In addition, the high-dimensional [25]
and the vector properties [26] of rogue waves have also been
investigated.

Among various rogue waves, optical rogue waves have
attracted a great deal of interest [27,28] because of their
potential applications, such as supercontinuum generation [29]
and photolithography [30]. The generation of optical rogue
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waves, however, is very difficult in conventional optical media
because the nonlinearity in those media such as optical fibers
and waveguides is very weak, and hence large input power or
very short pulse duration is needed in order to bring out the
nonlinear effect required for the rogue wave formation [3–5].
Although the nonlinear effect can be enhanced by the use of
some resonant mechanisms, there is, however, a significant
optical absorption, which leads to serious attenuation and
distortion of optical pulses.

In this work, we propose a scheme to demonstrate the
existence of optical Peregrine rogue waves and Akhmediev
and Kuznetsov-Ma breathers and realize their active control
via electromagnetically induced transparency (EIT). EIT is a
remarkable quantum interference effect typically occurring in
multilevel atomic systems, by which light absorption due to the
resonance between light field and atoms can be largely elimi-
nated [31]. The system we suggest is a cold, �-type three-level
atomic gas interacting with a probe and a control laser fields
and working under EIT condition. Based on Maxwell-Bloch
(MB) equations, we derive a nonlinear envelope equation
governing the evolution of probe-field envelope. We first show
that, based on EIT with an incoherent optical pumping which
can be used to cancel optical absorption, (1+1)-dimensional
[(1+1)D] optical Peregrine rogue waves and Akhmediev and
Kuznetsov-Ma breathers can be generated at very low light
power. Furthermore, we discuss the initial condition necessary
for the creation of Peregrine rogue waves. In addition, we
demonstrate that the Akhmediev and Kuznetsov-Ma breathers
in (2+1)D obtained in our system can be actively manipulated
by using an external magnetic field. As a result, these breathers
can display trajectory deflections and bypass obstacles during
their propagation. Our work opens an avenue for the study of
optical rogue waves and breathers in resonant optical media
and realize their active manipulations at very low light level.

The article is arranged as follows. In Sec. II, the physical
model under study is described. In Sec. III, the nonlinear
equation governing the evolution of the probe-field envelope
is derived. In Sec. IV, the Peregrine rogue waves, Akhmediev
breathers, and Kuznetsov-Ma breathers are obtained, and
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their generation powers are estimated. In Sec. V, the active
control of Akhmediev and Kuznetsov-Ma breathers by using
an external magnetic field is investigated. Finally, the last
section (Sec. VI) summarizes the main results obtained in
this work.

II. MODEL

We start with considering a lifetime-broadened atomic gas
with a �-type three-level configuration, interacting with a
weak, pulsed probe field (with the time duration τ0 and beam
radius R⊥ at the entrance of the medium) of center angular
frequency ωp that drives the transition |1〉 ↔ |3〉 and a strong,
continuous-wave control field of center angular frequency ωc

that drives the transition |2〉 ↔ |3〉, respectively; see Fig. 1(a).
The electric-field vector of the system can be written as E =
Ep + Ec = ∑

l=c,p elE l exp[i(kl · r − ωlt)] + c.c., where ep

and Ep (ec and Ec) are, respectively, the polarization unit
vector and the envelope of the probe (control) field; kp = ωp/c

(kc = ωc/c) is the wave number of the probe (control) field
before entering into the atomic gas, and c.c. means complex
conjugate. The atoms are trapped in a gas cell and initially
prepared in the ground-state level |1〉. To cancel atomic
collisions and Doppler effect, we assume the atoms have been
cooled into a very low temperature (say, around 1 mK [32]),
and both the probe and the control fields are arranged to
propagate along the z direction.

Using electric-dipole and rotating-wave approximations,
the Hamiltonian of the system in the interaction pic-
ture reads Hint/� = ∑3

j=2 �j |j 〉〈j | + �p|3〉〈1| + �c|3〉〈2| +
H.c.. Here �p = (ep · p31)Ep/� and �c = (ec · p32)Ec/� are
respectively the Rabi frequencies of the probe and control
fields, with pj l being the electric dipole matrix element
associated with the transition from states |l〉 to |j 〉; �2 =
(ωp − ωc − ω21) and �3 = (ωp − ω31) are, respectively, the
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FIG. 1. (a) Energy-level diagram and excitation scheme of �-type
three-level atoms interacting with a weak, pulsed probe field Ep and a
strong, continuous-wave control field Ec. �2 and �3 are the two- and
one-photon detunings, respectively. �13 (�23) is the decay rate from
|3〉 to |1〉 (|3〉 to |2〉). �31 is the incoherent pumping rate from |1〉 to |3〉.
The atoms are initially populated in the ground state |1〉 (indicated by
black dots). (b) The coordinate frame and geometrical arrangement
of the system. B(x) is the space-dependent gradient magnetic field
applied to the atomic gas used to make an active control of the probe
field.

two- and one-photon detunings, with ωjl = (Ej − El)/� (Ej

is the eigenenergy of the state |j 〉). The atomic motion of the
system is described by the optical Bloch equations [33]

i
∂

∂t
σ11 + i�31σ11 − i�13σ33 + �∗

pσ31 − �pσ ∗
31 = 0, (1a)

i
∂

∂t
σ22 − i�23σ33 + �∗

cσ32 − �cσ
∗
32 = 0, (1b)

i
∂

∂t
σ33 − i�31σ11 + i�3σ33 − �∗

pσ31

+�pσ ∗
31 − �∗

cσ32 + �cσ
∗
32 = 0, (1c)(

i
∂

∂t
+ d21

)
σ21 − �pσ ∗

32 + �∗
cσ31 = 0, (1d)

(
i

∂

∂t
+ d31

)
σ31 − �p(σ33 − σ11) + �cσ21 = 0, (1e)

(
i

∂

∂t
+ d32

)
σ32 − �c(σ33 − σ22) + �pσ ∗

21 = 0, (1f)

where σjl (j,l = 1,2,3) are density matrix elements in the
interaction picture, d21 = �2 + iγ21, d31 = �3 + iγ31, and
d32 = (�3 − �2) + iγ32. The composite decay rate γjl is
given by γjl = (�j + �l)/2 + γ col

j l . Here �j = ∑
j<l �jl , with

�jl being the spontaneous emission decay rate from |l〉 to
|j 〉 and γ col

j l being the dephasing rate reflecting the loss of
phase coherence between |j 〉 and |l〉 without changing of
population [33]. For the aim of introducing a gain into the
system, an incoherent optical pumping, which can pump atoms
from the ground-state level |1〉 to the excited-state level |3〉
with the pumping rate �31, is introduced. The presence of the
incoherent optical pumping is crucial for the existence of rogue
waves, as shown below.

