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We propose a scheme comprising an array of anisotropic optical waveguides, embedded in a gas of cold atoms,
which can be tuned from a Hermitian to an odd-PT -symmetric configuration through the manipulation of control
and assistant laser fields. We show that the system can be controlled by tuning intra- and intercell coupling
coefficients, enabling the creation of topologically distinct phases and linear topological edge states. The waveg-
uide array, characterized by a quadrimer primitive cell, allows for implementing transitions between Hermitian
and odd-PT -symmetric configurations, broken and unbroken PT -symmetric phases, topologically trivial and
nontrivial phases, as well as transitions between linear and nonlinear regimes. The introduced scheme generalizes
the Rice-Mele Hamiltonian for a nonlinear non-Hermitian quadrimer array featuring odd-PT symmetry and
makes accessible unique phenomena and functionalities that emerge from the interplay of non-Hermiticity,
topology, and nonlinearity. We also show that in the presence of nonlinearity the system sustains nonlinear
topological edge states bifurcating from the linear topological edge states and the modes without a linear limit.
Each nonlinear mode represents a doublet of odd-PT -conjugate states. In the broken PT phase, the nonlinear
edge states may be effectively stabilized when an additional absorption is introduced into the system.
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Introduction. Optical systems are universal simulators of
physical phenomena from many areas of physics. In the past
decade particular attention was focused on optical analogs
of topological insulators, having fundamental importance for
condensed-matter physics [1,2]. Pioneered by the works [3,4],
a new field of topological photonics [5,6] has emerged. Non-
Hermitian topological insulators were established to have
two different types of phase transitions, i.e., the transitions
between pure real and complex spectra of linear Hamilto-
nians [7,8] and between topologically distinct phases [5,6].
Topological properties of linear non-Hermitian systems are
now well understood, and their classifications based on
the symmetries of systems are available [9,10]. It is also
known that in a finite non-Hermitian system with bound-
aries, edge states can be sustained by nontrivial topological
phases [5,6]. Linear edge states at the interface between
PT -symmetric Su-Schrieffer-Heeger (SSH) [11] photonic
lattices in distinct topological phases have been observed
experimentally [12]. Topological zero-energy edge states in
passive-PT silicon waveguide arrays [13] have been reported,
too.

In optical settings, topological phenomena are further en-
riched by nonlinearity [14]. Nontopological nonlinear parity
(P)-time (T ) symmetric systems [15,16] may sustain fam-
ilies of nonlinear modes without linear counterparts [17].
Meantime, not every linear mode persists in the presence

of nonlinearity, i.e., the nonlinearity must obey the sym-
metry consistent with that of the linear system in order to
enable a bifurcation of a nonlinear family from the linear
limit [17,18]. Nonlinearity may also result in PT -symmetry
breaking [19,20], in pitchfork symmetry-breaking bifurca-
tions [21], and in destabilizing (stabilizing) a linear mode
which is otherwise stable (unstable) [22]. Self-induced topo-
logical transitions and edge states have been reported in
nonlinear SSH arrays [23]. Nonlinear topological edge modes
were created in an array of pumped resonators [24].

However, so far nonlinear modes in non-Hermitian systems
have been considered mainly under even-PT symmetry, for
which T 2 = 1 [15,16]. It was shown that the realization of
odd time reversal (for which T 2 = −1) is available [25,26]
by using the polarization of light in waveguides with
anti-PT -symmetric [27,28] coupling. The major difference
between the even- and odd-PT -symmetric lattices consists
in their elementary cells: A primitive cell of an even-PT -
symmetric chain is a dimer [15,16,29] whereas that of an
odd-PT -symmetric lattice is a quadrimer [25] (in analogy
with the structures of wave functions of even- and odd-
PT -symmetric quantum Hamiltonians [30,31]). Particularly,
guided modes in odd-PT -coupler waveguides feature in-
trinsic symmetry-protected degeneracy which allows one to
manipulate superpositions of degenerate modes and results in
unconventional bifurcations of nonlinear states [25].
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FIG. 1. (a) The energy-level diagram and the excitation scheme
of the inverted-Y-type system. The probe (Ep), control (Ec), and
assistant (Ea) laser fields drive transitions |1〉 ↔ |3〉, |2〉 ↔ |3〉, and
|3〉 ↔ |4〉, respectively. �21 denotes the incoherent pumping rate
from |1〉 to |2〉 (providing gain); other � jl are spontaneous-emission
decay rates from | j〉 to |l〉. (b) A possible setup for realizing the target
probe-field susceptibility consisting of an array of optical waveg-
uides, equally separated by distance d , embedded in the atomic gas.
(c) Polarizations and primitive cells j and j + 1 (shown by dotted
lines) of an array with intra- and intercell coupling coefficients κ

