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We study the dynamics of vectorial coupled-mode solitons in one-dimensional photonic crystals with quadratic

and cubic nonlinearities. Starting from Maxwell's equations, the vectorial coupled-mode equations for the envelopes

of two fundamental-frequency optical mode and one low-frequency mode components due to optical recti�cation are

derived by means of the method of multiple scales. A set of coupled soliton solutions of the vectorial coupled-mode

equations is provided. The results show that a modulation of the fundamental-frequency optical modes occurs due to

the optical recti�cation �eld resulting from the quadratic nonlinearity. The optical recti�cation �eld disappears when

the frequency of the fundamental-frequency optical �elds approaches the edge of the photonic bands.
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1. Introduction

In recent years, much attention has been paid

to the study of optical solitons.[1] The reason is

that, in addition to some fundamental interest, by

using them as information carriers, optical solitons

have promising applications in all-optical processing

technology. For instance, optical solitons can be

used to realize stable super-long distance informa-

tion transmission and to design all-optical switches

with good performance.[1�4] There have been many

investigations on optical solitons not only in homo-

geneous optical materials,[5�7] but also in photonic

crystals.[8�10] Photonic crystals are optical materials

arti�cially made with a periodic distribution of di-

electric function. Due to this property the eigenfre-

quency spectrum (dispersion relation) of a photonic

crystal displays band structures. There is a frequency

gap (also called energy gap) between two adjacent

bands. Because of Bragg re
ection, the photons with

frequency in bandgaps are forbidden. However, if

the light intensity is large enough, localized electro-

magnetic modes may form with their frequencies in

the bandgaps resulting from the nonlinear e�ect. Such

localized modes are called photonic bandgap solitons.

The study of photonic bandgap solitons has become

a rapidly developing �eld and many possible practical

applications may be found in the near future. Unlike

the formation mechanism of optical solitons in uni-

form materials, where the production of a soliton is

due to the balance between nonlinearity and the mate-

rial dispersion of the system, the formation of a soliton

in a photonic crystal results from the balance between

the nonlinearity and the geometric dispersion coming

from the periodic distribution of the dielectric func-

tion. Since the geometric dispersion can be arti�cially

controlled, photonic crystals can be designed accord-

ing to practical needs. Thus, the study of photonic

crystals is an interesting and promising research �eld,

both in theory and in application.

There has been a series of researches on opti-

cal solitons in one-dimensional (1D) photonic crys-

tals. But these researches are concentrated mainly

on materials with cubic (�(3)) nonlinearity, and a

scalar approximation and a narrow bandgap assump-

tion have been made.[11] Arraf and Sterke[12] have in-

vestigated the coupling of band-edge modes in the case

of quadratic (�(2)) nonlinearity. Their results are valid

only for the case of small bandgap, and the optical

recti�cation resulting from the quadratic nonlinearity

has been also disregarded. Note that a light �eld is

a vectorial �eld. Di�erent components of the vector
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�eld will couple and interact with each other due to

the nonlinear e�ect. Thus, it is necessary to give a

vectorial description to the light �eld, especially when

the nonlinear e�ect is signi�cant. Although there have

been some investigations in this aspect,[2;5;6;13] the ef-

fort has been made mainly on the optical materials

with a centro-symmetry (i.e. �(2)=0).

In the present work, we study the dynamics of

vectorial coupled-mode solitons in a 1D photonic crys-

tal with quadratic and cubic nonlinearities. We show

that an optical recti�cation �eld resulting from the

quadratic nonlinearity produces a nonlinear modula-

tion for fundamental-frequency optical �elds. And

inversely, the optical recti�cation �eld results in a

change for the fundamental-frequency solitons into dif-

ferent types. The optical recti�cation �eld disappears

when the vibrating frequency of the fundamental-

frequency optical �elds approaches the band-edge of

the photonic crystal.

This paper is organized as follows. Section 2 in-

troduces the vector model and makes an asymptotic

expansion based on a method of multiple scales. The

coupled-mode equations for the optical recti�cation

�eld and the fundamental-frequency �elds are derived

in section 3. In section 4, the optical soliton solutions

for the coupled-mode envelope equations are provided.

The �nal section contains a discussion and summary

of our results.

2.Vector model and asymptotic

expansion

In a non-magnetic dielectric without a source, the

electric �eld intensity E, the electric polarization vec-

tor P and the electric displacement vector D satisfy

the Maxwell equations

r2
E �r(r �E)�

1

c2
@2

@t2

�
E +

P

"0

�
= 0; (1)

r �D = 0; (2)

where c is the light speed in vacuum and "0 is per-

mittivity in vacuum. In a non-resonance case and un-

der the condition of neglecting the intrinsic dispersion,

i.e. materials dispersion, and the dissipation of the di-

electric, the constitutive relation of the system reads

P = "0(�
(1) �E + �(2) : EE + �(3)

...EEE); (3)

where �(i) (i=1, 2, 3) is the (i+1)th-order tensor of

the electric susceptibility, which is a real number un-

der the above dissipation-free assumption.