The equation of motion for �p can be obtained by
Maxwell equation, which, under the slowly varying envelope
approximation, reads [34]

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + c

2ωp

∂2�p

∂x2
+ κ13σ31 = 0. (2)

Here κ13 = Naωp|p13|2/(2ε0c�), with Na being atomic den-
sity. Note that, for simplicity, we have assumed that the probe
pulse has a large spatial width in y direction so the diffraction
effect in the y direction (i.e., ∂2�p/∂y2) can be neglected.

The above model can be easily realized in realistic physical
systems. One of these candidates is a cold 85Rb atomic gas with
energy levels assigned as |1〉 = |5 2S1/2, F = 2, mF = 0〉
(gF = −1/3), |2〉 = |5 2S1/2, F = 3, mF = 2〉 (gF = 1/3),
and |3〉 = |5 2P1/2, F = 3, mF = 1〉 (gF = 1/9). Then the
probe field is σ+ polarized while the control field is
σ− polarized. The decay rates are given by �13 ≈ �23

≈ π × 5.75 MHz, γ col
13 ≈ γ col

23 ≈ 1 kHz, and |p13| = 2.54 ×
10−27 C cm [35]. The atomic density is taken as Na ≈ 3.67 ×
1010cm−3, and hence κ13 takes the value of 1.0 × 109 cm−1s−1.
All calculations given below will be based on this set of system
parameters.
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III. ASYMPTOTIC EXPANSION AND NONLINEAR
ENVELOPE EQUATION

One of the main goals of the present work is to ob-
tain rogue waves and breathers in the system described
above. To this end, we first derive the envelope equation
of the probe field based on the MB Eqs. (1) and (2) by
using the standard method of multiple scales [36]. Tak-
ing the asymptotic expansion σjk = δj1δk1 + εσ

(1)
jk + ε2σ

(2)
jk +

ε3σ
(3)
jk (j, k = 1, 2, 3; both δj1 and δk1 are Kronecker δ

symbols), �p = ε�(1)
p + ε2�(2)

p + ε3�(3)
p , and djk = d

(0)
jk +

εd
(1)
jk + ε2d

(2)
jk + ε3d

(3)
jk (j, k = 1, 2, 3; j �= k). Here ε is a small

parameter characterizing the small population depletion of
the ground state, and all quantities on the right-hand side
of the asymptotic expansion are considered as functions of
the multiscale variables zl = εlz (l = 0, 1, 2), x1 = εx, and
tl = εlt (l = 0, 1). Thus, we have d

(0)
21 = (ωp − ωc − ω21) +

iγ21, d
(0)
31 = (ωp − ω31) + iγ31, d

(0)
32 = (ωc − ω32) + iγ32, and

d
(j )
21 = d

(j )
31 = d

(j )
32 = 0 (j = 1, 2, 3). Substituting these expan-

sions into the MB Eqs. (1) and (2), and comparing the
coefficients of εl (l = 1,2,3 · · · ), we obtain a set of linear
but inhomogeneous equations which can be solved order by
order.

The solution at the zero (leading) order (l = 0) reads

σ
(0)
11 = |�c|2X

i�23�31/�13 + |�c|2(2�31/�13 + 1)X
, (3)

σ
(0)
33 = (�31/�13)σ (0)

11 , σ
(0)
22 = 1 − σ

(0)
11 − σ

(0)
33 , σ

(0)
21 = σ

(0)
31 = 0,

and σ
(0)
32 = �c(σ (0)

33 − σ
(0)
22 )/d (0)

32 , with X = 1/d
(0)∗
32 − 1/d

(0)
32 .

Notice that when the incoherent pumping �31 = 0, we have
σ

(0)
11 = 1 and σ

(0)
22 = σ

(0)
33 = σ

(0)
32 = σ

(0)
21 = σ

(0)
31 = 0.

At the first order (l = 1), we obtain the solution
�(1)

p = Feiθ , σ
(1)
31 = a

(1)
31 Feiθ , and σ

(1)
21 = a

(1)
21 F eiθ , with θ =

K(ω)z0 − ωt0 [37], F being a yet-to-be-determined enve-
lope function of the slow variables t1, x1, and z2, and the
expressions of a

(1)
j1 (j = 2, 3) given in Appendix. The linear

dispersion relation of the system is given by

K(ω) = ω

c
+ κ13

�cσ
(0)∗
32 + (

ω + d
(0)
21

)(
σ

(0)
11 − σ

(0)
33

)
D(ω)

, (4)

where we have defined D(ω) = |�c|2 − (ω + d
(0)
21 )(ω + d

(0)
31 ).

Shown in Fig. 2 is the imaginary part of K , i.e., Im(K), as
a function of ω, characterizing the absorption in the system.
The red thin solid line in the figure is for (�c,�31) = (0,0),
which indicates that in the absence of the control field and the
incoherent pumping the probe field has a very large absorption
near ω = 0 (corresponding to the center frequency of the probe
field); however, when �c takes the value of 5 × 107 Hz and
the incoherent pumping is still absent, a transparency window
in the profile of Im(K) is opened, as shown by the green thick
solid line. This is the well-known EIT phenomenon induced
by the quantum interference effect contributed by the control
field. However, in this case there is still a small residual
absorption [Im(K) ≈ 0.2] around ω = 0; see the insert of
the figure. That is to say, although the EIT can suppress the
absorption largely, it cannot make the absorption to be exact
zero. This small residual absorption is caused from the small

FIG. 2. Im(K) versus ω for (�c,�31) = (0,0) (red thin solid line),
(1.6 × 107,0) (green thick solid line), and (1.6 × 107,9.1 × 104) (blue
dashed-dotted line). The insert shows respectively the curves for
(�c,�31) = (1.6 × 107,0) and (1.6 × 107,9.1 × 104) around ω = 0,
which indicates that the system has a gain for nonzero �31 (incoherent
pumping).

decay rate (γ21) between the two lower states |1〉 and |2〉. The
blue dashed-dotted line in Fig. 2 represents the situation when
the incoherent pumping �31 takes the value of 9.1 × 104 s−1.
One can see that in this case the absorption is nearly vanishing
[Im(K) ≈ 0] near ω = 0. This is because the incoherent
pumping contributes a gain, which cancels the absorption of
the system. The presence of the incoherent pumping is crucial
to the existence of rogue waves and breathers because even
a small absorption will lead to a serious attenuation in rogue
waves and breathers; see Fig. 4 below.

