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We investigate, both analytically and numerically, the nonlinear dynamics of (2+1)-dimensional [(2+1)D]
matter waves excited in a disk-shaped dipolar Bose-Einstein condensate (BEC) when quantum fluctuations
described by the Lee-Huang-Yang (LHY) correction are taken into consideration. By using a method of
multiple scales, we derive Davey-Stewartson I equations that govern the nonlinear evolution of matter-wave
envelopes. We demonstrate that the system supports (2+1)D matter-wave dromions, which are superpositions of
a short-wavelength excitation and a long-wavelength mean flow. We found that the stability of the matter-wave
dromions can be enhanced by the LHY correction. We also found that such dromions display interesting
behaviors of collision, reflection, and transmission when they interact with each other and are scattered by
obstacles. The results reported here are useful not only for improving the understanding on the physical property
of the quantum fluctuations in BECs, but also for possible experimental findings of new nonlinear localized
excitations in systems with long-ranged interactions.
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I. INTRODUCTION

In the past decades, the remarkable experimental re-
alization of Bose-Einstein condensates (BECs) in weakly
interacting cold atomic gases opened a new avenue for the
exploration of nonlinear properties of matter waves. The most
significant experimental progress includes demonstrations of
the matter-wave four-wave mixing, superradiance, amplifica-
tion, and collapse [1–4]. These studies established a new field
of nonlinear atom optics that deals with various nonlinear
dynamics of matter-wave excitations [5–7].

Fascinating phenomena of solitons and related excita-
tions occur in many nonlinear media (e.g., fluids, plasmas,
solids, optical fibers, etc.), and have potential applications
in information processing and transmission [8]. Solitonlike
nonlinear localized excitations in BECs (called matter-
wave solitons generally) have also received much atten-
tion. Related studies focused mainly on solitons in BECs
with contact atom-atom interactions, controlled by Gross-
Pitaevskii (GP) equations with local cubic nonlinearity,
by which stable bright (dark) solitons for attractive (re-
pulsive) interatomic interaction can be obtained in one
dimension [9–12].

In order to obtain new and more interesting properties, in
recent years there has been considerable interest in exploring
cold atomic gases with more rich atom-atom interactions.
In particular, nonlocal (long-ranged) dipole-dipole interaction
has been suggested to realize a novel kind of degenerate
quantum gas both in the weakly interacting limit and also
in strongly correlated regimes. It has been shown that BECs

with dipole-dipole interaction, governed by GP equations with
nonlocal cubic nonlinearity, can support high-dimensional
solitons. However, generally such solitons can only be sta-
bilized by some special conditions due to the fact that the
dipole-dipole interaction is anisotropic and nonpositive defi-
nite [13–20].

In the studies mentioned above, the ground-state energy
of BECs was obtained by using a mean-field approximation.
Going beyond this approximation gives a Lee-Huang-Yang
(LHY) correction [21], which is originated from the quantum
fluctuations in the BEC. The LHY correction can stabilize the
BEC against the mean-field collapse, which has been observed
in Bose-Bose mixtures and also in dipolar BECs, and has been
shown to be useful for the formation of solitonlike quantum
droplets and supersolid crystals [22–28].

Stable high-dimensional solitons are rarely found in na-
ture. The reason is that it is usually not easy to realize the
balance among nonlinearity, dispersion, and/or diffraction.
Nevertheless, if a system is prepared under particular con-
ditions the nonlinear dynamics of wave envelopes can be
effectively described by some integrable (or nearly integrable)
nonlinear partial differential equations, and one is able to
observe high-dimensional solitons during propagation in the
system [29]. In Ref. [30], (2+1)-dimensional [(2+1)D] [31]
weak nonlinear matter waves excited from the background
of a disk-shaped BEC with local atom-atom interaction were
considered, Davey-Stewartson I (DSI) equations were de-
rived, and hence dromionlike (2+1)D soliton excitations were
proved to be possible. Predicted first by Boiti et al. [32],
a dromion (the name was first given in Ref. [33]) is a
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(2+1)D nonlinear localized excitation with two wave compo-
nents; one describes a short-wavelength excitation decaying
in two spatial directions and another one describes a long-
wavelength mean flow generated by the short-wavelength
excitation [29,30,32–35].

In the present paper, we extend the study of Ref. [30] by
investigating, both analytically and numerically, the nonlinear
dynamics of matter waves excited in a disk-shaped BEC with
dipole-dipole interatomic interaction. In order to include the
contribution of the quantum fluctuations beyond mean-field
approximation, the LHY correction term is taken into account
in the GP equation describing the dipolar BEC. By using
a standard asymptotic expansion method of multiple scales
[36], we derive DSI equations that control the nonlinear evo-
lution of two coupled matter-wave envelope components. We
show that the system supports (2+1)D matter-wave dromions
excited from the ground-state background of the dipolar BEC,
which are superpositions of a short-wavelength excitation
and a long-wavelength mean flow. We demonstrate that the
stability of the matter-wave dromions can be enhanced sig-
nificantly by the LHY correction. We also demonstrate that
such (2+1)D nonlinear matter-wave dromions exhibit many
interesting behaviors for collision, reflection, and transmis-
sion when they interact with each other and are scattered by
obstacles. The results reported here are beneficial not only
for a deep understanding on novel physical properties of the
quantum fluctuations (the LHY correction) in BECs, but also
for seeking possible experimental findings of new types of
high-dimensional nonlinear localized excitations in systems
with long-ranged interactions.

The remainder of the paper is arranged as follows. In
Sec. II, we describe the physical model under study. In
Sec. III, we derive the DSI equations, give the dromion solu-
tions, and discuss their stability. In Sec. IV, we investigate the
collision between two dromions, and discuss their reflection
and transmission when scattered by obstacles. Finally, Sec. V
contains the summary of our main results obtained in this
paper.

II. MODEL

We consider a dipolar BEC, which consists of N bosonic
atoms interacting through short-ranged interaction (charac-
terized by s-wave scattering length as) and also long-ranged
dipole-dipole interaction. The external potential that traps the
atoms is disk shaped, as schematically shown in Fig. 1(a).
R = r − r′ is the separation between two dipoles d1 and d2

[located respectively at r = (x, y, z) and r′ = (x′, y′, z′) ]),
with their interaction described by the dipole-dipole inter-
action potential Udd (R) = [1 − 3 cos2 θ ]/R3. Here, cos θ =
z/R, R = |R|, and θ is the angle formed by the vector join-
ing the two interacting particles and the dipole direction.
The disk-shaped dipolar BEC is formed by tightly confining
the atoms in the x-y plane using a strong external harmonic
confinement potential along the z direction, in which the
dipoles (represented by arrows) are polarized at angle α (with
respect to the z-axis) in the x-z plane; see the insets of
Fig. 1(a).