and κ ′.

The goal of this Letter is twofold. First, we propose a ver-
satile system, i.e., an array of optical waveguides embedded in
an atomic gas, that allows one to combine different physical
phenomena in a manageable manner, including topologi-
cal phase transitions, spontaneous PT -symmetry breaking,
and nonlinearity in a nonlinear quadrimer system featur-
ing odd-PT symmetry. Second, we introduce a nonlinear
non-Hermitian quadrimer generalization of the well-known
Rice-Mele model [32], that describes the above array, report
families of nonlinear modes bifurcating from linear topologi-
cal edge states, and study the stability of nonlinear edge states.
We show that each of the degenerated linear modes bifur-
cates in two distinct nonlinear families, and each nonlinear
mode represents a doublet of odd-PT -conjugate states. The
modes in the doublet share the same propagation constant
and power but have different field polarizations. The doublet
families generated at the left and right edges are characterized
by different existence ranges and stability properties. The
findings reported here bring insights to the interplay of non-
Hermiticity, topology, and nonlinearity for realizing different
phase transitions and nonlinear modes in a universal platform
and achieving their active manipulation, promising for appli-
cations in optical information processing and transmission.

The physical model. A dielectric permittivity of an atomic
gas can be modified with great flexibility allowing for the
creation of a prescribed symmetry [33–36]. Bearing this in
mind, we consider an array of anisotropic optical waveguides,
having equal radii rw, embedded in a cold four-level atomic
gas with an inverted-Y-type configuration [Fig. 1(a)]. The
use of the inverted-Y configuration is to take the advantage
of electromagnetically induced transparency [37], which can

largely suppress the large absorption of the probe field due to
the spontaneous emission of the atoms in the intermediated
state |3〉; additionally, it is useful for realizing the odd-PT
symmetry in the system by tuning the control and assistant
fields independently.

Neighboring waveguides are separated by a distance d
[Fig. 1(b)] and are arranged to have their principal optical axes
mutually rotated in the (x, y) plane by an angle α [Fig. 1(c)].
The principal optical axes of a pair of waveguides in a prim-
itive cell are determined by two pairs of mutually orthogonal
unit vectors e1,2 and e3,4, corresponding to the left and right
waveguides in a cell. The waveguides have equal x and y com-
ponents of the dielectric tensor but different z components,
originating a mismatch 2δ between the propagation constants
of the left (“+”) and right (“−”) waveguides, i.e., β± = β ± δ

(β is the average propagation constant).
We apply control (c) and assistant (a) fields Es =

Eseiksy−iωst + c.c. (hereafter s = a, c) to the atomic cell
[Fig. 1(b)]. A transversely polarized probe laser field is
applied to the waveguides, generating guided modes with
mutually orthogonal linear polarizations, holding also outside
the waveguides due to weak guidance. The components of the
probe field in the jth primitive cell can be expressed as

E j
+,− = (

e1,3Aj
1,3ψ

j
1,3 + e2,4Aj

2,4ψ
j

2,4

)
eiβ±z−iωpt , (1)

where Aj
1,...,4(z) are slowly varying amplitudes, and ψ

j
1,...,4(r)

are normalized transverse distributions.
Under electric-dipole and rotating-wave approximations,