At the second order (l = 2), a divergence-free condition
requires

i

(
∂F

∂z1
+ 1

Vg

∂F

∂t1

)
= 0, (5)

where Vg = 1/K1 = (∂K/∂ω)−1 is group velocity of
the envelope function F . The solution at the sec-
ond order reads σ

(2)
j1 = a

(2)
j1 (∂F/∂t1)eiθ (j = 2, 3), σ

(2)
jj =

a
(2)
jj |F |2e−αz2 (j = 1, 2), and σ

(2)
33 = −σ

(2)
11 − σ

(2)
22 , with the

expressions of a
(2)
j1 (j = 2, 3) and a

(2)
jj (j = 1, 2) given in

Appendix.
With the above solution, we go to the third order (l = 3).

To get a divergence-free solution at this order, the envelope
function F must satisfy the nonlinear equation

i
∂F

∂z2
− 1

2
K2

∂2F

∂t2
1

+ c

2ωp

∂2F

∂x2
1

+ W |F |2Fe−2αz2 = 0, (6)

with α = ε−2Im[K(ω)], and

W = κ13
�ca

(2)∗
32 + (

ω + d
(0)
21

)(
2a

(2)
11 + a

(2)
22

)
D

.

Here K2 = ∂2K(ω)/∂ω2 characterizes the group velocity
dispersion while W characterizes the Kerr nonlinear effect
of the system.

063836-3



JUNYANG LIU, CHAO HANG, AND GUOXIANG HUANG PHYSICAL REVIEW A 93, 063836 (2016)

Combing Eqs. (5) and (6) and returning to the original
variables, we obtain

i

(
∂

∂z
+ α

)
U − 1

2
K2

∂2U

∂τ 2
+ c

2ωp

∂2U

∂x2
+ W |U |2U = 0, (7)

where τ = t − z/Vg and U = εFe−αz. Equation (7) can be
further written into the dimensionless form

i
∂u

∂s
+ 1

2

(
dDis

∂2

∂σ 2
+ dDif

∂2

∂ξ 2

)
u + |u|2u = −idAu, (8)

where s = z/LNon, σ = τ/τ0, ξ = x/R⊥, and u = U/U0

(U0 is the characteristic Rabi frequency of the probe field).
Here LNon = 1/(U 2

0 |W̃ |) is the characteristic nonlinearity
length characterizing Kerr effect (here and in the following,
the quantity with a tilde above means its real part). The
dimensionless coefficients are given by dDis = LNon/LDis,
dDif = LNon/LDif and dA = LNon/LA, with LDis = τ 2

0 /|K̃2|
the characteristic dispersion length, LDif = ωpR2

⊥/c the char-
acteristic diffraction length, and LA = 1/α the characteristic
absorption length of the system.

When obtaining Eq. (8) the imaginary part of the coeffi-
cients have been neglected. This is reasonable because under
the EIT condition the imaginary parts can be made much
smaller than their real parts (see the example given below).
In addition, the coefficient dA is very small, and hence the
linear absorption term on the right-hand side of Eq. (8) can be
treated as a small perturbation.

IV. WEAK-LIGHT ROGUE WAVES AND
BREATHERS IN (1+1)D

A. Peregrine rogue waves in (1+1)D

Equation (8) in the absence of linear absorption (i.e.,
dA = 0), which can be realized by choosing a nonzero
incoherent optical pumping �31, has the form of a (2+1)D
NLS equation. In order to obtain analytical solutions, one
can employ additional condition so it can be reduced to a
(1+1)D model. To be specific, we first consider the situation
dDis = 1 and dDif 	 1, which can be achieved by taking LDis =
LNon and LDif 
 LNon, i.e., the dispersion and nonlinearity
balance each other while the diffraction is insignificant,
corresponding to the conditions τ0 = (|K̃2|/|W̃ |)1/2U−1

0 and
R⊥ 
 [c/(ωp|W̃ |)]1/2U−1

0 , respectively. In this case Eq. (8)
reduces to the standard (1+1)D NLS equation

i
∂u

∂s
+ 1

2

∂2u

∂σ 2
+ |u|2u = 0. (9)

As an example, we take a set of system parameters
given as �c = 1.6 × 107 s−1, �2 = −8.0 × 105 s−1, �3 =
−5.0 × 107s−1, τ0 = 4.0 × 10−6 s, R⊥ = 0.05 cm, U0 =
2.2 × 106 s−1, and �31 = 9.1 × 104 s−1. Then we have K0 ≈
(−2.99 + i0.01) cm−1, K1 ≈ (5.11 − i0.59) × 10−6cm−1 s,
K2 ≈ (−2.24 + i1.28) × 10−12cm−1 s2, and W ≈ (2.86 −
i0.09) × 10−14 cm−1 s2 (all values are obtained at ω = 0).
It is obvious that the imaginary parts of Kj (j = 0,1,2) and
W are much smaller than their corresponding real parts, as
indicated at the end of the last section. Based on these results,
we obtain the characteristic lengths of the system, given by
LDis = LNon ≈ 7.1 cm, LDif = 200 cm, and LA ≈ 193 cm.

Then we have dA ≈ 0, dDis = 1, and dDif ≈ 0. After neglecting
the terms proportional to dA and dDif , Eq. (9) admits the
first-order Peregrine soliton solution (rogue wave), having the
rational form u(s,σ ) = [1 − 4(1 + 2is)/(1 + 4s2 + 4σ 2)]eis ,
which is an algebraically decaying wave packet in the z

direction and time, with the maximum intensity |u|2max = 9
located at (s,σ ) = (0,0). Notice that such a maximum intensity
is much larger than that of the continuous-wave solution
and hyperbolic secant soliton solution. After returning to the
original variables, we obtain

�p(z,t) = U0

(
1 − 4

1 + 2iz
/
LNon

1 + 4z2
/
L2

Non + 4[(t − z/Ṽg)/τ0]2

)

× eiz/LNon , (10)

i.e., the probe-field envelope is localized (with the maximum
|�p|2max = 9U 2

0 ) and travels with velocity Ṽg , which is esti-
mated as

Ṽg ≈ 6.44 × 10−6c. (11)

Hence the traveling velocity of the Peregrine rogue wave is
very slow comparing with c (the light speed in vacuum) due
to the EIT effect.