At zero temperature and beyond mean-field approximation,
the dipolar BEC can be described by the (3+1)-dimensional

FIG. 1. (a) Dipolar BEC tightly confined in the xy plane by a
strong harmonic confinement along the z direction. Two dipoles
located respectively at position r and r′ interact via the dipole-dipole
interaction potential Udd (R) = [1 − 3 cos2 θ ]/R3, with cos θ = z/R,
R = |R|, R = r − r′; θ is the angle between the polarization direc-
tion and the relative position of the two dipoles (i.e., R). Dipoles are
assumed to be polarized in the x-z plane, with a tilting angle α with
respect to the z axis. (b) Intensity of the matter-wave dromion in the
disk-shaped dipolar BEC, which is a localized (2+1)D wave packet
(short-wave component) riding on the crossing point of two antikinks
(long-wave component).

GP equation [20,24,27]

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + V (r) + g3D|ψ |2 + gQF|ψ |3

+gdd

∫
d3r′Udd (r − r′)|ψ (r′, t )|2

]
ψ. (1)

Here ψ (r, t ) is an order parameter (satisfying the normalized
condition

∫
d3r|ψ |2 = N); ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2;

d3r′ = dx′dy′dz′; g3D = 4π h̄2as/m is the short-ranged (con-
tact) interaction parameter, with m the atomic mass and as

the s-wave scattering length; gQF � 32/(3
√

π )g3Da3/2
s [1 +

3/2(add/as )2] is the parameter describing the quantum fluc-
tuations, with add = μ0d2m/(12π h̄2) the dipolar length
[20,24,27]; gdd = μ0d2/(4π ) is the parameter describing the
nonlocal interaction, with μ0 the permeability of free space

and d the dipole moment. In Eq. (1), V (r) = 1
2 m[ω2

⊥(x2 +
y2) + ω2

z z2] is the external trapping potential. Since the BEC
is assumed to be strongly confined along the z direction, we
have ωz � ω⊥, where ω⊥ and ωz are trap frequencies in the
xy plane and in the z axis, respectively.

Notice that in the present system there exist three types
of contributions of interatomic interactions (i.e., the s-wave
interaction, the interaction induced by the LHY correction,
and the dipole-dipole interaction). Since the s-wave scatter-
ing length as can be tuned by optical Feshbach resonance
[37,38], the term g3D|ψ |2 can be positive or negative (which
gives repulsive or attractive interactions correspondingly).
The contribution by the quantum fluctuations in the BEC
is represented by the LHY correction term gQF|ψ |3, which
is local and can be positive and negative depending on the
sign of as. The contribution by the nonlocal dipole-dipole
interaction, represented by the term with the spatial integra-
tion gdd

∫
d3r′Udd (r − r′)|ψ (r′, t )|2, can also be positive or

negative depending on the angle θ and the relative position of
dipoles. Notice also that the dipole-dipole interaction is not
only anisotropic but also nonpositive definite. For example,
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Udd (R) = 1/R3 when θ = π/2 (i.e., cos θ = 0); Udd (R) =
−2/R3 when θ = 0 (i.e., cos θ = 1).

For the convenience of the following calculations, we in-
troduce the dimensionless variables t = τ0t1, ψ = φ(N/l3

z )1/2,
�ζ = (x1, y1, z1) = (x, y, z)/lz, as = ãslz, and add = ãdd lz.
Here τ0 = ml2

z /h̄, with lz ≡ √
h̄/(mωz ) the harmonic-

oscillator length in the z direction. Then Eq. (1) is cast into
the dimensionless form

i
∂φ

∂t1
=

[
−1

2
∇̃2 + V (�ζ ) + 4π ãsN |φ|2 + W N3/2|φ|3

+ 3Nãdd

∫
d3ζ ′Udd (�ζ − �ζ ′)|φ(�ζ ′, t1)|2

]
φ, (2)

where ∇̃2 = ∂2/∂x2
1 + ∂2/∂y2

1 + ∂2/∂z2
1, d3ζ = dx1dy1dz1,

V (�ζ ) = 1
2τ 2

0 [ω2
⊥(x2

1 + y2
1 )+ ω2

z z2
1] ≡ V⊥(x1, y1)+ Vz1 (z1), and

W = 128
3

√
π ã5/2

s [1 + 3(ãdd/ãs )2/2].
Since the axial trapping potential has been assumed

to be strong, the motion of wave function φ in the
z1 direction is frozen into the ground state of the har-
monic potential Vz1 (z1) = τ 2

0 ω2
z z2

1/2. Thereby we can make
the approximation φ(�ζ , t1) ≈ ϕ(�ρ, t1)φ0(z1), where φ0(z1) ≡
(1/ 4

√
π ) exp(−z2

1/2) is the ground-state wave function of
the potential Vz1 (z1) and ϕ(�ρ, t1) [�ρ ≡ (x1, y1)] is the two-
dimensional (2D) wave function in the x1-y1 plane. After
multiplying φ0(z1) and integrating over z1, Eq. (2) is converted
into the effective (2+1)D GP equation

i
∂ϕ

∂t1
=

[
−1

2
∇̃2

⊥ + b + V0|�ρ|2 + w1|ϕ|2 + w2|ϕ|3

+ g
∫

d2ρ ′U2D(�ρ − �ρ ′)|ϕ( �ρ ′)|2
]
ϕ, (3)

where d2ρ ′ = dx′
1dy′

1, b = ml2
z ω2

z /4 + h̄2/(4ml2
z ), V0 =

1
2ω2

⊥τ 2
0 , w1 = 2

√
2πNãs, w2 = N3/2√2/5 128

3 π−1/4ã5/2
s [1 +

3
2 (ãdd/ãs)2] (a nonlinear parameter characterizing the
quantum fluctuations, called the LHY parameter below), and
g = 3ãdd N . U2D(�ρ − �ρ ′) is calculated in momentum space by
using the convolution integral, as done in Refs. [39–41]. The
dipole at position (x1, y1) polarizes at angle α to the z1 axis
in the x1-z1 plane [see the inset of Fig. 1(a)]. The constant
b in Eq. (3) can be removed by using the transformation
ϕ(�ρ, t1) → ϕ(�ρ, t1)e−ibt1 . Then we have

i
∂ϕ

∂t1
=

[
−1

2
∇̃2

⊥ + V0|�ρ|2 + w1|ϕ|2 + w2|ϕ|3

+ g
∫

d2ρ ′U2D(�ρ − �ρ ′)|ϕ( �ρ ′)|2
]
ϕ. (4)

The model described above is quite general, valid for any
dipolar BECs trapped by a disk-shaped potential. Here we
take the 164Dy BEC [24,42] as an example to facilitate the cal-
culation and discussion given below. The system parameters
are given by d = 10 μB = 9.274 01×10−23 A m2 (magnetic-
dipole moment), μ0 = 4π×10−7 N/m2, add = 132.7a0 =
7.02×10−9 m (dipolar length), as = 100a0 = 5.292×10−9 m
(scatter length), ωz = 2π×62.6 Hz (trap frequency),

lz = 45πadd � 1 µm (harmonic oscillator length in the z
direction), and τ0 = 2.5 ms.

