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1. Introduction

Effects of a strongly-driven medium on the propagation of a 
near resonant light field have been extensively studied in both 
linear and nonlinear optics. In linear optics, a medium with a 
non uniform index of refraction, such as an optical fiber [1], can 
lead to a lensing effect that causes the light field traversing the 
medium to be focused or defocused, depending on the detun-
ing of the light with respect to some general transitions of the 
medium. In nonlinear optics [2], however, a significant local 
light field intensity can itself substantially alter the local optical 
index of refraction. This process, known as the Kerr effect, can 
result in laser beam self-focusing/defocusing, and even material 
break down and laser beam filamentation. These effects have 
been widely observed both in gaseous phase and solid-state 
media at room temperature. Theoretically, the general practice 
is to begin with the material equations without considering the 
center-of-mass motion (CM) of individual atoms or molecules 
participating in the wave generation and propagation process. 
This makes sense because in a room-temperature gaseous-
phase medium the random thermal motion of the scatterers 

completely dwarfs any possible collective CM. In a solid-state 
medium, on the other hand, the scatterers are tightly bounded 
to their lattice sites, so again the CM motion is not important.

Self-focusing of an optical field in a medium is a nonlinear 
process that arises from the local change of the refractive index of 
the material induced by the intensity of an optical field. In typical 
solid state material this often requires an intense electromagnetic 
field [3, 4]. In room-temperature dilute gaseous phase media this 
effect is generally unimportant even with an intense parallel-beam 
light pulse of a relatively short pulse length. This is, however, 
not the case with an ultra cold quantum gas where the extremely 
narrow optical transition line width between momentum states 
can lead to highly efficient generation of a light field within a 
very small propagation distance. The spatial inhomogeneity of 
the density distribution of a trapped condensate, the extremely 
small medium cross section, and the confinement of a fast grow-
ing optical field result in an extraordinary optical self-focusing 
phenomenon that has never been seen before in a room tempera-
ture dilute gas. We further note that in an ultra-cold quantum gas, 
such as a Bose condensate trapped in a magnetic trap, the col-
lective CM recoil motion of atoms is of paramount importance. 
This coherent and collective mobility of atoms under a strong 
local electrical field can lead to modified material distribution 
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that further impacts local light field production, a phenomen that 
has not been examined previously.

In this work, we present a numerical study that investigates 
the optical self-focusing effect by considering both dynamic 
medium density evolution and the impact of local field growth 
due to an abnormally rapid local field cross section change. We 
first derive a (2 + 1)-D nonlinear Schrödinger (NLS) equation 
from the Gross–Pitaevskii equation and the Maxwell equation 
describing the dynamic propagation effects due to an internally 
generated field in a Bose condensate by stimulated Raman 
scattering. We show by extensive numerical simulations that 
under long-pulse, red-detuned laser excitation significant 
coherent growth of the scattered field by a wave mixing pro-
cess leads to a rapid reduction of the local field cross section 
and also results in a self-focusing effect that significantly alters 
the spatial inhomogeneity of a gaseous phase Bose condensate.

Before describing our work, we first point out that many early 
experimental [5–10] and theoretical [11–29] studies have been 
devoted to light scattering in a Bose condensate. These works, 
which mostly considered the linear regime of the scattering pro-
cess, have contributed substantially to the understanding of the 
light scattering in condensates. We point out, however, that while 
the atomic traverse motion in light scattering in a condensate 
has been studied [26] it is significantly different from our work 
reported here in three aspects: (1) The system Hamiltonian used in 
[26] depends only linearly on the internally generated field. A very 
different third order term referred to as ‘self-focusing’ is obtained 
by expanding the phase of the scattered field under assumptions of 
no propagation and diffraction, assumptions that are inconsistent 
with optical self-focusing effect which is a dominantly propaga-
tion phenomena where the third order propagation gain competes 
with the diffract effect; (2) In most light scattering experiments 
reported to date the pump light field is a parallel and uniform beam. 
It is therefore incorrect to include the optical shift due to the pump 
field. This is because in these experiments the scattering process is 
dominantly the Rayleigh scattering between two electronic states. 
Thus, electronically the initial and final two-photon scattering 
states are the same (they only differ in momentum space). The 
direct consequence is that the optical shift to the ground electronic 
state by the pump field cancels out; (3) For a parallel beam pump 
the field gradient is negligible and the dipole force resulting from 
it is unimportant. In the case of a cavity pumping configuration 
the effect of the pump field is always against transverse motion 
as the pump field is always red-detuned. Our work reported here 
represents the first optical self-focusing theory where the effect 
of internally generated field and the impacts of the local-field-
intensity-resulted atom redistribution to the self-focusing effect 
are treated both analytically and numerically.