The initial condition for producing the rogue wave solu-
tion (10) can be taken as ui = ρie

iθi , with

ρ2
i = 1 + 8

(
1 + 4z2

i /L
2
Non − 4τ 2

i /τ 2
0

)
(
1 + 4z2

i /L
2
Non + 4τ 2

i /τ 2
0

)2 , (12a)

θi = zi

LNon
− 2zi/LNon

z2
i /L

2
Non + τ 2

i /τ 2
0 − 3/4

, (12b)

with τi = ti − zi/Ṽg . Solving Eq. (9) together with the
above initial condition we can obtain the propagation pro-
file of the probe-field intensity. Shown in Fig. 3(a) is the

FIG. 3. (a) Probe-field intensity |�p/U0|2 versus τ/τ0 (with
τ = t − z/Ṽg) and z/LNon obtained by using the initial condition (12),
with (b) the corresponding contour map; (c) |�p/U0|2 obtained
by using the pure phase-engineering initial condition, with (d) the
corresponding contour map.
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FIG. 4. (a) The probe-field intensity |�p/U0|2 versus τ/τ0 (with
τ = t − z/Ṽg) and z/LNon with the initial condition given by
Eq. (12) for vanishing incoherent optical pumping (i.e., �31 = 0).
(b) Corresponding contour map for (a).

probe-field intensity |�p/U0|2 as a function of τ/τ0 and
z/LNon, obtained by using the initial condition (12), with
Fig. 3(b) the corresponding contour map of Fig. 3(a). We
see that a Peregrine rogue wave appears indeed, which has a
sharp peak around (z,τ ) = (0,0) and decays rapidly for large
z and τ .

However, one can use a much simpler way to generate
(1+1)D Peregrine rogue waves. Figure 3(c) shows the intensity
profile |�p/U0|2 obtained by using the pure phase engineer-
ing [10], with Fig. 3(d) the corresponding contour map of
Fig. 3(c). In this way, the initial probe-field amplitude ρi is a
constant while the initial phase θi is chosen from Eq. (12b),
which can be produced by using optical phase masks. This is
because the initial intensity of the probe field is only weakly
modulated [as shown by Eq. (12a)].

We emphasize that the results obtained above is for
a nonzero incoherent optical pumping (i.e., �31 = 9.1 ×
104 s−1), which is crucial for the observation of the rogue
waves. Figure 4 shows the result for �31 = 0.

We see that in the absence of the incoherent optical pumping
the rogue wave suffers a significant attenuation (the maximum
intensity of the probe field decreases from 9U 2

0 to 2U 2
0 ) due to

the existence of the small residual optical absorption.
Next, we consider the situation dDis 	 1 and dDif = 1,

which can be achieved by taking LDis 
 LNon and LDif =
LNon, i.e., the diffraction and nonlinearity in the system
balance each other while the dispersion is negligible, corre-
sponding to the condition τ0 
 (|K̃2|/|W̃ |)1/2U−1

0 and R⊥ =
[c/(ωp|W̃ |)]1/2U−1

0 , respectively. In this case Eq. (8) is

reduced to the standard (1+1)D NLS equation

i
∂u

∂s
+ 1

2

∂2u

∂ξ 2
+ |u|2u = 0. (13)

As an example for this situation, we take a set of system
parameters τ0 = 1.6 × 10−5 s and R⊥ = 0.01 cm without
changing other parameters. The characteristic lengths of the
system are given by LA ≈ 193 cm, LDis = 114 cm, and
LDif = LNon ≈ 7.2 cm. We thus have dA ≈ 0, dDis ≈ 0.06,
and dDif = 1. After neglecting the terms proportional to dA and
dDis, Eq. (13) has the first-order Peregrine rogue wave solution
with the form u(s,ξ ) = [1 − 4(1 + 2is)/(1 + 4s2 + 4ξ 2)]eis ,
which has the maximum intensity |u|2max = 9, located at
(s,ξ ) = (0,0). When returning to original variables, we have

�p(z,x) = U0

(
1 − 4

1 + 2iz/LNon

1 + 4z2/L2
Non + 4x2/R2

⊥

)
eiz/LNon .

(14)
Thus in this case the rogue wave is a stationary wave packet
algebraically decaying in the x and z directions, with the
maximum |�p|2max = 9U 2

0 located at (x,z) = (0,0).
Using the Poynting’s vector [36], it is easy to estimate

the input power for generating Peregrine rogue waves. For
example, the maximum power for the generation of the rogue
wave shown in Fig. 3(a) is

Pmax ≈ 1.5 μW, (15)

i.e., very low input power is needed to generate the rogue wave
in the present system. Further, the time duration of the input
pulse is on the order of microseconds. This is a drastic contrast
to conventional media such as glass-based optical fibers, where
ps or fs laser pulses are usually needed to reach a very high
peak power to bring out the enough nonlinear effect required
for the formation of rogue waves [3–6].

B. Ahkmediev and Kuznetsov-Ma breathers in (1+1)D

The standard NLS equation admits also other different types
of soliton solutions, in particular Ahkmediev and Kuznetsov-
Ma breathers. In the present system, Ahkmediev breathers are
localized in the z axis and periodic along the t (or x) axis,
whereas Kuznetsov-Ma breathers are localized in the t (or x)
axis and periodic along the z axis.

The Ahkmediev breather, after returning to original vari-
ables, reads

�p,AB

U0
= (1 − 4q) cosh(az/LNon) + √

2q cos(�τ/τ0) + ia sinh(az/LNon)√
2q cos(�τ/τ0) − cosh(az/LNon)

eiz/LNon , (16)

corresponding to the dispersion-dominant Eq. (9), and

�p,AB

U0
= (1 − 4q) cosh(az/LNon) + √

2q cos(�x/R⊥) + ia sinh(az/LNon)√
2q cos(�x/R⊥) − cosh(az/LNon)

eiz/LNon , (17)

corresponding to the diffraction-dominant Eq. (13). Here � is a modulation parameter, q = (1 − �2/4)/2, and a = √
8q(1 − 2q).