We consider uniaxial dielectric crystals with 4mm

symmetry. There are many optical materials with

such symmetry, e.g. BaTiO3, SBN, KT, etc.
[6] For

simplicity, we consider the TE wave in a 1D photonic

crystal. In the crystallographic-axis coordinate sys-

tem (oxyz), we take the y-axis as the optical axis and

assume that the dielectric is uniform in the x- and

y-directions. But the susceptibility is a periodic func-

tion in the z-direction with a periodicity d, i.e. one

has �(i)(z) = �(i)(z + d) (i=1,2,3). We take the light

�eld as E = (Ex(z; t), Ey(z; t); 0). Then by using

Eqs.(1){(3) one obtains the vector equations

c2
@2Ex

@z2
� n2x

@2Ex

@t2
�

@2

@t2

� (�
(2)
x1ExEy + �

(3)
x1E

3
x + �

(3)
x2E

2
yEx) = 0; (4)

c2
@2Ey

@z2
� n2y

@2Ey

@t2
�

@2

@t2

� (�
(2)
y1 E

2
x + �

(2)
y2 E

2
y + �

(3)
y1 E

3
y + �

(3)
y2 E

2
xEy) = 0;(5)

where n2j = n2j(z) = 1+�
(1)
jj (z) = n2j(z+d) (j = x; y),

�
(2)
x1 = �

(2)
xyx + �

(2)
xxy, �

(3)
x1 = �

(3)
xxxx, �

(3)
x2 = �

(3)
xxyy +

�
(3)
xyxy+�

(3)
xyyx, �

(2)
y1 = �

(2)
yxx, �

(2)
y2 = �

(2)
yyy, �

(3)
y1 = �

(3)
yyyy,

and �
(3)
y2 = �

(3)
yyxx + �

(3)
yxyx + �

(3)
yxxy. Equations (4) and

(5) imply that the light �eld travels in the direction

perpendicular to the optical axis (i.e. y-axis), its x-

component is also perpendicular to the optical axis,

and its y-component is parallel to the optical axis.

From Eqs.(4) and (5) it is seen that �
(2)
x1 , �

(3)
x2 , �

(3)
y2

describe the mutual interaction between di�erent light

�eld components, �
(2)
y1 describes the interaction be-

tween the x- and y-components. The other terms ap-

pearing in Eqs.(4) and (5) represent self-interactions

of di�erent optical �eld components. We must stress

that the mutual interaction between di�erent compo-

nents will be lost when taking a scalar wave approxi-

mation.

We consider the weak nonlinear excitations of the

system. In this circumstance, one can introduce the

asymptotic expansion for di�erent light �eld compo-

nents as

Ej(z; t) =
X
i=1

�iE
(i)
j = �E

(1)
j + �2E

(2)
j + �3E

(3)
j � � � ;

(6)

where j = x; y and 0 < �� 1. � is a small parameter

denoting the relative amplitude of the �eld intensity,

E
(i)
j = E

(i)
j (z0; z1; z2; � � � ; t0; t1; t2; � � �) with zi = �iz

and ti = �it (i=0, 1, 2,� � �). z0 and t0 are called

fast variables; zi and ti (i=1, 2, � � �) are called slow

variables. Also, for simplicity, we assume that the
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electric susceptibility depends only on the fast vari-

ables, i.e. one has n2(z) = n2(z0), �
(2)(z) = �(2)(z0),

�(3)(z) = �(3)(z0). Substituting Eq.(6) into Eqs.(4)

and (5), one obtains a chain of linear but inhomoge-

neous equations by collecting the same powers of �

c2
@2E

(i)
j

@z20
� n2j (z0)

@2E
(i)
j

@t20
= M

(i)
j

(i = 1; 2; 3; � � � ; j = x; y); (7)

with

M (1)
x = 0; (8)

M (2)
x =� 2c2

@2E
(1)
x

@z0@z1
+ 2n2x(z0)

@2E
(1)
x

@t0@t1

+ �
(2)
x1 (z0)

@2(E
(1)
x E

(1)
y )

@t20
; (9)

M (3)
x =� c2

�
2
@2E

(2)
x

@z0@z1
+
@2E

(1)
x

@z21
+ 2

@2E
(1)
x

@z0@z2

�

+ n2x

�
2
@2E

(2)
x

@t0@t1
+
@2E

(1)
x

@t21
+ 2

@2E
(1)
x

@t0@t2

�

+ �
(2)
x1

�
2
@2

@t20
(E(1)

x E(2)
y + E(1)

y E(2)
x )

+ 2
@2E

(1)
x E

(1)
y

@t0@t1

�
+ �

(3)
x1 (z0)

@2(E
(1)
x )3

@t20

+ �
(3)
x2 (z0)

@2E
(1)
x (E

(1)
y )2

@t20
; (10)

