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The particle-number fluctuations originated from collective excitations are investigated for a three-
dimensional, repulsively interacting Bose-Einstein conden@&f) confined in a harmonic trap. The contri-
bution due to the quantum depletion of the condensate is calculated and the explicit expression of the coeffi-
cient in the formulas denoting the particle-number fluctuations is given. The results show that the particle-
number fluctuations of the condensate follow the l&dN3)~N??'> and the fluctuations vanish when

temperature approaches the BEC critical temperature.
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The remarkable experimental realization of Bose-Einsteinations have been studied for three-dimensioni@D)
condensation in trapped, weakly interacting atomic gases haé—8,13,14 and 2D[15] weakly interacting Bose-Einstein
stimulated intensive theoretical and experimental research&@ndensed gases. In a pioneering work by Giorgtral. [6],
on Bose-Einstein condensed ga$&$ In particular, much the particle-number fluctuations are investigated within a tra-
attention has been paid to the study of the particle-numbedlitional particle-number-nonconserving Bogoliubov method.
fluctuations of Bose-Einstein condensatBECS [2]. Thisis ~ Kocharovskyet al. [7] extended the results of Reff6] by
mainly due to the fact that the particle-number fluctuations!Sing @ particle-number-conserving operator formalism. The
play a central role in the understanding of the statisticaPc@le behavior of the interacting condensate in a box was
properties of BEC. In addition, the particle-number fluctua-Nvestigated in Ref[8] with an arbitrary aton_1|c m_teractlon. _
tions of a condensate may result in the fluctuations of chemi- OF & Bose-Einstein condensed gas confined in a magnetic

cal potential and thus lead to the phase diffusion of condent@pP: the total number of particles of the system is con-

sate [3]. Therefore, the study on the particle-numberserv.ed and hence a canonical ensemble is appropriate to in-
fluctuations of BEC is not only of an intrinsic theoretical vgstlgate the parncle—nqmber fll.Jc_:tuauons.m the condensate.
interest but al ful to understand and control th h Directly from the canonical partition function of the system

erest but aiso usetul to understand and control th€ Conel, 4 by using a developed saddle-point method, a systematic
ent property of BEC. On the other hand, a clear theoretic

‘ . , : i pproach was proposed by the present authtis-16 for
understanding will be helpful to guide a direct experimentaliestigating the role of coliective excitations on the particle-

observation on the particle-number fluctuations in a BEC. nmper fluctuations. Within the canonical ensemble a gen-
Up to now there exist a lot of theoretical works exploring gra| method has been given recently for studying the thermo-
the property of the particle-number fluctuations in BECs. INgynamic properties of Bose-Einstein condensed gases based
an ideal Bose gas the particle-number fluctuationdls)  on the calculation of the probability distribution function
=(Nj)—(No)? have been studied rather thoroughly in a ho-Refs. [13,14). In Ref. [15], the theory in Refs[13,14 is
mogeneous cas@.g., in a box[4] and an inhomogeneous developed to calculate the particle-number fluctuations due
case(e.g., in a trap[5]. The role of interatomic interaction in to collective excitations by including the effect of quantum
the particle-number fluctuations is an important theoreticaljepletion.
problem and hence intensive theoretical investigations have For a 3D Bose-Einstein condensed gas confined in a mag-
been given[2,6-16. The behavior of the particle-number netic trap, although the effect of the quantum depletion of
fluctuations is described by the value of the powein the  condensate is discussed by Giorgitial. [6] within the
expressior{ SN3)~N? with N being the total number of par- particle-number-nonconserving Bogoliubov approach, ex-
ticles. Referencefb,7,13 give the result onomaloudluc-  plicit expression in the formula denoting the particle-number
tuations withy=4/3, while Ref.[9] argues that the fluctua- fluctuations by the quantum depletion is not provided. In the
tions should be normal witly=1. present work, we shall carefully calculate the particle-
For the temperature far below the critical temperature ohumber fluctuations due to collective excitations within a
BEC, the collective excitations created from condensate plaganonical ensemble. We take into account the effect of quan-
an important role in the particle-number fluctuations. Thetum depletion and finite size of the condensate.
physical reason is that due to the interatomic interaction the We first give a brief description for the method developed
creation of the collective excitations induces a change of than Ref. [15] . For a condensate confined in a 3D magnetic
particle number in the condensate. In the last few years, theap, the collective excitations generated from the condensate
particle-number fluctuations originated from collective exci-can be described by three quantum numipgitte number of
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radial modeg | (the magnitude of the total angular momen- For Egs.(4) and(5), u,, andv,, can be approximated as
tum), and m (the z component of the angular momentum [19]