The period of the breather (16) [(17)] along the t (x) axis is Dt = π/
√

1 − 2q (Dx = π/
√

1 − 2q).
The solutions (16) and (17) are valid only for q < 1/2. When q > 1/2, we have the Kuznetsov-Ma breather, after returning

to original variables, which takes the form

�p,KMB

U0
= (1 − 4q) cos(az/LNon) + √

2q cosh(�τ/τ0) − ia sin(az/LNon)√
2q cosh(�τ/τ0) − cos(az/LNon)

eiz/LNon , (18)
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corresponding to the dispersion-dominant Eq. (9), and

�p,KMB

U0
= (1 − 4q) cos(az/LNon) + √

2q cosh(�x/R⊥) − ia sin(az/LNon)√
2q cosh(�x/R⊥) − cos(az/LNon)

eiz/LNon , (19)

corresponding to the diffraction-dominant Eq. (13). Now
one has q = (1 + �2/4)/2 and a = √

8q(2q − 1). The pe-
riod of the breathers (18) and (19) along the z axis is
Dz = π/

√
2q(2q − 1). When q = 1/2, the Ahkmediev and

Kuznetsov-Ma breathers degenerate into the Peregrine rogue
waves (10) and (14), respectively.

Shown in Fig. 5(a) is the probe-field intensity |�p,KMB/U0|2
for the Kuznetsov-Ma breather as a function of z/LNon and
τ/τ0. The initial condition is taken to be (18) with � = √

2,
q = 3/4. In this case, the Kuznetsov-Ma breather oscillates
periodically in the z axis, which can be clearly seen in the
corresponding contour map illustrated in Fig. 5(b). Figure 5(c)
shows |�p,AB/U0|2 for the Ahkmediev breather, with the
initial condition given by (16) and � = √

2, q = 1/4. We see
that in this case the Ahkmediev breather oscillates periodically
in the τ axis, as illustrated in the corresponding contour map
[i.e., Fig. 5(d)].

The input power for generating the Kuznetsov-Ma breather
obtained above can be estimated by calculating the maximum
power of the initial condition, which is given by

Pmax ≈ 2.0 μW. (20)

Thus, very low input power is needed for the generation
of Ahkmediev and Kuznetsov-Ma breathers in the present
system.

FIG. 5. (a) The probe-field intensity |�p,KMB/U0|2 versus τ/τ0

(with τ = t − z/Ṽg) and z/LNon for the Kuznetsov-Ma breather. The
initial condition is taken to be (18) with � = √

2 and q = 3/4. (b)
Corresponding contour map for (a). (c) The probe-field intensity
|�p,AB/U0|2 versus τ/τ0 and z/LNon for the Ahkmediev breather.
The initial condition is taken to be (16) with � = √

2 and q = 1/4.
(d) Corresponding contour map for (c).

V. ACTIVE CONTROL OF THE KUZNETSOV-MA
BREATHERS IN (2+1)D

A. Peregrine rogue waves in (2+1)D in the presence of a
gradient magnetic field

One of the main advantages of the present system is that it
is possible to realize an active control over the probe field by
tuning system parameters. One of possibilities is to introduce
a gradient magnetic field of the form

B(x) = ẑB(x) = ẑB0x (21)

into the system, where ẑ is the unit vector in the z direction
and B0 characterizes the space gradient of the magnetic field in
the x direction, as shown in Fig. 1(b). The gradient magnetic
field (21) will result in the Zeeman shift of atomic levels with
�Ej,Zeeman(x) = μBg

j

F m
j

F B(x). Here μB , g
j

F , and m
j

F are
Bohr magneton, gyromagnetic factor, and magnetic quantum
number of the level |j 〉, respectively.

The Zeeman shift of atomic levels is equivalent to an
external force acting on the atoms, which acts back to the probe
field in the system. As a result, an external potential related
to the magnetic field will appear in the envelope equation of
the probe field. Experimentally, the gradient magnetic field
may be realized by using a space-dependent current in coils
of wire [38]. Note that such a magnetic field has been used
in recent studies on the Stern-Galarch deflection of slow
lights [39,40] and ultraslow optical solitons [41,42].

For our aim, the gradient magnetic field is assumed to be
weak, i.e., at the order of magnitude of ε3. Then one has B0 =
ε3B̃0, and hence d

(2)
21 = μ21B̃0x1, d

(2)
31 = μ31B̃0x1, and d

(2)
32 =

μ32B̃0x1, with μjl = μB(gj

F m
j

F − gl
F ml

F )/�. The nonlinear
envelope equation in the presence of the gradient magnetic
field (21) can also be derived by the use of the method of
multiple scales. But here we are interested in the case in which
the probe-field envelope depends on the slow variables x1, z2,
and t2 (i.e., the dispersion effect of the system is negligible,
valid for the probe pulse with a large time duration). Then we
can obtain the following dimensionless envelope equation:

i

(
∂

∂s
+ 1

λ

∂

∂τ

)
u + 1

2
ddif

∂2u

∂ξ 2
+ |u|2u + p ξu = −idAu,

(22)

where τ = t/τ0, λ = Vgτ0/LNon, and p = LNonR⊥PB0 with

P = κ13

(
ω + d

(0)
21

)
a

(1)
31 μ31 − �ca

(1)
21 μ21

D
+ W ′, (23)

with the expression of W ′ given in Appendix. Note that p is
proportional to the magnetic gradient B0, which can be used
to manipulate the behavior of the probe-field envelope. The
expressions of other coefficients are the same with those given
below Eq. (8).

As before, by choosing �31 = 9.1 × 104 s−1, we have
dA ≈ 0. In addition, we assume ddif = 1, which can be realized
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FIG. 6. (a) Trajectory deflection of the Kuznetsov-Ma
breather (30) under the action of the gradient magnetic field (21) with
p = 0.01 (corresponding to B0 = 4.8 mG cm−1). (b) The deflection
distance x/R⊥ as a function of time t/τ0 for B0 = 4.8 × 10−3

G cm−1 [the red (lower) line] and 7.2 × 10−3 G cm−1 [the blue
(upper) line].

under the condition LDif = LNon. Then Eq. (22) is reduced to

i

(
∂

∂s
+ 1

λ

∂

∂τ

)
u + 1

2

∂2u

∂ξ 2
+ |u|2u + p ξu = 0. (24)

To solve the above equation, we assume [40] u(s,τ,ξ ) =
ψ(s,τ )φ(τ,ξ ), with

ψ(s,τ ) = 21/4e−(s−λτ )2/(4ρ2) = 21/4e−(z−Vgt)2/(4ρ2L2
Non), (25)

where ρ is a free real parameter. When writing Eq. (25)
the probe-field envelope is assumed to be a Gaussian pulse
propagating along the z direction with velocity Vg . In this
way, φ(τ,ξ ) satisfies the following equation:

i
1

λ

∂φ

∂τ
+ 1

2

∂2φ

∂ξ 2
+ |φ|2φ + p ξφ = 0. (26)