the system Hamiltonian in the interaction picture reads Ĥint =
h̄

∑4
j=2[	 j | j〉〈 j| − h̄(
p|3〉〈1| + 
c|3〉〈2| + 
a|4〉〈3| +

H.c.)]. Here, 	 j are detunings, and 
p = (ez · p31)Ep/h̄,

c = (ez · p32)Ec/h̄, and 
a = (ez · p43)Ea/h̄ are respectively
Rabi frequencies of the probe, control, and assistant fields,
with p jl being the electric-dipole matrix elements associated
with the transition between the atomic states | j〉 and |l〉.
The dephasing due to the interaction of atoms near the
waveguide surfaces may be avoided by using a coating
paraffin or siloxane on the surfaces [38], or by using the
technique of a nanofiber-based optical dipole trap [39]. The
probe-field susceptibility χp can be obtained by solving
the Maxwell-Bloch equations governing the evolution of the
atoms and the light field (see Supplemental Material [40] for
details).

Our target is to acquire an x-dependent probe-field sus-
ceptibility χp(x) which under the change of the parameters
leads either to a Hermitian or to a PT -symmetric array. In
particular, one obtains [40]

χp = χw + iχi − eiφ1χ1 cos(2πx/d ) − eiφ2χ2 sin(πx/d ),
(2)

where χw is a real transverse susceptibility of a waveguide,
χi describes uniform gain or absorption, and χ1,2 (|χ1,2| �
|χw|) and φ1,2 are respectively amplitudes and phases of
the susceptibility modulations. The distribution (2) can be
achieved, e.g., in a gas of laser-cooled 87Rb atoms with the
levels assigned as |1〉 = |5S1/2, F = 1〉, |2〉 = |5S1/2, F = 2〉,
|3〉 = |5P3/2, F = 3〉, |4〉 = |6S1/2〉, with the atomic parame-
ters given by Na = 3.0 × 1014 cm−3 (atomic density), �13 ≈
�23 ≈ 103�34 ≈ 2π × 3 MHz, �21 ≈ 2π × 50 kHz, 	2 =
0.1 MHz, 	3 = −41 MHz, and 	4 = 0.2 GHz.
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To obtain susceptibility (2) in this system the Rabi frequen-
cies must satisfy [40]


s ≈ 
s0 + 
s1χ1 cos(φ1 + φs) cos(2πx/d )

+
s1χ2 cos(φ2 + φs) sin(πx/d ), (3)

where 
c0 = 10 MHz, 
a0 = 20 MHz, 
c1 ≈ 8 MHz,

a1 ≈ 610 MHz, φc ≈ 1.1, and φa ≈ −0.3 (χ1,2 and
φ1,2 remain to be free parameters). The validity of
susceptibility (2) should be limited to a certain domain,
say for an array of 20 waveguides with d = 4rw = 4 μm.

A non-Hermitian nonlinear quadrimer lattice. For cylin-
drical waveguides in the tight-binding approximation one has
ψ

( j)
1,2(r) ≈ ψ (r) and ψ

( j)
3,4(r) ≈ ψ (x − d, y). The probe field in

the array [Figs. 1(b) and 1(c)] is governed by the equation for
the amplitude column vector A j = (Aj

1, Aj
2, Aj

3, Aj
4)T (T means

transposition),

i
dA j

dz
= HA j + κ ′(H−A j−1 + H+A j+1) − F (A j )A j . (4)

Here, H = δσ3 ⊗ σ0 + κ (H+ + H−), σ1,2,3 are the Pauli ma-
trices, σ0 is the 2 × 2 identity matrix, H− = HT

+ = i
2 (σ1 +

iσ2) ⊗ Rα , and Rα is the matrix of two-dimensional rotation
by the angle α. The intracell (κ) and intercell (κ ′) coupling
coefficients are given by [40]

{κ, κ ′} = kp

2i

∫ ( j+1)d

jd
dx

∫ ∞

−∞
dy ψ (

√
x2 + y2)

× [χw − χp(x − jd )]ψ (
√

(x − d )2 + y2), (5)

where j = 0 ( j = 1) stands for κ (κ ′). The diagonal focusing
Kerr nonlinearity matrix reads

F (A j ) = diag

(∣∣Aj
1

∣∣2 + 2

3

∣∣Aj
2

∣∣2
,
∣∣Aj

2

∣∣2 + 2

3

∣∣Aj
1

∣∣2
,

∣∣Aj
3

∣∣2 + 2

3

∣∣Aj
4

∣∣2
,
∣∣Aj

4

∣∣2 + 2

3

∣∣Aj
3

∣∣2
)