Assuming thatNZ,  is the number of the collective excita-

tions indexed by the quantum numberbm and N, is the U~y i [9Mo(r) )
number of particles in the condensate, the canonical partition nlm™ "~ Ynlm 26 X "Im-

function of the system takes the form

Z[N]=>)' ex;{—ﬁ

For a Bose gas confined in an isotropic harmonic potential
B with angular frequency, xnim and e, m(=fw, ) are de-
E0+n|%0 anmsnlm”' (D) termined by the eigenequation

2
where the prime in th mmation repr nts th ndition w
ere the prime e su ation represents the conditio _ 7V'[(RZ—VZ)VXmm]:wﬁmem, @)

that the total number of atoms in the system should be con-
served within the canonical ensemtig, is the energy of the ) ) .
condensate which can be regarded as a ground-state enefff)ereR is the radius of the condensate, detergnlr;ed by the
of the system. Using the Bogoliubov thediy7,18 and a € emical potential of the system througp =mw“R*/2. In
saddle-point method developed in Ref¢3-15, for the  Ed-(8), @nim @nd xnim are found to bg¢20]

temperature below the BEC critical temperature the normal- _ 2 172

ized probability distribution function read45] ©@nim= @(2n"+2nl+3n+1)7 ©)
(No— Ng)z} and

Gn(N,No)=Anexp{— o= 2 r
xn|m=AmP.<2”°(§>r'Y|m<a,qo>®<R—r>, (10
where A, is the normalization constant amdf is the most

probable value of the atomic number in the condensate. Th@here A,,,, is the normalization constant determined by

quantity = is given by [xmml?2dV=1 and ©(x) is a step function. In Eq(10),
2 kT2 PEM(x)=30_,axx? is a polynomial with coefficients sat-
o= 2 (fuﬁde*‘Jvﬁde) ( B ) isfying the recurrence relationwy, ., ,=— as(n—Kk)(2I
i 0 Enim +2k+2n+3)/(k+1) (2! + 2k +3) with ag=1.

T With the above formulas we now calculate the particle-
+2(J Uﬁlde+J Uﬁlmdv)fvﬁlmdv( B ) number fluctuations in the condensate. Substituting the
above results into Eq€3) and (6), we obtain the particle-
5 number fluctuations due to collective excitations:
+(Jvﬁ|de)

where Uym, Unim, and e, (the energy of the collective where
modenlm) are determined by the following coupled equa-

nim

] (3) (52N0>=9‘i1+9'{2+9‘i3, (11)

2 2
tions: [ M| [keT
. o) (5] 2
(_ﬁv2+vext(r)_ﬂ+29n(r))unlm+gn0(r)vnlm m 2kBT
9‘{22)\2<%) %1 (13)
= &nimUnim> (4)
42 and
(_ﬁvz"'vext(r)_,uf"Zgn(r))vnlm+gno(r)unlm Naf m
Ro=7 | 7o (14)
4 \hw
=~ €nimUnim> 5)
The coefficients\, N\», A3 are given b
where V(1) is the external potential confining the Bose b Re s g 4
gas,u andg are, respectively, the chemical potential of the (21+ 1)'92|
system and the coupling constami{r) and ny(r) are the Ni= 5 s >
density distributions of the Bose gas and the condensate, ni#0 (2n°+2nl+3n+1)
respectively.
For temperature far below the critical temperature, we B (2I+1)19ﬁ|
haveNf>1. In this sit_uation, from Eq.2) the fluctuat_ion_s of 27 (2n2+2nl+3n+l)3’2'
the condensate contributed from the collective excitations are
iven b
g y (21+1)9?,
A3 (15