2. Theory

We start with a set of equations of motion describing the 
atomic mean field amplitudes and the propagation of the gen-
erated electric field inside the condensate. We consider a lon-
gitudinal pump scheme where a pump beam (field amplitude 
EL) polarized in the x−direction propagates along the long 
axis of the condensate which is aligned with the +z-direction. 
In addition, a new field EG, (see figure 1) is generated inside 

the medium and it counter-propagates relative to the pump 
laser. More specifically, we assume that

∑ψ ρ ψ ρ

= ·

=

ω

ω

+ +E e E e ,

( , z, t) ( , t)e ,

k r
L,G
( )
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where kL,G·r = ±kL,Gz, K = kL+kG and ex is the polarization direc-
tion of the light fields. For what follows, we assume a uniform 
and constant pump +EL

( ) and a generated field of =+ + rE E ( , t)G
( )

G
( ) . 

Without loss of generality, we also assume the condensate is cylin-
drically shaped and has a uniform density distribution along the 
long z-axis. However, the initial transverse density profile is taken 
to be ρ ρ ρ= −n n( ) (1 / )0

2
0
2  where ρ2 = x2+y2 (r2 = ρ2+z2) and n0 

is the peak density. Here, ρ is the radial coordinate and ρ0 is the 
initial transverse radius of the condensate (i.e., the short axis, see 
figure 1). In the case of a true two-level system this longitudinal 
pump scheme is isomorphic to the transverse pumping scheme 
which yields two end-fire modes.

With respect to figure 1, the equation of motion for the n-th 
order mean field atomic wave function is given by
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where  = ω ω ω ω− + − − +S n m m t( , , , ) e t
1 2

i( )n m m n m m1 2 1 2 , and g = 4πℏ2a/M  
with a being the scattering length. In addition,  

= | | | | ℏ |Δ|+g D E / ( )0
2

L
( ) 2 2 2 , where Δ = δ+iΓ with δ and Γ being  

the one-photon laser detuning to the upper electronic 
excited state and the spontaneous emission rate of 
the upper state, respectively. D is the dipole transi-
tion matrix element between the ground and the upper 
excited electronic states. The normalized field is defined 

Figure 1. Energy levels with laser couplings (left) and scattering 
geometry in a cylindrical coordinate system (lower-right). The red 
wavy arrow depicts the coherently scattered field with the largest 
gain. An atom absorbs a photon from the pump and then emits a 
photon via stimulated emission in the direction opposite to the pump, 
acquiring a net 2ℏkL momentum in the direction of the pump laser.
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as ρϵ =± ± ±E z t E( , , ) /( )
G
( )

L
( ), with =− + ∗E EL,G

( )
L,G
( ) . The trapping 

potential ρ= ΩV M / 2TT
2 2  with trapping frequency ΩT. 

ℏωm =  (m2ℏ k)2/2M is the m-th order recoil energy with 
k = kL and M being the pump laser wave vector and the 
mass of the atom, respectively. ΔL  =  ωL−ωG is the fre-
quency difference between the pump and the generated 
backward-propagating field.

In the slowly varying envelope approximation the Maxwell 
equation for the generated field is given by

∑
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where the second term on the right is the polarization source 
term that drives the generation of the new field. In deriving 
equation (2) we have only kept the lowest scattering order, i.e. 
we neglect n > 1 terms. Furthermore, we also neglect n < 0 
terms since it has already been shown that for long pulse exci-
tation the bandwidth of the laser is sufficiently narrow that 
n < 0 scattering orders do not occur.