Then, by making the transformation φ = φ′ exp[i(pξ ′ +
p2τ ′2/3)τ ′], with ξ ′ = ξ − pτ ′2/2 and τ ′ = λτ , Eq. (26)
can be written into the standard NLS equation i∂φ′/∂τ ′ +
(1/2)∂2φ′/∂ξ ′2 + |φ′|2φ′ = 0. Thus, we obtain the Peregrine
rogue wave solution of Eq. (24), reading as

u(s,τ,ξ ) = 21/4

[
1 − 4

1 + 2iλτ

1 + 4λ2τ 2 + 4(ξ − pλ2τ 2/2)2

]

× eiλτ+ipλ(ξ−pλ2τ 2/6)τ−(s−λτ )2/(4ρ2). (27)

FIG. 7. The traveling trajectory of the Kuznetsov-Ma
breather (34) by using the space-time-dependent magnetic
field (31) with � = √

2, q = 3/4, and p = 1. (a) The case for
ω0τ0 = 1; the trajectory is a sinusoidal curve. (b) The case for
ω0τ0 = 0.1; the breather can bypass an obstacle (shown by the white
solid circle) and recover its input state.

Returning to original variables, it is given by

�p(z,t,x)

= 21/4U0

(
1− 4

1 + 2iλt/τ0

1+4λ2t2/τ 2
0 + 4

[
x/R⊥−pλ2t2/

(
2τ 2

0

)]2

)

× eiλt/τ0+ipλ[x/R⊥−pλ2t2/(6τ 2
0 )]t/τ0−(z/LNon−λt/τ0)2/(4ρ2).

(28)

We see that the rogue wave (28) is localized in both x and
z directions and evolves in time, and hence it is a (2+1)D
Peregrine rogue wave. From the rogue wave (28), however,
we also observe that the maximum of the rogue wave, locating
at (t,x) = (0,0), is independent from the parameter p, which
means that one cannot manipulate such maximum of the rogue
wave through the gradient magnetic field (21).

B. The manipulation of (2+1)D Kuznetsov-Ma breathers using
the gradient magnetic field

Since it is not possible to manipulate the maximum of
the (2+1)D Peregrine rogue wave by using the gradient
magnetic field, we now turn to consider (2+1)D Ahkmediev
and Kuznetsov-Ma breathers. As an example, we study the
possibility of an active manipulation for (2+1)D Kuznetsov-
Ma breathers. Following the way similar to the last subsection,
it is easy to get the Kuznetsov-Ma breather solution of Eq. (24),
given by

u(s,τ,ξ ) = 21/4 (1 − 4q) cos(aλτ ) + √
2q cosh[�(ξ − pλ2τ 2/2)] − ia sin(aλτ )√

2q cosh[�(ξ − pλ2τ 2/2)] − cos(aλτ )
eiλτ+ipλ(ξ−pλ2τ 2/6)τ−(s−λτ )2/(4ρ2), (29)

with q = (1 + �2/4)/2 and a = √
8q(2q − 1). Returning to original variables, it reads

�p,KMB(z,t,x) = 21/4U0
(1 − 4q) cos(aλt/τ0) + √

2q cosh
{
�

[
x/R⊥ − pλ2t2/

(
2τ 2

0

)]} − ia sin(aλt/τ0)√
2q cosh

{
�

[
x/R⊥ − pλ2t2/

(
2τ 2

0

)]} − cos(aλt/τ0)

×eiλt/τ0+ipλ[x/R⊥−pλ2t2/(6τ 2
0 )]t/τ0−(z/LNon−λt/τ0)2/(4ρ2). (30)

Shown in Fig. 6(a) is the traveling trajectory of the Kuznetsov-Ma breather (30) for p = 0.01, which corresponds to B0 =
4.8 × 10−3 G cm−1. We see that the traveling trajectory is a parabolic type in the presence of the gradient magnetic field.
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Figure 6(b) shows the deflection distance x/R⊥ as a function of time t/τ0 for B0 = 4.8 × 10−3 G cm−1 [the red (lower) line]
and 7.2 × 10−3 G cm−1 [the blue (upper) line]. We observe that the bending extent of the parabolic trajectory increases as the
magnetic field gradient becomes larger.

By using different magnetic fields, one can obtain different shapes of the traveling trajectories for the Kuznetsov-Ma breather.
To demonstrate this, we consider a more complicated magnetic field dependent on both space and time, with the form

B(t,x) = ẑB(t,x) = ẑB0 cos(ω0t)x, (31)

where ω0 characterizes the period of the magnetic field in time. With such a magnetic field and taking into account that ddif = 1
and dA ≈ 0, Eq. (22) becomes

i

(
∂

∂s
+ 1

λ

∂

∂τ

)
u + 1

2

∂2u

∂ξ 2
+ |u|2u + p cos(ω0τ0τ ) ξu = 0. (32)

The Kuznetsov-Ma breather solution of the above equation is given by

u(s,τ ) = 21/4 (1 − 4q) cos(aλτ ) + √
2q cosh

{
�

[
ξ + p cos(ω0τ0λτ )/

(
ω2

0τ
2
0

)]} − ia sin(aλτ )√
2q cosh

{
�

[
ξ + p cos(ω0τ0λτ )/

(
ω2

0τ
2
0

)]} − cos(aλτ )

×eiλτ+i�−(s−λτ )2/(4ρ2), (33)

with � = p[sin(ω0τ0λτ )ξ + p sin(2ω0τ0λτ )/(8ω2
0τ

2
0 ) − pλτ/(4ω0τ0)]/(ω0τ0). Returning to original variables, it reads

�p,KMB = 21/4U0
(1 − 4q) cos(aλt/τ0) + √

2q cosh
{
�

[
x/R⊥ + p cos(ω0λt)/

(
ω2

0τ
2
0

)]} − ia sin(aλt/τ0)√
2q cosh

{
�

[
x/R⊥ + p cos(ω0λt)/

(
ω2

0τ
2
0

)]} − cos(aλt/τ0)

×eiλt/τ0+i�−(z/LNon−λt/τ0)2/(4ρ2), (34)

with

� = p

ω0τ0

[
sin(ω0λt)

x

R⊥
+ p

8ω2
0τ

2
0

sin(2ω0λt) − pλt

4ω0τ
2
0

]
.