III. AMPLITUDE EQUATIONS, MATTER-WAVE
DROMIONS, AND THEIR STABILITY

A. Amplitude equations

We now investigate the weak nonlinear excitations in the
system based on the effective GP equation (4). Note that each
term of the three nonlinear terms in Eq. (4) can be either
positive (repulsive) or negative (attractive). Thus, generally
speaking, the whole nonlinearity in Eq. (4) may be positive
or negative, depending on the signs and relative magnitudes
of w1, w2, and U2D(�ρ). By taking N = 2×105 and α = 0 (α
is the titling angle of the dipoles with respect to the z axis),
and using the system parameters given in the previous sec-
tion, we can obtain w1 > 0, w2 > 0, and U2D(�ρ) > 0. In this
situation, the whole nonlinearity is repulsive and hence the
system supports dromion solutions. Moreover, we assume also
that the transverse trapping frequency ω⊥ is small (i.e., the
disk radius is large). This means that the transverse trapping
potential V0|�ρ|2 in Eq. (4) plays no significant role if one is not
interested in the case for dromions excited near the boundary
or interacting with the boundary of the BEC. Hence, we shall
neglect the small transverse trapping potential in the following
calculations. Under such assumptions, the ground-state solu-
tion ϕ0 of Eq. (4) is a uniform one, i.e., ϕ0 = u0 exp(−iμt1).

Here μ = u2
0[w1 + u0w2 + g

∫∫
U2D(�ρ)d2ρ], with u0 a con-

stant.
To study the soliton phenomenon in a complicated

nonlinear system, a convenient method is to derive the
amplitude equations [like the DS equations (9a) and (9b)
obtained below] that govern the spatial-temporal evolution
of the envelopes of nonlinear excitations by using asymp-
totic expansions. Such a method is powerful and has been
widely employed in nonlinear wave theory [29,36]. Here,
to investigate the dromion excitations generated from the
ground-state background ϕ0 of the dipolar BEC, we apply
the method of multiple scales [36] to derive relevant am-
plitude equations. The general solution can be written as
the form ϕ = [u0 + ϕp(x1, y1, t1)] exp (−iμt1), with ϕp denot-
ing the excitation from the ground state. Taking ϕ(�ρ, t1) =
P(�ρ, t1) exp [−iμt1 + iϕ̃(�ρ, t1)], Eq. (4) becomes

∂P

∂t1
+ ∇P · ∇ϕ̃ + 1

2
∇2ϕ̃ = 0, (5a)

P
∂ϕ̃

∂t1
− 1

2
∇2P − μP + 1

2
P|∇ϕ̃|2 + w2P4

+ P
∫

R(�ρ − �ρ ′)P2( �ρ ′)d2ρ ′ = 0, (5b)

where �ρ = (x1, y1), �ρ ′ = (x′
1, y′

1), d2ρ ′ = dx′
1dy′

1, and
R(�ρ ) ≡ gU2D(�ρ) + w1δ(�ρ). To solve Eq. (5), we make the
asymptotic expansions P = u0 + εa1 + ε2a2 + ε3a3 + · · ·
and ϕ̃ = εφ1 + ε2φ2 + ε3φ3 + · · · . Here a j and φ j

( j = 1, 2, 3, . . .) are functions of the multiscale variables
θ = βx1 − ωt1, τ = ε2t1, ξ = ε(x1/vg − t1), and η = εy1;
ε is a small parameter characterizing the amplitude of the
excitation from the BEC ground state. Substituting these

024214-3



ZEYUN SHI AND GUOXIANG HUANG PHYSICAL REVIEW E 107, 024214 (2023)

with LHY

without  LHY

(a)

(b)

(e)

(f) (g)

(d)

(c)

FIG. 2. (a)–(f) Coefficients α j ( j = 1, 2) and δl (l = 1, 2, 3, 4) in Eqs. (9a) and (9b) as functions of the LHY parameter w2 for
different wave number of the excitation β = 0.1 (dotted red line), β = 0.3 (dashed blue line), and β = 0.5 (solid purple line). (g) Phase
diagram for the existence of matter-wave dromions in the N-εdd plane (εdd ≡ add/as is relative dipole strength). Here the dashed red
(solid blue) line denotes the boundary between the modulational instability (MI) and the modulational stability (MS) of the BEC ground
state in the presence (absence) of the LHY correction. The existence of the LHY term enlarges the region where the BEC ground state is
modulationally stable.

expansions into Eqs. (5), we obtain perturbation equations for
a j and φ j , which can be solved order by order.

At the first-order approximation ( j = 1), we have the solu-
tion

a1 = i
u0β

2

2ω
A1eiθ + c.c., (6)

φ1 = A0 + (A1eiθ + c.c.). (7)

The linear dispersion relation is given by ω = ω(β ) (β and ω

are the wave number and frequency of the excitation, respec-
tively), with

ω = [
1
4β4 + u2

0β
2R̂(β ) + 3

2w2u3
0β

2
]1/2

. (8)

Here R̂(β ) is the Fourier transform of R(�ρ). A1 and A0 are
respectively the amplitude (envelope) of the short wave and
that of the long wave (mean flow), both of which are functions
of the slow variables ξ , η, and τ , yet to be determined.

Going to the third-order approximation ( j = 3), we obtain
the DS equations describing the interaction between the long
wave A0 and the short wave A1:

α1
∂2A0

∂ξ 2
− ∂2A0

∂η2
= −α2

∂|A1|2
∂ξ

, (9a)

i
∂A1

∂τ
+

(
δ1

∂2

∂ξ 2
+ δ2

∂2

∂η2

)
A1 + δ3|A1|2A1 = −δ4A1

∂A0

∂ξ
.

(9b)

In these equations, the terms with the second-order derivatives
∂2/∂ξ 2 and ∂2/∂η2 describe the dispersion and diffraction
effects, and the term |A1|2A1 describes the nonlinear effect of
the system. From Eq. (9a), we see that the self-interaction of
the short-wave component (the term on the right-hand side
of the equation) A1 supports the occurrence of the long-wave
component A0; however, the long-wave component A0 has
a backaction to the short-wave component A1, which is re-
flected by the term on the right-hand side of Eq. (9b). The
detailed derivation of the DS equations (9a) and (9b) and

explicit expressions of their coefficients α j ( j = 1, 2) and δl

(l = 1, 2, 3, 4) are presented in Appendix A.
Before proceeding, we give a simple discussion on the

role played by the LHY correction [characterized by the
LHY parameter w2 in Eqs. (4) and (5)] to the coefficients
of the DS equations (9a) and (9b). Shown in Figs. 2(a)–2(f)
are coefficients α j ( j = 1, 2) and δl (l = 1, 2, 3, 4) in
Eqs. (9a) and (9b) as functions of the parameter w2 (the
strength of LHY correction), for different wave number of
the excitation from the ground-state background of the BEC.
The dotted red line, dashed blue line, and solid purple
line in the figures are for β = 0.1, 0.3, and 0.5, respec-
tively. We see that these coefficients display the following
characters.