(8"Ng)=(Ng)—(No)*=E. (6) T (2n2+2ni+3n+l)’
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with (i) The anomalous behavior of the particle-number fluc-
1 tuations of the condensate predicted by E@) is obtained
f (1=x3)[ PPV (x)]?x?' *2dx when the particle number of the system is finite. In the ther-
_J0 (16) modynamics limit of the Bose gas in the harmonic potential,
i.e., lettingN— and w—0 while keepingNw® constant
[21], the anomalous behavior of the fors?Ng)~N*3
given in Refs[6,13] can be obtained.
The factor (2+1) in Ay, \p, and X3 is due to the (2 (i) Different from the result obtained in Reff6] where
+1)-fold degeneracy of the angular momentum. The nuonly the low-temperature behavidr<T? is taken into ac-
merical results of the above parameters ®fe=0.47, A, count, in the present work the temperature dependence of the
=0.94,1\3=4.96. Note that the coefficients in the particle- fiyctuations is valid for the temperature region below the
number_ fluct_uations of the condensate are different from th@itical temperature. When the temperatdrapproaches the
result given in Rgfs[6,13]. . . BEC critical temperaturé'g, the particle number in the con-
In Eq.(ll), 9%1_ is the leading term Of. the particle-number densate approaches zero and hence the fluctuations origi-
fluctuations, whileR; shows the particle-number fluctua- : o . .
. . ._pated from the collective excitations vanish, as shown in Eqg.
tions due to the quantum depletion of the condensate whic 9)

do not vanish even at zero temperature. . . o
For the Bose-Einstein condensed gas in the harmonic po- (iii) For a higher temperature the collegnve excnatpns
tential, the chemical potential is given by play only a _second rqle and o_ne.must conS|der_the contribu-
tion from single-particle excitations. The particle-number
215 fluctuations contributed by the single-particle excitations
(17 show the behavior of8?Ng)~N [13].

(iv) From Eq.(18), we see that the confining potential has
with a being thes-wave scattering length aret,,= A/ mw the effect of increasing the particle-number fluctuations. It is
the harmonic-oscillator length. Using the expression of theeasy to know from Eq(18) that SR, ~ w?>.
critical temperature of an ideal Bose gas[l= In conclusion, we have investigated the particle-number
ho[N/Z(3)]¥%kg, and introducing the dimensionless pa- fluctuations originated from collective excitations in a three-
rameterst:T/TS ando=ala,,, we obtain the leading term dimensional, repulsively interacting Bose-Einstein conden-
of My sate confined in a harmonic potential. We have carefully cal-

R, = 0.912(1— t3) 4554522115 (18) culated the co_ntrlbutlon to the quctuatl_or)s due to the
quantum depletion and provided the explicit expression of

We see that the leading term of the particle-number fluctuathe coefficient in the formulas denoting the particle-number
tions in the condensate exhibits an anomalous behavior dfuctuations. Our results show that the particle-number fluc-

19nI

o 1
f [PI(ZH)(X)]ZXZH—ZdX
0

15Nga

anho

_ﬁw
vy

(8%Ng)~N2215 tuations of the condensate due to the collective excitations
It is straightforward to obtain the results ¥, and R display an anomalous behavior of the fok@NG)~ N1
2 3
which are given by When T—>T2 such fluctuations approach to zero and hence
the fluctuations due to single-particle excitations become
R, =1.93(1—t3) NS (199 dominant. It is possible that the anomalous behavior pre-
dicted in this work could be observed experimentally by
and means of, e.g., the scattering of short and nonresonant laser
My=2.7Q 1 —t3)¥BoN5, (200  pulses on a BEG22].
We now make some remarks on the results obtained This work was supported by NSFC under Grant Nos.
above: 10205011 and 10274021.
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