. (6)

By changing the parameters χ1,2 and φ1,2 one can ob-
tain different symmetries and phases of the chain (4). In
particular, if (φ1, φ2) = (π/2,±π/2) and χi = 0 in (2), κ

and κ ′ are both real and the array is non-Hermitian; we call
it an odd-PT chain. Such a chain features odd-PT f sym-
metry [25,30,31] with the parity operator P = σ3 ⊗ σ0 and
an odd-time-reversal (or fermionic) operator T f = iσ0 ⊗ σ2K,
with K being the complex conjugation (T 2

f = −1). If φ1 = 0
and φ2 = 0, π , then κ and κ ′ are both imaginary, and the
array is Hermitian; we call it an h-chain. An h chain is T f

and T symmetric with T = K (T 2 = 1). Furthermore, one
can obtain topologically trivial (|κ| > |κ ′|) and topologically
nontrivial (|κ| < |κ ′|) phases by choosing, respectively, φ2 =
π/2 (φ2 = π ) and φ2 = −π/2 (φ2 = 0) for an odd-PT chain
(h-chain). Without loss of generality, we assume δ � 0, and
κ, κ ′ � 0 (for odd-PT chain) and Im κ , Im κ ′ � 0 (for h-
chain).

The relation between the parameters of the gas and dif-
ferent topological phases follows from the fact that the linear
Hamiltonian of (4) [at F (A j ) = 0] in the momentum space
(A j = aqeiq j), H (q), can be block-diagonalized by the unitary

transformation

UH (q)U † = σ0 ⊗ h(q), U =

⎛
⎜⎝

− sin α cos α 0 0
0 0 0 1

cos α sin α 0 0
0 0 1 0

⎞
⎟⎠,

where h(q) = i(κ + κ ′ cos q)σ1 + iκ ′ sin(q)σ2 + δσ3. In the
Hermitian case, h(q) is the celebrated Rice-Mele Hamil-
tonian [32,49] whose non-Hermitian generalization is also
known [50]. Thus, Eq. (4) can be viewed as a nonlinear
non-Hermitian quadrimer generalization of the Rice-Mele
model, where Aj

1,...,4 can be treated as “internal” degrees
of freedom of the jth primitive cell. Topological properties
of the linear limit of (4) are determined by the topological
properties of h(q). Indeed, let aq and ãq be the eigenvec-
tors of H (q) and H†(q) constituting a biorthonormal basis
(ã†

q′aq = δq′q; hereafter δm j is the Kronecker symbol), and the
Zak phase for a given band is defined by ϕ = ∫

BZ ã†
q∂qaqdq,

where the integral is over the Brillouin zone. Let also αq

and α̃q be the eigenvectors of h(q) and h†(q) constituting a
biorthonormal basis (α̃†

q′αq = δq′q), while ϕh = ∫
BZ α̃†

q∂qαqdq
is the Zak phase of the Rice-Mele lattice defined by h(q).
Then the block-diagonal structure of UH (q)U † implies that
aq = (1, 1)T ⊗ αq/

√
2 and, respectively, ϕ = ϕh. The phases

ϕh are computed explicitly in the Supplemental Material [40].
Eigenvalues of the linear limits of both the h-chain

and odd-PT chain are doubly degenerate: There are two
branches of bulk modes ±b̃(q), where b̃(q) = [δ2 − κ2 −
κ ′2 − 2κκ ′ cos q]1/2. An odd-PT chain can belong to an un-
broken (δ > δ1 ≡ κ + κ ′), partially broken (δ2 ≡ |κ − κ ′| <

δ < δ1), or fully broken (δ < δ2) phase. Since b̃(q) = b̃(−q),
in the case at hand the skin effect [51,52] is prevented by the
symmetry [10] (which does not exclude that effect subject
to different properties of the quadrimers obtained by proper
configurations of the external fields).

Nonlinear edge states. Semi-infinite chains are ob-
tained by the truncation of (4). For the left-edge (“L”)
chain we consider A0,1,...