(i) α1 (α2) is decreased (increased) as w2 grows; α2 has a
weak dependence on β, but α1 is nearly invariant when β is
changed.

(ii) δ1 is reduced as w2 increases, while δ2 is increased if
w2 is increased.

(iii) Both δ3 and δ4 decrease when w2 increases.
These results tell us that the coefficients in the DS

equations (9a) and (9b) have strong dependence on the LHY
correction of the system; moreover, these coefficients are ad-
justable, providing a flexible way to manipulate the system so
that stable matter-wave dromions are possible, as explained in
the following section.

B. Matter-wave dromions and their stabilities

Now we investigate possible high-dimensional solitons so-
lutions based on the DS equations (9a) and (9b). As mentioned
above, due to the anisotropic and nonpositive definite dipole-
dipole interaction, the high-dimensional solitons in dipolar
BECs are generally unstable. However, under some condi-
tions, the dipole-dipole interaction can be made isotropic and
has a definite sign, and hence the system can support stable
solitons. Based on the assumptions given at the beginning of
the last subsection, the nonlinearity of the system is repul-
sive isotropically. In this case, the ground-state background
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FIG. 3. Matter-wave dromions in the dipolar BEC obtained by numerically solving the DS equations (9a) and (9b) for different times
τ = 0, 1, 2, 3, 4, respectively. The data in the figure are normalized to 1, all of which share the same color bar. (a1)–(e1) The distribution of
the short-wave component |A1|2 as functions of ξ and η in the absence of the LHY correction (i.e., the LHY parameter w2 = 0). (a2)–(e2) The
same as (a1)–(e1) but for the long-wave component |A0|2. (a3)–(e3) The distribution of the short-wave component |A1|2 as functions of ξ and
η in the presence of the LHY term (i.e., w2 = 472.8). (a4)–(e4) The same as (a3)–(e3) but for the long-wave component |A0|2. These results
show that the LHY term can stabilize the dromions in the dipolar BEC greatly.

of the dipolar BEC is modulationally stable under the action
of perturbations; the system allows the existence of dromion
excitations that are excited on the ground-state background
[30].

In order to determine the parameter domain for the exis-
tence of dromions, a modulational instability (MI) [43–46]
analysis is carried out. Figure 2(g) shows the numerical re-
sult of the MI analysis, in which the phase diagram for
the existence of dromions is illustrated in the N-εdd plane
(εdd ≡ add/as is a parameter characterizing the relative dipole
strength). In the figure, the dashed red (solid blue) line is the
boundary between the MI and modulational stability (MS) in
the presence (absence) of the LHY correction. We see that the
domain in which the MS occurs (i.e., the modulation of the
BEC ground state is stable) is increased by the existence of the
LHY correction [represented by the parameter w2 in Eq. (4)],
which means that the the LHY correction by the quantum
fluctuations can make the existence domain of dromions en-
larged significantly [47]. Note that the effect of the LHY term
on the enlargement of the MS domain for large N is more
significant than that for small N . This is due to the fact that
the nonlinear coefficients describing the contact and dipolar
interactions (i.e., w1 and g) are proportional to N , while the
nonlinear coefficient describing the LHY correction (w2) is
proportional to N3/2.

We now present approximated soliton solutions
for the DS equations (9a) and (9b). Using the trans-
formation ∂A0/∂ξ = δ1/(α1δ4) s, A1 = 2

√
δ1/(α2δ4) u,

x′ = √
α1 ξ , y′ = η, and t2 = (α1/δ1) τ , (9a) and (9b)

become

∂2s

∂x′2 − ∂2s

∂y′2 + 4
∂2|u|2
∂x′2 = 0, (10a)

i
∂u

∂t2
+

(
∂2

∂x′2 + ∂2

∂y′2

)
u+ 2|u|2u+ su = κ1

∂2u

∂y′2 + κ2|u|2u,

(10b)

with κ1 = 1 − α1δ2/δ1 and κ2 = 2 − 4α1δ3/(α2δ4). To find
analytic solutions, we assume the wave number β is small,
which makes κ1 and κ2 play negligible roles. For instance, by
taking β = 0.1, one has κ1 = 0.006 and κ2 = −0.03. When
taking κ1 = κ2 = 0, (10a) and (10b) reduce into standard DSI
equations, which admit the dromion solution [29]:

u = �

F
exp(η1 + η2), s = 4

∂2ln F

∂x′2 , (11)

with F = F [η1, η2] ≡ 1 + exp(η1 + η∗
1 ) + exp(η2 + η∗

2 ) +
γ exp(η1 + η∗

1 + η2 + η∗
2 ), η1 = (kr + iki )(x′ + y′)/2 +

(�r + i�i )t ′, η2 = (lr + ili )(y′ − x′)/2 + (ωr + iωi )t ′,
�r = −2krki, ωr = −2lr li, �i + ωi = k2

r + l2
r − k2

i − l2
i ,

and � = 2
√

2krlr (γ − 1) exp(iφρ ). Here kr , ki, lr , li, γ , and
φρ are free real parameters. Shown in Fig. 1(b) is the intensity
of the matter-wave dromion by taking kr = 1, ki = 0.5,
lr = 1, li = 0.5, γ = 3, and φρ = 0. In the figure, the hump in
the center represents the localized (2+1)D wave packet (i.e.,
the short-wave component |u|2), which rides on the crossing
point of the two antikinks (i.e., the long-wave component
|s2|).
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FIG. 4. Dynamical stability of the matter-wave dromion. Shown
are intensity distributions of the short-wave component |A1|2 (a1)–
(c1) and the long-wave component |A0|2 (a2)–(c2) of the dromion, as
functions of ξ and η for τ = 0, 1, 2, respectively, perturbed by 10%
noise.

A numerical simulation is carried out for checking the
validity of the above approximated solution given above.
Figure 3 shows the propagation of the matter-wave dromion
obtained by numerically solving the DS equations (9a) and

(9b) for different dimensionless times τ = 0, 1, 2, 3, 4, re-
spectively, by taking (11) as an initial condition. Illustrated in
panels (a1-e1) is the distribution of the short-wave component
|A1|2 as functions of ξ and η; the distribution in Figs. 3(a2)–
3(e2) is the same as that in Figs. 3(a1)–3(e1) but for the
long-wave component |A0|2. In the simulation, the system
parameters used are kr = lr = 1.0, and ki = li = 0.5, with
w2 = 0 (i.e., the LHY correction is absent). We see that in the
short-wave component a small side wave packet is generated;
the two antikinks in the long-wave component are broken off
after propagating to some distance. Thus, in the absence of the
LHY correction, both the short- and long-wave components of
the dromion are unstable during propagation.