In Fig. 7(a) we show the trajectory of the Kuznetsov-Ma
breather (34) by taking � = √

2, q = 3/4, ω0τ0 = 1, and
p = 1 (corresponding to B0 = 0.48 G cm−1). We see that in
the presence of the space-time-dependent magnetic field (31),
the traveling trajectory of the Kuznetsov-Ma breather follows
a sinusoidal curve. Shown in Fig. 7(b) is the trajectory for
p = 1 and ω0τ0 = 0.1. We observe that in this case the
breather can bypass an obstacle (indicated by the white solid
circle) and recover its initial input state. The manipulations
of Kuznetsov-Ma breathers (30) and (34) by using external
magnetic fields shown above are not only interesting in theory
but also promising in applications on the active control of these
nonlinear excitations.

VI. SUMMARY

To sum up, in this work we have suggested a scheme to
demonstrate the existence of optical Peregrine rogue waves
and Akhmediev and Kuznetsov-Ma breathers and realized their
active control via EIT in a cold, three-level atomic system
with a �-type level configuration. Based on the EIT with
an incoherent optical pumping, which is used for canceling
the optical absorption, we have shown that (1+1)D optical
Peregrine rogue waves, Akhmediev breathers, and Kuznetsov-
Ma breathers can be created by using very low light intensity.
In addition, we have demonstrated that the Akhmediev and

Kuznetsov-Ma breathers in (2+1)D obtained can be actively
manipulated by using an external magnetic field. As a result,
these breathers may display trajectory deflections and bypass
obstacles during propagation. The results obtained may have
potential applications in optical information processing and

transmission.
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APPENDIX: EXPLICIT EXPRESSIONS OF SOME
COEFFICIENTS APPEARING IN SEC. III

The expressions of a
(1)
31 and a

(1)
21 in the first-order solution

of the MB equations are given by

a
(1)
31 = �cσ

(0)∗
32 + (

ω + d
(0)
21

)(
σ

(0)
11 − σ

(0)
33

)
D(ω)

, (A1a)

0a
(1)
21 = −�∗

c

(
σ

(0)
11 − σ

(0)
33

) + (
ω + d

(0)
31

)
σ

(0)∗
32

D(ω)
, (A1b)

with D(ω) = |�c|2 − (ω + d
(0)
21 )(ω + d

(0)
31 ).
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The expressions of a
(2)
31 , a

(2)
21 , a

(2)
11 , a

(2)
22 , and a

(2)
32 in the second-order solution of the MB equations are given by

a
(2)
31 = i

κ13

(
1

Vg

− 1

c

)
, (A2)

a
(2)
21 = − i

�c

[
a

(1)
31 +

(
ω + d

(0)
31

)
κ13

(
1

Vg

− 1

c

)]
, (A3)

a
(2)
11 = (�23 − 2i|�c|2X)

(
a

(1)∗
31 − a

(1)
31

) + �13�ca
(1)
21 /

(
ω + d

(0)∗
32

) − �13�
∗
ca

(1)∗
21 /

(
ω + d

(0)
32

)
i�31�23 + |�c|2X(2�31 + �13)

, (A4)

a
(2)
22 = a

(1)∗
31 − a

(1)
31

i�13
− �31 + �13

�13
a

(2)
11 , (A5)

a
(2)
32 = − a

(1)∗
21(

ω + d
(0)
32

) − 2�c

(
a

(1)∗
31 − a

(1)
31

)
i�13

(
ω + d

(0)
32

) + �c(2�31 + �13)

�13
(
ω + d

(0)
32

) a
(2)
11 . (A6)

The expression of W ′ in Eq. (23) reads

W ′ = κ13
�cA

∗ + (
ω + d

(0)
21

)
(2B + C)

D
, (A7)

with

A = −d
(2)
32 σ

(0)
32 + �c(B + 2C)(

ω + d
(0)
32

) , (A8)

B = �13�c/
(
ω + d

(0)∗
32

)
d

(2)∗
32 σ

(0)∗
32 − �13�

∗
c/

(
ω + d

(0)
32

)
d

(2)
32 σ

(0)
32

i�31�23 + |�c|2X(2�31 + �13)
, (A9)

C = −�31�13

�13
a

(22)
11 . (A10)

[1] E. Pelinovsky and C. Kharif, Extreme Ocean Waves (Springer,
Berlin, 2008).

[2] A. R. Osborne, Nonlinear Ocean Waves and the Inverse
Scattering Transform (Elsevier, New York, 2010).

[3] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Optical rogue
waves, Nature (London) 450, 1054 (2007).

[4] A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, Non-
Gaussian Statistics and Extreme Waves in a Nonlinear Optical
Cavity, Phys. Rev. Lett. 103, 173901 (2009).

[5] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N.
Akhmediev, and J. M. Dudley, The Peregrine soliton in nonlinear
fibre optics, Nat. Phys. 6, 790 (2010).

[6] A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, Rogue
waves in mode-locked fiber lasers, Phys. Rev. A 85, 013828
(2012).

[7] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Rogue
Wave Observation in a Water Wave Tank, Phys. Rev. Lett. 106,
204502 (2011).

[8] H. Bailung, S. K. Sharma, and Y. Nakamura, Observation of
Peregrine Solitons in a Multicomponent Plasma with Negative
Ions, Phys. Rev. Lett. 107, 255005 (2011).

[9] S. Birkholz, E. T. J. Nibbering, C. Bree, S. Skupin, A. Demircan,
G. Genty, and G. Steinmeyer, Spatiotemporal Rogue Events in
Optical Multiple Filamentation, Phys. Rev. Lett. 111, 243903
(2013).

[10] Yu. V. Bludov, V. V. Konotop, and N. Akhmediev, Matter rogue
waves, Phys. Rev. A 80, 033610 (2009).

[11] A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo,
Optical rogue waves in whispering-gallery-mode resonators,
Phys. Rev. A 89, 013835 (2014).

[12] D. Pierangeli, F. Di Mei, C. Conti, A. J. Agranat, and E. DelRe,
Spatial Rogue Waves in Photorefractive Ferroelectrics, Phys.
Rev. Lett. 115, 093901 (2015).

[13] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Rogue
waves and rational solutions of the nonlinear Schrodinger
equation, Phys. Rev. E 80, 026601 (2009).

[14] W.-P. Zhong, M. R. Belic, and T. Huang, Rogue wave solutions
to the generalized nonlinear Schrödinger equation with variable
coefficients, Phys. Rev. E 87, 065201 (2013).