To investigate the scattered optical field self-focusing 
effect equation (2) must be solved simultaneously with the 
atomic response equation (1) to third order in the generated 
field. We apply a perturbation expansion scheme

ψ ψ λ ψ ψ λψ λ ψ λ= + = + ϵ = ϵ+ +, , .0 0
(0) 2

0
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1 1
(1) 3

1
(3) ( ) ( ) (3)

These are well-known multi-scale perturbation schemes that 
have been widely used in soliton theories where small ground 
state population corrections must be included in the mathemati-
cal theory [30]4 Inserting equation (3) into equation (1) we obtain
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It is clear that equation (4a), which is the zero-order equation 
for n  =  0 mean field wave function ψ0

(0), is just the Gross–
Pitaevskii equation in the absence of the external electric field5 

In our calculation equation (4a) is solved numerically by 
directly numerical integration.

In the derivation of equations (4b)–(4d) we have introduced 
decay constants γ0 and γ1 to characterize the loss of coherence 
of the atomic center-of-motion states due to the interaction with 
the pump light field. In general, the total system population con-
servation in such a simple two-level model implies γ γ≈−0

(2)
1
(1). 

This has been verified numerically. Finally, we neglected a con-
stant Stark shift/dipole potential due to the pump field that can 
be removed by a trivial phase transformation without affecting 
the polarization source term in equation (2).

Enforcing the first-order Bragg scattering condition 
ω1−ω0 = 4ωR = ΔL, and consistently keeping all terms up to 
the third order in the generated field, the Maxwell equation for 
the generated field now becomes
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Here, we have neglected the (1/c)(∂ϵ/∂t) term because the domi-
nant propagation velocity comes from the polarization term [27].

Under the steady state approximation analytical expres-
sions of ψ0 and ψ+1 can be obtained. The first-order solution of 
the scattered component becomes
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Here, we have abbreviated the second term on the right of 
equation (4b) as ℏ ≡ℏ ⊥b k M/ 22 2 . Physically, it is a small trans-
verse kinetic energy of atoms in the zeroth-order condensate 
due to transverse light force compression. The third order cor-
rect ψ+1

(3) is given by

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡

⎣
⎢

⎤

⎦
⎥

⎫
⎬
⎭

ψ
δ ψ

γ ψ

α
ψ

γ ψ
α

δ
γ ψ

= −
+

|ϵ | ϵ

× +
| |

+ | |
+

+ | |

+
+ −g

g

g

g

g

g

i

i
2Im( ) .

1
(3)

2
0
2

0
(0)

1 0
(0) 2

( ) 2 ( )

0
(0) 2

1 0
(0) 2

0

1
2 2

0
(0) 4

 (9)

We now explain the rationale for the above outlined pertur-
bation scheme where only the ψ+1 order is considered. Our 
calculations are aimed at providing a tractable derivation with 
an analytical solution that can capture the key physics. It is for 

5 The ground state chemical potential μ neither enters equation (4) nor 
leads to a significant oscillation at this pump pulse time scale for a typical 
condensate.

4 According to the perturbation theory, ψ ψ= = 00
(1)

1
(2) .
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this reason that we limit our treatment to a pump light scatter-
ing rate of R < 80 Hz. In this regime only first-order scatter-
ing has been observed experimentally. Although the ψ+2

(2) term, 
which is the leading contribution from the ψ+2 term, is on the 
order of |ϵ(+)|2 (similar to that of ψ+ )1

(3) , we have neglected it 
in the above calculation because the residual multi-photon 
Doppler shift affects the scattering efficiency of a four-photon 
process (the ψ+2 term) much more strongly than a two-photon 
process (the ψ+1 term) for a given laser band width. In fact, this 
energy mismatch due to a residual Doppler shift is the primary 
reason why even at higher pump powers the scattering orders 
higher than four are difficult to observe under long-pulse 
excitation6. We emphasize, however, that we have carried out 
directly numerical integration of equations (4a)–(4c) and (5) 
without further approximation and the results agree well with 
the above steady state treatment.