To see what is the situation for the dromion propagation
when the LHY correction is present, an additional simulation
is made by using a nonzero w2. Shown in Figs. 3(a3)–3(e3)
and 3(a4)–3(e4) are respectively the distributions of |A1|2
and |A0|2 as functions of ξ and η, by taking w2 = 472.8.
We see that both the short- and long-wave components are
rather robust in the course of their propagations. There-
fore, the LHY correction beyond mean-field approximation
contributed by the quantum fluctuations can stabilize the
matter-wave dromion in the system.

To further check the dynamical stability of the dromion
in the presence of the LHY correction, we have made a

FIG. 5. Collision between two matter-wave dromions, with ki1 = ki2 = −li1 = −li2 = 2, γ1 = 3, γ2 = 3, φρ1 = 0, and φρ2 = 0. (a1)–(a3)
[(b1)–(b3)] Intensity profile of the short-wave component |A1|2 (long-wave component |A0|2) for kr1 = kr2 = lr1 = lr2 = 1, which are taken to
be functions of ξ and η for τ = 0, 1, 3, respectively. The collision between two dromions is inelastic. (c1)–(c3) [(d1)–(d3)] Intensity profile
of the short-wave component |A1|2 (long-wave component |A0|2) for kr1 = kr2 = lr1 = lr2 = 2, which are taken to be functions of ξ and η for
τ = 0, 1, 3, respectively. The collision between two dromions is elastic.
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numerical simulation on the DS equations (9a) and (9b), by
adding 10% noise into the initial condition of the dromion.
Shown in Fig. 4 are intensity distributions of the short-wave
component |A1|2 [Figs. 4(a1)–4(c1)] and the long-wave com-
ponent |A0|2 [Figs. 4(a2)–4(c2)] of the dromion, which are
taken to be functions of ξ and η, for the dimensionless time
τ = 0, 1, 2, respectively. One sees that the dromion is quite
stable during propagation.

In passing, we indicated that it is possible to experimentally
observe the matter-wave dromion predicted here by using
a Bose-condensed atomic gas with dipole-dipole interaction
(such as 164Dy [24]), confined in a disk-shaped trap. By setting
the system parameters described at the beginning of Sec. III A,
one can realize the condition of repulsive interaction. Then, by
making the system work at the modulationally stable region of
the ground-state background, and using an initial excitation
prepared by an imprinting technique [5], one can excited
the dromion in the disk-shaped dipolar BEC and observe its
propagation in the system.

IV. COLLISION, REFLECTION, AND TRANSMISSION
OF THE MATTER-WAVE DROMIONS

A. Collision between two dromions

To have a further understanding on the physical property of
the matter-wave dromions described above, it is of interest to
explore their behaviors of collision, reflection, and transmis-
sion. To investigate the interaction between dromions, we as-
sume that the initial condition of the system is a superposition
of two dromion solutions, each of which has the form of (11),
i.e., u|t=0 = ∑2

j=1 �/F [η1(x′ + d j, y′ + d j ), η2(x′ + d j, y′ +
d j )] exp[η1(x′ + d j, y′ + d j ) + η2(x′ + d j, y′ + d j )]. Here the
parameters are chosen to be ki1 = ki2 = −li1 = −li2 = 2,
γ1 = γ2 = 3, φρ1 = 0, and φρ2 = 0; in addition, we choose
d1 = −4 and d2 = 4, which describe the positions of the first
and second dromions, respectively. With the function F given
here, the initial condition for s|t=0 can be obtained by the
second expression of (11).

Shown in Fig. 5 is the result of the collision between
the two dromions through numerically solving the DS
equations (9a) and (9b) in the presence of the LHY correction.
Figures 5(a1)–5(a3) illustrate the intensity profile of the short-
wave component |A1|2 (before, during, and after the collision)
for kr1 = kr2 = lr1 = lr2 = 1, by taking it as a function of ξ

and η for τ = 0, 1, 3, respectively; Figs. 5(b1)–5(b3) show
the corresponding result for the long-wave component |A0|2.
We see that, after the collision, though the long-wave compo-
nent |A0|2 can keep its shape nearly invariant, the short-wave
component |A1|2 is split into four parts. Thus in this case the
collision between the two dromions is inelastic. The physical
reason for the occurrence of such an inelastic collision is
the following. Since kr j and lr j ( j = 1, 2) are small, each
part of the short-wave component |A1|2 has a large spatial
width, and hence the diffraction effect is weak and cannot
balance the nonlinear effect in the system. In addition, the
long-wave component |A0|2 (formed by the intersection of
the four antikinks) provides an attractive force to the short-
wave component |A1|2. At the four intersections of |A0|2, the
attractive force is strongest, which focuses the energy of |A1|2

FIG. 6. Matter-wave dromion scattered by an obstacle (denoted
by the white circle). (a) ki = li = 5: the dromion passes the obstacle
without large deformation for large incident velocity. (b) ki = li = 2:
the dromion can pass the obstacle but with drastic deformation for
intermediate incident velocity. (c) ki = li = 1: the dromion is par-
tially reflected and partially transmitted after being scattered by the
obstacle for smaller incident velocity.

into the four intersections and thus results in the appearance
of four pulses in the distribution of |A1|2.

Nevertheless, if kr j and lr j ( j = 1, 2) are increased, the
outcome of the two-dromion collision will be changed dras-
tically. Shown in Figs. 5(c1)–5(c3) are the intensity profiles
of |A1|2 for kr1 = kr2 = lr1 = lr2 = 2, by taking it also as a
function of ξ and η for τ = 0, 1, 3, respectively; Figs. 5(d1)–
5(d3) give the corresponding result of |A0|2. One sees that, in
this situation, the collision between the two dromions is very
robust and hence can be taken as an elastic one. The reason is
that, for larger kr j and larger lr j , each part of the short-wave
component |A1|2 has a smaller spatial width, and the diffrac-
tion effect is increased and can balance the nonlinear effect
in the system. Thereby, the two pulses of |A1|2 can keep their
wave shapes after their collision. However, the propagation
directions of the two pulses are changed after the collision.

B. Reflection and transmission of dromions
scattered by impurities

Finally, we investigate reflection and transmission behav-
iors of the dromion numerically when it is scattered by an
impurity. In the simulation, we assume that the impurity can
be described by a repulsive Gaussian potential with the form
V = V0 exp[−(ξ 2 + η2)/4], with parameters given by V0 = 3.
Shown in Fig. 6 are numerical results of the scattering by the
obstacle (denoted by the white circles) for different incident
velocities of the dromion, controlled by the parameter ki and
li in the approximated solution (11).