[15] H. N. Chan, K. W. Chow, D. J. Kedziora, R. H. J.
Grimshaw, and E. Ding, Rogue wave modes for a deriva-
tive nonlinear Schrodinger model, Phys. Rev. E 89, 032914
(2014).

[16] A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, Rogue
waves and rational solutions of the Hirota equation, Phys. Rev.
E 81, 046602 (2010).

[17] Y. Tao and J. He, Multisolitons, breathers, and rogue
waves for the Hirota equation generated by the
Darboux transformation, Phys. Rev. E 85, 026601
(2012).

[18] S. Chen and L. Song, Rogue waves in coupled Hirota systems,
Phys. Rev. E 87, 032910 (2013).

[19] Y. Ohta and J. Yang, Rogue waves in the Davey-Stewartson I
equation, Phys. Rev. E 86, 036604 (2012).

063836-9

http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1103/PhysRevLett.103.173901
http://dx.doi.org/10.1103/PhysRevLett.103.173901
http://dx.doi.org/10.1103/PhysRevLett.103.173901
http://dx.doi.org/10.1103/PhysRevLett.103.173901
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1103/PhysRevA.85.013828
http://dx.doi.org/10.1103/PhysRevA.85.013828
http://dx.doi.org/10.1103/PhysRevA.85.013828
http://dx.doi.org/10.1103/PhysRevA.85.013828
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevLett.107.255005
http://dx.doi.org/10.1103/PhysRevLett.107.255005
http://dx.doi.org/10.1103/PhysRevLett.107.255005
http://dx.doi.org/10.1103/PhysRevLett.107.255005
http://dx.doi.org/10.1103/PhysRevLett.111.243903
http://dx.doi.org/10.1103/PhysRevLett.111.243903
http://dx.doi.org/10.1103/PhysRevLett.111.243903
http://dx.doi.org/10.1103/PhysRevLett.111.243903
http://dx.doi.org/10.1103/PhysRevA.80.033610
http://dx.doi.org/10.1103/PhysRevA.80.033610
http://dx.doi.org/10.1103/PhysRevA.80.033610
http://dx.doi.org/10.1103/PhysRevA.80.033610
http://dx.doi.org/10.1103/PhysRevA.89.013835
http://dx.doi.org/10.1103/PhysRevA.89.013835
http://dx.doi.org/10.1103/PhysRevA.89.013835
http://dx.doi.org/10.1103/PhysRevA.89.013835
http://dx.doi.org/10.1103/PhysRevLett.115.093901
http://dx.doi.org/10.1103/PhysRevLett.115.093901
http://dx.doi.org/10.1103/PhysRevLett.115.093901
http://dx.doi.org/10.1103/PhysRevLett.115.093901
http://dx.doi.org/10.1103/PhysRevE.80.026601
http://dx.doi.org/10.1103/PhysRevE.80.026601
http://dx.doi.org/10.1103/PhysRevE.80.026601
http://dx.doi.org/10.1103/PhysRevE.80.026601
http://dx.doi.org/10.1103/PhysRevE.87.065201
http://dx.doi.org/10.1103/PhysRevE.87.065201
http://dx.doi.org/10.1103/PhysRevE.87.065201
http://dx.doi.org/10.1103/PhysRevE.87.065201
http://dx.doi.org/10.1103/PhysRevE.89.032914
http://dx.doi.org/10.1103/PhysRevE.89.032914
http://dx.doi.org/10.1103/PhysRevE.89.032914
http://dx.doi.org/10.1103/PhysRevE.89.032914
http://dx.doi.org/10.1103/PhysRevE.81.046602
http://dx.doi.org/10.1103/PhysRevE.81.046602
http://dx.doi.org/10.1103/PhysRevE.81.046602
http://dx.doi.org/10.1103/PhysRevE.81.046602
http://dx.doi.org/10.1103/PhysRevE.85.026601
http://dx.doi.org/10.1103/PhysRevE.85.026601
http://dx.doi.org/10.1103/PhysRevE.85.026601
http://dx.doi.org/10.1103/PhysRevE.85.026601
http://dx.doi.org/10.1103/PhysRevE.87.032910
http://dx.doi.org/10.1103/PhysRevE.87.032910
http://dx.doi.org/10.1103/PhysRevE.87.032910
http://dx.doi.org/10.1103/PhysRevE.87.032910
http://dx.doi.org/10.1103/PhysRevE.86.036604
http://dx.doi.org/10.1103/PhysRevE.86.036604
http://dx.doi.org/10.1103/PhysRevE.86.036604
http://dx.doi.org/10.1103/PhysRevE.86.036604


JUNYANG LIU, CHAO HANG, AND GUOXIANG HUANG PHYSICAL REVIEW A 93, 063836 (2016)

[20] N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, Extreme
waves that appear from nowhere: On the nature of rogue waves,
Phys. Lett. A 373, 2137 (2009).

[21] D. H. Peregrine, Water waves, nonlinear Schrödinger equations
and their solutions, J. Aust. Math. Soc. Ser. B 25, 16 (1983).

[22] Y.-C. Ma, The perturbed plane-wave solution of the cubic
Schrödinger equation, Stud. Appl. Math. 60, 43 (1979).

[23] N. Akhmediev, V. Eleonskii, and N. Kulagin, Exact first-order
solutions of the nonlinear Schrödinger equation, Theor. Math.
Phys. 72, 809 (1987).

[24] M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev,
J. M. Dudley, and G. Genty, Higher-Order Modulation Insta-
bility in Nonlinear Fiber Optics, Phys. Rev. Lett. 107, 253901
(2011).

[25] Z. Yan, V. V. Konotop, and N. Akhmediev, Three-dimensional
rogue waves in nonstationary parabolic potentials, Phys. Rev. E
82, 036610 (2010).

[26] F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, Solu-
tions of the Vector Nonlinear Schrödinger Equations: Evidence
for Deterministic Rogue Waves, Phys. Rev. Lett. 109, 044102
(2012).

[27] C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C.
Masoller, J. R. R. Leite, and J. R. Tredicce, Determin-
istic Optical Rogue Waves, Phys. Rev. Lett. 107, 053901
(2011).

[28] J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, Instabilities,
breathers and rogue waves in optics, Nat. Photon. 8, 755
(2014).

[29] D. R. Solli, C. Ropers, and B. Jalali, Active Control of Rogue
Waves for Stimulated Supercontinuum Generation, Phys. Rev.
Lett. 101, 233902 (2008).
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