Substituting equations (6)–(9) into equation (5) we arrive at 
a third-order wave equation analogous to a (2 + 1)-D nonlin-
ear Schrödinger (NLS) equation where the 3rd-order nonlinear 
contribution can effectively balance the beam loss due to dif-
fraction due to the condensate size effect, and result in an opti-
cal field self-focusing phenomenon. In our case, this (2 + 1)-D 
NLS equation can be written as

β∂ϵ
∂

− ∇ ϵ + |ϵ | ϵ = − ϵ
+

⊥
+ + + +

z k
Wi

1

2
.

( )

G

2 ( ) ( ) 2 ( ) ( ) (10)

Here the linear absorption/gain term is given by
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where ψ=n 0
(0) 2 is the initial transverse density profile. In 

deriving equations (11a) and (11b) we have assumed b ≪ |γ0| 
for mathematics simplicity. This assumption has been veri-
fied by direct numerical evaluation of the transverse kinetic 
energy ℏ b.

It has been shown previously [1–4] that the sign of Re[W] 
given in equation (11b) leads to self-focusing/self-defocus-
ing effects. Indeed, equation (11b) predicts that: (i) For red 
detunings (i.e. δ < 0) Re[W] is always negative for typical 
experimental parameters (see below), and this will result in a 
reduction of the transverse dimension of the generated field. 
Thus, one expects to see reduced diffraction, and possibly a 
self-focusing effect. (ii) For blue detunings (i.e. δ > 0) Re[W] 
is also negative for typical experimental parameters and there-
fore one also expects a self-focusing effect [31]7 except the 
strength of the self-focusing effect is considerably weaker 
(that is, for typical experimental parameters we always find 
that |Re[Wred]| > |Re[Wblue]|). Finally, for typical experimental 
parameters Im[β] and Im[W] are always positive for both red 
and blue detunings, indicating linear and nonlinear gains.

3. Numerical calculation

To verify the above analysis we performed full numeri-
cal simulations using equations (10), (11a) and (11b). 
Other parameters are similar to those reported in the litera-
ture. Specifically, we consider a rubidium condensate with 
2 × 106 atoms, L = 200 µm, and ρ0 = 10 µm (peak density 
about n0 = 3.2 × 1019 m−3). Γ/2π = 6 MHz, γ1/2π = 2 kHz, 
γ0/2π  =  −2  kHz, κ0  =  2.76  ×  10−6  m2s−1, b  =  240  Hz, 

Figure 2. Third-order nonlinearity W as function of η = ρ/ρ0. 
Dashed line: Re[W]red, dotted line: Im[W]red with red detunings 
δ/2π = −2 GHz. Solid line: Re[W]blue, dash-dotted line: Im[W]blue 
with blue detunings δ/2π = +2 GHz.

Figure 3. Macroscopic atomic mean field distribution as a function 
of dimensionless radius η = ρ/ρ0 at z = L (dashed curve) and at 
z = 0 (solid curve). Note z = L is the starting position of EG. At 
this point EG is negligible and the density distribution is just the 
original condensate distribution. The field EG travels backward and 
it reaches its maximum value at z = 0, causing the greatest atomic 
density change near the center of the condensate η = 0.

6 Higher-order scatterings occur in a sequential manner, implying that most 
of the key physics should be revealed by studying first-order scattering.

7 While a mild self-focusing effect is predicted for blue-detuned pumps, a 
much stronger loss mechanism of molecular origin occurs simultaneously 
when the pump laser is blue detuned. See [31].

Laser Phys. 24 (2014) 065402
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g/ℏ = 4.85 × 10−17 m3s−1 corresponding to the scattering length 
as = 100a0 (Bohr radius a0 = 5.29 × 10−9 cm), δ/2π = ±2 GHz, 
kG≈8 × 106 m−1. In accord with our approximations we chose 
g0 = 2.5 × 10−5, which corresponds to R ≈ 60 Hz. In figure 2 
we plot the values of Re[W] and Im[W] for these parameters. 
It can be seen that indeed |Re[W]red|  >  |Re[W]blue|, and yet both 
contribute to a field self-focusing effect [31].