Figure 6(a) shows the case of the dromion before (the
left panel), during (the central panel), and after (the right
panel) passing the obstacle, with a large incident velocity (i.e.,
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ki = li = 5). We see that the dromion is rather robust, i.e.,
it can pass the obstacle without large deformation. For an
intermediate incident velocity (ki = li = 2), the dromion can
pass the obstacle, but with a drastic deformation and a very
small reflection, which is illustrated in Fig. 6(b). However, for
a small incident velocity (ki = li = 1), the dromion is partially
reflected and partially transmitted after being scattered by the
obstacle; see the result given by Fig. 6(c).

V. DISCUSSION AND SUMMARY

The asymptotic reduction used in Sec. III A for deriving
the DS equations (9a) and (9b) requires that the Fourier trans-
form of Udd exists, which is the case for the dipole-dipole
interaction considered here. We stress that such an asymptotic
reduction is one of the examples for general processes, and it
can be generalized to other types of atom-atom interactions as
long as the Fourier transform of the kernel Udd exists.

The above analysis shows that the DS equations (9a)
and (9b) describing the weak nonlinear matter-wave ex-
citations can be simplified into DSI equations. Since in
high-dimensional soliton theory DSII equations are also of
much interest [29], one may ask the question whether or not
the DSII equations can be obtained in the present dipolar
BEC. However, after analyzing possible parameter domains,
we find that amplitude equations for the system under our
consideration here cannot be reduced into the DSII equations.

On the other hand, the LHY correction can be very
different depending on the relevant settings and space dimen-
sionality. It can be cubic, quadratic [48], or a complicated
logarithm form [49]. Here we consider the simple cubic form,
which is obtained by using a local density approximation in
three-dimensional space. An application of our paper to cases

with different LHY correction terms will be interesting but is
beyond the scope of the present paper.

In conclusion, in this paper we have investigated the weak
nonlinear dynamics of (2+1)D matter waves in a disk-shaped
dipolar BEC when quantum fluctuations are taken into ac-
count. By applying the method of multiple scales, we have
derived the DSI equations governing the nonlinear evolution
of matter-wave envelopes. We have shown that the system
supports (2+1)D matter-wave dromions, which are superpo-
sitions of short-wavelength excitation and long-wavelength
mean flow. We have found that the stability of the matter-wave
dromions can be largely enhanced by the quantum fluctuations
described by the LHY correction. We have also found that
such dromions possess many interesting characters for colli-
sion, reflection, and transmission when they interact with each
other and are scattered by obstacles. The results reported here
are beneficial not only for understanding the physical property
of the quantum fluctuations in BECs, but also for finding new
nonlinear localized excitations in systems with long-ranged
interactions experimentally.
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APPENDIX A: DERIVATION OF
THE AMPLITUDE EQUATIONS

In this Appendix, we give the detailed derivation of the
amplitude equations based on the following equation:

i
∂ϕ(�ρ, t1)

∂t1
=

[
−1

2
∇̃2

⊥ +
∫

d �ζ R(�ζ − �ζ ′)|ϕ( �ρ ′)|2 + w2|ϕ|3
]
ϕ, (A1)

where �ρ = (x1, y1), R(�ρ) = gU2D(�ρ ) + w1δ(�ρ ) with w1, w2, and g characterizing the contact interaction, quantum fluctuations,
and the dipole-dipole interaction. Letting ϕ(�ρ, t1) = P(�ρ, t1) exp [−iμt1 + iϕ̃(�ρ, t1)], with μ = u2

0R̂(0) + w2u3
0 and u0 a con-

stant, we obtain

∂P

∂t1
+ ∇P · ∇ϕ̃ + 1

2
∇2ϕ̃ = 0, (A2a)

P
∂ϕ̃

∂t1
− 1

2
∇2P − μP + 1

2
P|∇ϕ̃|2 + w2P4 + P

∫
R(�ρ − �ρ ′)P2( �ρ ′)d2 �ρ ′ = 0. (A2b)

Following the idea of the method of multiple scales [36], we make the asymptotic expansion P = u0 + εa1 + ε2a2 + ε3a3 and
ϕ̃ = εφ1 + ε2φ2 + ε3φ3. Those variables are the functions of θ = βx1 − ωt1, τ = ε2t1, ξ = ε(x1/vg − t1), and η = εy1. Thus
we have ∂

∂x1
= β ∂

∂θ
+ ε 1

vg

∂
∂ξ

, ∂
∂y1

= ε ∂
∂η

, and ∂
∂t1

= −ω ∂
∂θ

− ε ∂
∂ξ

+ ε2 ∂
∂τ

. Substituting the above expansion into Eqs. (A2a) and
(A2b), we obtain

−ω
∂a j

∂θ
+ 1

2
u0β

2 ∂2φ j

∂θ2
= α j, (A3a)

−1

2
β2 ∂2a j

∂θ2
+ 2u2

0

∫
R( �ζ ′)a jd �ζ − ωu0

∂φ j

∂θ
+ 3W2u3

0a j = β j, (A3b)

j = 1, 2, 3, . . .. By eliminating aj , we get the closed equation for φ j :

− 1

4
β4 ∂4φ j

∂θ4
+

(
3

2
W2u3

0β
2 − ω2

)
∂2φ j

∂θ2
+ u2

0β
2
∫

R(�ζ )
∂2φ j

∂θ2
d �ζ = 2u0

∫
R(�ζ )α jd �ζ + 3W2u2

0α j + ω

u0

∂β j

∂θ
− β2

2u0

∂2α j

∂θ2
. (A4)
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The expressions for α j and β j are respectively given by

α1 = 0, β1 = 0, (A5a)

α2 = ∂a1

∂ξ
− β2 ∂a1

∂θ

∂φ1

∂θ
− u0β

vg

∂2φ1

∂θ∂ξ
− 1

2
β2a1

∂2φ1

∂θ2
, (A5b)

β2 = β

vg

∂2a1

∂θ∂ξ
+ u0

∂φ1

∂ξ
+ ωa1

∂φ1

∂θ
− 1

2
u0β

2

(
∂φ1

∂θ

)2

− 2u0

∫
R(�ζ )a1d �ζa1 − 2u2

0

∫
R(�ζ )

(
w1

∂a1

∂ξ
+ w2

∂a1

∂η

)
d �ζ

− u0

∫
R(�ζ )a2

1d �ζ − 6W2u2
0a2

1, (A5c)

α3 = ∂a2

∂ξ
− ∂a1

∂τ
− β

∂a1

∂θ

(
β

∂φ2

∂θ
+ 1

vg

∂φ1

∂ξ

)
− 1

2
β2a2

∂2φ1

∂θ2
− β

∂φ1

∂θ

(
β

∂a2

∂θ
+ 1

vg

∂a1

∂ξ

)
− u0β

vg

∂2φ2

∂θ∂ξ
− 1

2
u0

∂2φ1

∂η2

− u0

2v2
g

∂2φ1

∂ξ 2
− 1

2
a1

(
β2 ∂2φ2

∂θ2
+ 2β

vg

∂2φ1

∂θ∂ξ

)
, (A6a)