L assuming A−1
L = 0. For the right-

edge (“R”) chain we consider A0,−1,...
R assuming A1

R = 0.
In the linear limit of the topologically nontrivial phase,
|κ/κ ′| < 1, at each edge there exist two independent edge
states: A j

L,m = (−κ/κ ′) je−iδz(δm1, δm2, 0, 0)T and A j
R,m =

(−κ ′/κ ) jeiδz(0, 0, δm1, δm2)T, with m = 1, 2.
Nontrivial topology by itself is not necessary for the exis-

tence of nonlinear edge states [53,54]. Meantime, nonlinear
modes can bifurcate from the linear topological edge states
A j

L,m and A j
R,m, when topological characteristics of the bifur-

cating families are uniquely associated with the topological
numbers of the underlying linear lattice. Such modes will
be called nonlinear topological edge states. Below we focus
on the families of solutions in the odd-PT chain. Owing
to the odd-PT -symmetry-protected degeneracy of guided
modes, in the small-amplitude limit, nonlinear edge states
can be searched as a superposition: A j

g ≈ εeiε2λz(A j
g,1 sin ν +

A j
g,2 cos ν), where g = L (L modes) or g = R (R modes), ε �

1 is a formal small parameter, λ is the nonlinearity-induced
shift of the propagation constant, and ν is a parameter to be
determined. The perturbation analysis [18,25,40,55] reveals
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mode number

mode number

FIG. 2. (a) Families of nonlinear edge states in the odd-PT chain
with unbroken PT symmetry for (κ, κ ′) = (0.1, 1) and δ = 1.5.
Hatched areas indicate the spectral bands. The blue thick and red
thin lines correspond to ν = 0 and ν = π/4, respectively. Solid
and dashed curve fragments correspond to stable and unstable edge
states. The inset zooms in families bifurcating from the left linear
edge states. (b) Examples of L modes in the lower semi-infinite gap
with b = −1.25 (blue solid and red dashed lines with circles) and
in the upper semi-infinite gap with b = 3 (blue solid and red dashed
lines with diamonds); the lower and upper insets show respectively
stable propagation of L modes in blue solid and red dashed lines
with circles. (c) Families of nonlinear edge states in the h-chain
for (κ, κ ′) = (0.1i, i) and δ = 0 (main panel) or δ = 0.5 (inset).
(d) Example of the R mode in the odd-PT chain with b = 3 (blue
solid line with diamonds), and its PT f partner (red dashed line with
circles); the inset illustrates the stable propagation of the R mode in
the blue solid line with diamonds. In all panels α = π/6.

two cases when the bifurcations are allowed. In the first case
ν = π/4, i.e., the bifurcation occurs from the linear super-
position of two states Ag,1 and Ag,2 with equal “weights,”
and λ = 5κ ′2/[6(κ ′2 + κ2)]. In the second case ν = 0, i.e., the
nonlinear mode bifurcates from only one linear edge state and
λ = κ ′2/(κ ′2 + κ2).

The above small-amplitude edge states serve as an initial
guess for the numerical investigation of entire families of
stationary nonlinear edge states whose dependence on z is
A j

g(z) ∝ eibz, where b is the real nonlinear propagation con-
stant. Distinct families are characterized by the dependencies
of the total dimensionless power Pg = ∑

(A j
g)†A j

g on b.
In the unbroken PT -symmetric phase (δ > δ1), the linear

spectrum of (4) consists of two bands separated by a central
finite gap [Fig. 2(a)]. In the topologically nontrivial phase
there exist two linear edge states in the semi-infinite gaps.
The families of L and R modes bifurcate from the linear
edge states in the lower and upper semi-infinite gaps, respec-
tively. There also exist families of nonlinear edge states having
nonzero excitation power threshold, as illustrated in Fig. 2(a).
L modes exist only in a relatively narrow interval of b be-
tween −δ and the lower edge of the first band. These modes
become delocalized when they approach the first band and

041
mode number
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0
(b1)
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0.9
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20

2.5

0
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0 1’
0

1.8

1

(a)