One important consequence of the light field self-focusing 
effect is its tendency to compress/decompress the spatial den-
sity distribution of the condensate. This effect uniquely affects 
a gaseous phase medium where collective recoil motion is a 
prominent feature. Indeed, such a density modification effect 
due to the light field intensity change is not important in a 
solid medium where the atoms are strongly bounded to their 
lattice sites. Nor is this important for a normal gas where the 
collective CM recoil motion is completely negligible when 
compared to its intrinsic thermal motion. In the case of red-
detunings in a condensate, the self-focusing effect results in 
a rapid field intensity increase which further compresses the 
condensate. This process further enhances the local field gen-
eration, resulting in positive feedback and a run away gain 
effect. For blue-detunings, however, the atoms are expelled 
from the region of strong fields, resulting in a reduced den-
sity distribution which reduces the field generation efficiency. 
In figure 3 we plot the atomic density distribution |ψ (ρ, z)|2 
as a function of the normalized radius η. We emphasize that 
the significant change in the local density distribution for red 
detunings shown in figure 3 further enhances the generation 
efficiency of the scattered light field, which further com-
presses the condensate.

This dramatic light field self-focusing effect is shown in 
figure 4 where the intensity profile of the generated light field 

is presented with, and without, the Kerr term for red and blue 
detunings. Figure 4(a) shows the field profile without the Kerr 
term (δ/2π  =  −2  GHz). Figures 4(b) and (c) show the field 
distributions with the nonlinear term included. Here, all three 
plots are normalized to unity to show the effective transverse 
field distribution (width). Clearly, in the case of red-detuned 
pumps (figure 4(b)) the scattered field intensity has a cross 
section that is more than a factor of two smaller when com-
pared to blue-detuned pumps (figure 4(c)), representing a fac-
tor of 4 [32]8 intensity difference. In figures 4(d)–(f) we show 
the same numerical results but with all three plots normalized 
with respect to figure 4(b). This gives a sense of the relative 
strengths of the fields in figures 4(a) and (c) when compared 
to figure 4(b).

4. Conclusion

In conclusion, we have studied numerically the dynamic light 
field self-focusing effect in light scattering in a Bose conden-
sate. By including the condensate transverse density profile 
we derived a 3-dimensional atomic CM Maxwell equation 
describing the generation and propagation of a new field, and 
a set of Gross–Pitaevskii equations for scattered atoms. Using 
a standard perturbation expansion, we recast the field equation 
into a (2 + 1)-D NLS equation which reveals the light field 
self-focusing phenomenon. Numerical simulations revealed a 
significant reduction of the transverse profile of a red-detuned 
internally generated field as it propagates through the conden-
sate. With red detunings the rapid increase in field intensity 

8 In the case of a fermionic gas (see [32]) the difference between ±δ is very 
small because of the low coherence of the gas.

Figure 4. Plot of |ϵ(+)|2 as a function of the propagation distance z and the dimensionless radius η. Left column: each plot is normalized to 
its own peak at η = 0. Right column: all plots are normalized with respect to the peak of figure (e) at η = 0. (a) and (d) (δ/2π = −2 GHz): 
The Kerr nonlinearity is neglected. (b) (δ/2π = −2 GHz), (c) (δ/2π = +2 GHz), (e) (δ/2π = −2 GHz), and (f) (δ/2π = +2 GHz). The Kerr 
nonlinearity W is included.
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and the accompanying compression effect further feed back on 
themselves, leading to a significant condensate density change 
and a highly efficient field generation and scattering process. 
In the case of blue-detuned pumps, numerical calculations 
have shown that the field generation is considerably weaker. 
Our study, which provides the first theoretical evidence of 
nonlinear optical processes in light scattering in a condensate, 
has clearly shown that these higher-order processes play very 
important roles in light scattering in quantum gases.
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