β3 = ωa2
∂φ1

∂θ
+ a1

(
ω

∂φ2

∂θ
+ ∂φ1

∂ξ

)
+ u0

(
∂φ2

∂ξ
− ∂φ1

∂τ

)
+ 1

2

∂2a1

∂η2
+ β

vg

∂2a2

∂θ∂ξ
+ 1

2v2
g

∂2a1

∂ξ 2
− 1

2
β2a1

(
∂φ1

∂θ

)2

− u0β
2 ∂φ1

∂θ

∂φ2

∂θ
− u0β

vg

∂φ1

∂θ

∂φ1

∂ξ
− 4W2

(
u0a3

1 + 3u2
0a1a2

) − 2u0

∫
R(�ζ )a1d �ζa2 − 2u0

∫
R(�ζ )a1a2d �ζ

− a1

∫
R(�ζ )

[
2u0

(
w1

∂a1

∂ξ
+ w2

∂a1

∂η
+ a2

)
+ a2

1

]
d �ζ − u2

0

∫
R(�ζ )

[
w2

1
∂2a1

∂ξ 2
+ w2

2
∂2a1

∂η2
+ 2w1w2

∂2a1

∂ξ∂η

+ 2w1
∂a2

∂ξ
+ 2w2

∂a2

∂η

]
d �ζ . (A6b)

1. First-order solution

We now solve Eq. (A4) order by order. At the first-order approximation ( j = 1), we have the equation

−1

4
β4 ∂4φ1

∂θ4
+ b

∂2φ1

∂θ2
+ u2

0β
2
∫

R(�ζ )
∂2φ1

∂θ2
d �ζ = 0, (A7)

where b = 3
2W2u3

0β
2 − ω2. Its solution is of the form

φ1 = A0 + A1eiθ + Ā1e−iθ , (A8)

where A0 and A1 are, respectively, the amplitude (envelope) of the short-wave and that of the long-wave (mean flow) component,
both of which are functions of the slow variables ξ , η, and τ , yet to be determined. The solution of a1 reads

a1 = i
u0β

2

2ω
A1eiθ − i

u0β
2

2ω
Ā1e−iθ ≡ ic1A1eiθ + c.c. (A9)

Here, the linear dispersion relation is given by

ω = ω(β ) ≡ [
1
4β4 + u2

0β
2R̂(β ) + 3

2w2u3
0β

2
]1/2

, (A10)

with R̂(β ) being the Fourier transform of R(�ρ) ≡ gU2D(�ρ) + w1δ(�ρ ).

2. Second-order solution

At the second-order approximation ( j = 2), by substituting the above first-order solution into Eqs. (A5b) and (A5c) we get

α2 = i

(
c1 − βu0

vg

)(
∂A1

∂ξ
eiθ − ∂Ā1

∂ξ
e−iθ

)
+ 3

2
ic1β

2
(
A2

1e2iθ − Ā2
1e−2iθ

)
, (A11a)

β2 =
(

u0 − c1β

vg
− 2c1u2

0

vg

dR̂(β )

dβ

)(
∂A1

∂ξ
eiθ + ∂Ā1

∂ξ
e−iθ

)
+ (

6u2
0W2 + 2u0R̂(β ) + u0R̂(2β )

)
c2

1

(
A2

1e2iθ + Ā2
1e−2iθ

)

− (
12u2

0W2 + 4u0R̂(β ) + 2u0R̂(0)
)
c2

1|A|21 + u0
∂A0

∂ξ

≡ β21

(
∂A1

∂ξ
eiθ + ∂Ā1

∂ξ
e−iθ

)
+ β22

(
A2

1e2iθ + Ā2
1e−2iθ

) + β23|A1|2 + u0
∂A0

∂ξ
(A11b)
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where R̂(β ) is the Fourier transform of R(�ρ). Then the right-hand side of Eq. (A4) reads

L2 = il21
∂A1

∂ξ
eiθ − il21

∂Ā1

∂ξ
e−iθ + il22A2

1e2iθ − il22Ā2
1e−2iθ , (A12)

where l22 = 3c1β
4/u0 + 3u0c1β

2R̂(2β ) + 9
2 u2

0c1β
2W2 + 2ωβ22/u0. The solvability condition needs l21 = 0, and we hence have

vg = 1
2ω

[β3 + 2u0βR̂(β ) + 3u3
0W2β + u2

0β
2 dR̂(β )

dβ
]. Therefore, the solutions of φ2 and a2 are given by

φ2 = − il22
(
A2

1e2iθ − Ā2
1e−2iθ

)
4β4 + 6W2u3

0β
2 + 4u2

0β
2R̂(2β ) − 4ω2

, (A13)

a2 = a20|A1|2 + a21
∂A0

∂ξ
+

[
a22

∂A1

∂ξ
eiθ + a23A2

1e2iθ + c.c.

]
, (A14)

where a20 = β23

2u2
0R̂(0)+3W2u3

0
, a21 = u0

2u2
0R̂(0)+3W2u3

0
, a22 = 1

ω
( u0β

vg
− c1) ≡ u0β

2ω3vg
[u2

0β
2R̂(β ) + 3

2 u2
0W2β

2 − 1
2 u2

0β
3 dR̂(β )

dβ
], m =

− il22

4β4+6W2u3
0β

2+4u2
0β

2R̂(2β )−4ω2 , and a23 = − β2

ω
(u0m + 3

4 c1).

3. Third-order solution

At the third-order approximation ( j = 3), by substituting the above first- and second-order solutions into Eqs. (A6a) and
(A6b) we have

α3 =
(

a21 − u0

2v2
g

)
∂2A0

∂ξ 2
− u0

2

∂2A0

∂η2
+

(
a20 − 1

2
β2a22 − βc1

vg

)
∂|A1|2

∂ξ
+

[
− ic1

∂A1

∂τ
− 1

2
u0

∂2A1

∂η2

+ 1

2
(a20 − 3a23)β2|A1|2A1 +

(
1

2
a21β

2 + c1β

vg

)
A1

∂A0

∂ξ
+

(
a22 − u0

2v2
g

)
∂2A1

∂ξ 2

]
eiθ + (·)e2iθ + c.c., (A15a)

β3 =
[

ic1

2

∂2A1

∂η2
− u0

∂A1

∂τ
+ iH1A1

∂A0

∂ξ
+ iH2

∂2A1

∂ξ 2
+ iH3|A1|2A1

]
eiθ + (·)e2iθ + c.c., (A15b)

where H1 = c1 − 12a21c1u2
0W2 + a21ω − βu0

vg
+ 2c1u0a21[R̂(0) − 2R̂(β )], H2 = c1

2v2
g

+ a22β

vg
+ u2

0c1
d2R̂(β )

dβ2 + u2
0a22

dR̂(β )
dβ

,

H3 = 12W2u0c1(a23u0 − a20u0 − c2
1 ) + (a20 − a23)ω − 3c1β

2

2 + 2c1mω − 2β2mu0 + 4c1u0R̂(β )(a23 − a20) + 2u0c1a23R̂(2β ) +
2c1u0a20R̂(0) + c3