FIG. 3. (a) Families of nonlinear edge states in the partially bro-
ken odd-PT phase with δ = 1; the inset shows the families in the
fully broken PT phase with δ = 0.8. The hatched area corresponds
to the linear band. The blue thick and red thin lines correspond to
ν = 0 and ν = π/4, respectively. (b1) Unstable propagation of the L
mode in the partially broken PT phase. (b2) Quasistable propagation
of the same mode as in (b1) but in the presence of additional absorp-
tion with γ = 0.5; the inset shows domains of unbroken (white) and
broken (blue) PT phases in the (κ ′, δ) panel with κ = 1. The color
bar shows the maximum of Im[b̃+(q)]. Other parameters are the same
as in Fig. 2(a).

“reappear” in the finite gap. Meanwhile, nonzero-threshold
families of L modes exist also in the upper semi-infinite gap,
where two zero-threshold families of R modes emerge in
the upper semi-infinite gap. Using a linear stability analysis
and direct propagation method, we find that all nonlinear
modes shown in Fig. 2(a) are stable except for small segments
plotted with dashed lines. In contrast to the more common
even-PT symmetry with T 2 = 1, the odd time reversal im-
plies that any nonlinear edge state represents a doublet, i.e.,
the pair (A,PT f A), characterized by different polarizations
of the fields E j

± in Eq. (1). Remarkably, due to the sym-
metry both modes in each doublet are stable (or unstable)
simultaneously.

For comparison, in Fig. 2(c) we show families of nonlin-
ear edge states in an h-chain, where bifurcation occurs from
edge states in the finite gap. For δ = 0 (the quadrimer SSH
limit) we observe families of doublets bifurcating from the
zero-energy topological linear edge state. The degeneracy is
lifted at δ 
= 0 [inset in Fig. 2(c), where L and R modes have
different power dependencies].

In Fig. 3(a) we show families bifurcating from linear topo-
logical edge states in the broken PT -symmetric phase. These
families behave similarly to those in the unbroken case, except
that now there exists only one linear band due to the closing of
the gap. In the fully broken PT phase (δ < δ2) the families of
the L modes are continuous [inset in Fig. 3(a)] since the linear
band consists of purely imaginary propagation constants.

Unlike in the case of the unbroken PT -symmetric phase
where the instability is triggered only by nonlinearity, in the
broken PT -symmetric phases all nonlinear edge states are
a priori unstable, because a continuum of unstable linear
waves inevitably destabilizes the “tails” of edge states, as
exemplified in Fig. 3(b1). Remarkably, even in a fully broken
PT phase, nonlinear edge states can be almost stabilized by
introducing additional absorption in the central part of the
lattice. The introduction of such absorption (which is local-
ized in the region of exponentially decaying tails of the edge
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states) aims to suppress the growth of unstable bulk modes but
has no significant effect on the edge states themselves. This
determines the strength of the absorption γ which must be
equal to the largest increment of the bulk modes, characterized
by the maximum of Im[b̃+(q)], i.e., γ = max(Im[b̃+(q)]). By
introducing such absorption as an additional term −iγ A j on
the right-hand side of Eq. (4), the L mode can propagate
robustly up to z = 1000, as illustrated in Fig. 3(b2).

Conclusion. We have introduced a nonlinear non-
Hermitian quadrimer generalization of the Rice-Mele model,
with a primitive cell characterized by four degrees of free-
dom. The model describes an array of anisotropic waveguides
embedded in a gas of cold atoms, and represents a universal
platform for the implementation of several types of phase tran-
sitions in a single setting, as well as different symmetries in
the nonlinear regime. Varying external laser fields enable tran-
sitions between Hermitian and non-Hermitian configurations,
as well as between trivial and nontrivial topological phases,
both in linear and nonlinear regimes. We have considered the
cases when the chain is either Hermitian or non-Hermitian
featuring odd-time-reversal symmetry, the latter supporting

doublets of nonlinear states. The modes in the doublet are
characterized by different light polarizations but identical sta-
bility properties. Families of nonlinear topological modes are
unambiguously related to the topological linear edge states
they are bifurcating from. Even in the broken PT -symmetric
phase, the observation of nonlinear edge doublets is possible
by using additional stabilizing absorption in the central part of
the array.
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