1[2R̂(0) − R̂(2β )]. The right-hand side of Eq. (A4) reads

L3 = [
2u0R̂(0) + 2W2u2

0

][(
a21 − u0

2v2
g

)
∂2A0

∂ξ 2
− u0

2

∂2A0

∂η2
+

(
a20 − 1

2
β2a22 − βc1

vg

)
∂|A1|2

∂ξ

]

+
{
−2iω

∂A1

∂τ
−

(
ω2

β2
+ β2

4

)
∂2A1

∂η2
+

[
2ω2

u0β2

(
a22 − u0

2v2
g

)
− ω

u0
H2

]
∂2A1

∂ξ 2
+

(
ω2

u0
(a20 − 3a23) − ω

u0
H3

)
|A1|2A1

+
[

2ω2

u0β2

(
a21

2
β2 + c1β

vg

)
− ω

u0
H1

]
A1

∂A0

∂ξ

}
eiθ . (A16)

The solvability condition at this order gives the equations for A0 and A1:(
a21 − u0

2v2
g

)
∂2A0

∂ξ 2
− u0

2

∂2A0

∂η2
+

(
a20 − 1

2
β2a22 − βc1

vg

)
∂|A1|2

∂ξ
= 0, (A17a)

−2iω
∂A1

∂τ
−

(
ω2

β2
+ β2

4

)
∂2A1

∂η2
+ K1

∂2A1

∂ξ 2
+ W1|A1|2A1 +

[
2ω2

u0β2

(
a21

2
β2 + c1β

vg

)
− ω

u0
H1

]
A1

∂A0

∂ξ
= 0 (A17b)

where K1 = [ 2ω2

u0β2 (a22 − u0
2v2

g
) − ω

u0
H2] and W1 = ( ω2

u0
(a20 − 3a23) − ω

u0
H3). After simplification, the above equations become

α1
∂2A0

∂ξ 2
− ∂2A0

∂η2
+ α2

∂|A1|2
∂ξ

= 0, (A18a)

i
∂A1

∂τ
+ δ1

∂2A1

∂ξ 2
+ δ2

∂2A1

∂η2
+ δ3|A1|2A1 + δ4A1

∂A0

∂ξ
= 0, (A18b)
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where

α1 = 2a21

u0
− 1

v2
g

≡ 2

2u2
0R̂(0) + 3W2u3

0

− 1

v2
g

, (A19a)

α2 = 2

u0

(
a20 − 1

2
β2a22 − βc1

vg

)
, (A19b)

δ1 = − 1

2ω

[
2ω2

u0β2

(
a22 − u0

2v2
g

)
− ω

u0
H2

]
, (A19c)

δ2 = 1

2ω

(
ω2

β2
+ β2

4

)
, (A19d)

δ3 = − 1

2ω

(
ω2

u0
(a20 − 3a23) − ω

u0
H3

)
, (A19e)

δ4 = − 1

2ω

[
2ω2

u0β2

(
a21

2
β2 + c1β

vg

)
− ω

u0
H1

]
. (A19f)

APPENDIX B: MODULATION INSTABILITY

The plane-wave (i.e., ground state of the BEC) solution of
Eq. (4) for V0 = 0 reads

ϕ(�ρ, t1) = u0e−iμt1 , (B1)

with μ = u2
0[w1 + u0w2 + g

∫∫
U2D(�ζ )d2ζ ] and u0 =

1/(
∫∫

d2ζ )1/2. The MI of this plane-wave solution can
be analyzed by assuming

ϕ̃(�ρ, t1) = [u0 + a1ei�β·�ρ+σ t1 + a∗
2e−i�β·�ζ+σ ∗t1 ]e−iμt1 , (B2)

where a1 and a2 are small complex amplitudes characterizing
the perturbation to the ground state, �β = (β1, β2) is the wave
vector of the perturbation in the x1-y1 plane, and σ is the
growth rate of the perturbation.

Substituting (B2) into Eq. (4) and keeping only linear terms
of a1 and a2, we get the expression of the growth rate:

σ 2 = −β2
[

1
4β2 + 3

2 u3
0w2 + u2

0w1 + gu2
0 U2D(�β )

]
, (B3)

with

U2D(�β ) = 2
√

2π

3
[F‖(�β/

√
2) sin2(α) + F⊥(�β/

√
2) cos2(α)].

(B4)

Here β =
√

β2
1 + β2

2 , F‖(�β )=3
√

πβ2
1 exp(β2)erfc(β )/β − 1,

and F⊥(�β ) = 2 − 3
√

πβ exp(β2)erfc(β ), with erfc the com-
plementary error function. For α = 0, the growth rate σ is
independent of the propagation direction of the perturbation,

FIG. 7. −σ 2 as a function of wave number β when N = 2×105,
for different relative dipolar strengths εdd ≡ add/as = 1.8 (dotted
black line), 1.91 (dashed red line), and 2 (solid blue line), respec-
tively. MI happens first at the critical wave number βcr = 3.5 when
εdd reaches its threshold εcr

dd = 1.91.

while for α �= 0, it relies on the propagation direction and
becomes anisotropic.

Using lz = 45πadd and the relative dipolar strength εdd ≡
add/as, (B3) becomes

σ 2 = − β2

{
1

4
β2 + 2

√
2π

45π
u2

0Nε−1
dd + 1

15π
u2

0NU2D(β1, β2)

+ 64

√
2

5
π−1/4(45π )−5/2ε

−5/2
dd

[
1 + 3

2
ε2

dd

]
u3

0N3/2

}
.

(B5)

Shown in Fig. 7 is −σ 2 as a function of the wave num-
ber β by taking N = 2×105. The dotted black line, dashed
red line, and solid blue line are ones for the relative dipolar
strength εdd ≡ add/as = 1.8, 1.91, and 2, respectively. One
sees that the MI starts to occur at the critical wave number
β = βcr = 3.5, for which the corresponding threshold of the
relative dipolar strength is given by εdd = εcr

dd = 1.91. The
region with blue color in the figure is the one where MI
appears.

Based on such calculations, the phase diagram for the ex-
istence and absence of MI in the N-εdd plane can be obtained,
as shown by Fig. 2(g) of the main text. In the region of
modulational stability, the system supports the existence of
matter-wave dromions, while in the region of modulational
instability, the excitation in the system can undergo a sponta-
neous symmetry breaking and hence a self-organization into
a supersolid crystal will occur [47], which is however a topic
beyond the scope of the present paper.
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