� � � � � �

M (1)
y = 0; (11)

M (2)
y =� 2c2

@2E
(1)
y

@z0@z1
+ 2n2y(z0)

@2E
(1)
y

@t0@t1

+ �
(2)
y1 (z0)

@2(E
(1)
x )2

@t20
+ �

(2)
y2 (z0)

@2(E
(1)
y )2

@t20
;

(12)

M (3)
y =� c2

�
2
@2E

(2)
y

@z0@z1
+
@2E

(1)
y

@z21
+ 2

@2E
(1)
y

@z0@z2

�

+ n2y

�
2
@2E

(2)
y

@t0@t1
+
@2E

(1)
y

@t21
+ 2

@2E
(1)
y

@t0@t2

�

+ �
(2)
y1

�
2
@2E

(1)
x E

(2)
x

@t20
+ 2

@2(E
(1)
x )2

@t0@t1

�

+ �
(2)
y2

�
2
@2E

(1)
y E

(2)
y

@t20
+ 2

@2(E
(1)
y )2

@t0@t1

�

+ �
(3)
y1 (z0)

@2(E
(1)
y )3

@t20
+ �

(3)
y2 (z0)

@2E
(1)
y (E

(1)
x )2

@t20
;

(13)

� � � � � �

The expressions of higher-order M
(i)
x and M

(i)
y are

omitted here.

3.Vectorial coupled-mode equa-

tions

Now we solve Eq.(7) with Eqs.(8){(13) order by

order. At leading order (i=1) it is a homogeneous

equation since M
(1)
x = 0, M

(1)
y = 0. The solution

can be taken as a linear superposition of many eigen-

modes �jmjk(z0)exp(�i!jt0), where �jmjk(z0) satis-

�es the equation

c2
d2�jmjk

dz20
+ !2

jn
2
j (z0)�jmjk = 0: (14)

Because n
(2)
j (z0) is a periodic function, the eigenmode

solution of Eq.(14) is the Bloch function �jmjk(z0) =

exp(ikz0)ujmjk(z0), where ujmjk(z0) = ujmjk(z0+d).

The eigenvalue !j = !jmj
(k) has a band structure

with mj being the band index and k being a reduced

wave vector. As j=x and y, the dispersion relation dis-

plays two branches, i.e. !x and !y, called the x and

y branches, respectively � The appearance of two

branches of dispersion relation comes from the vec-

tor property of the model considered. Obviously, each

branch of the dispersion relation has a band struc-

ture. Generally speaking, the band structure for each

di�erent branch is di�erent from each other in non-

centro-symmetric dielectric crystals. The function set

of f�jmjk(z0)g is complete, orthogonal and normal-

ized, i.e.

LZ
0

n2j (z0)�
�
jm0

j
k0(z0)�jmjk(z0)dz0

=N

dZ
0

n2j (z0)�
�
jm0

j
k0(z0)�jmjk(z0)dz0

=NÆm0

j
;mj

Æk0;k; (15)

where L is the length of the system and N = L=d is

an integer.

We assume that, at the leading-order approxima-

tion, the excitation of the light �eld takes the form

E(1)
x = E

(1)
1 �x1(z0)exp(�i!x1t0) + c:c:; (16)

E(1)
y = E

(1)
2 �y1(z0)exp(�i!y1t0) + c:c:; (17)

where E
(1)
i = E

(1)
i (z1; z2; � � � ; t1; t2; � � �) (i=1,2) are

two undetermined functions denoting the complex en-

velopes (also called amplitudes) of the excitation, and
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c.c. represents the corresponding complex conjugate

term. �x1 (z0) (�y1(z0)) is the eigenfunction corre-

sponding to the eigenvalue !x1 (!y1), which can be

chosen arbitrarily in this order. We assume !x1 6= !y1

in the following discussion. Note that a mean 
ow

(also called a dc �eld) is also a possible solution, cor-

responding to an excitation with a long wavelength.

We do not take into account this kind of mean 
ow in

the present work.

Using the leading-order solution given by Eqs.(16)

and (17), one obtains the expressions of M
(2)
x and

M
(2)
y (see Eqs.(9) and (12)). Using the two solvability

conditions of Eq.(7) (i.e. the conditions of eliminating

secular terms for the solution of E
(2)
j ), we obtain

vgx
@E

(1)
1

@z1
+
@E

(1)
1

@t1
= 0; (18)

vgy
@E

(1)
2

@z1
+
@E

(1)
2

@t1
= 0; (19)

where �̂ = �ic@=@z0, and vgj = (d!j=dk)jj=j1 =

chj1j�̂jj1i=!j1 is the group velocity of the wave pack-

ets (16) and (17). The matrix element hjij�̂jjli is

de�ned as

hjij�̂jjli = �

dZ
0

ic��ji(z0)(@�jl(z0)=@z0)dz0:

The second-order approximation solution is found

to be

E(2)
x =

�X
l

E
(2)
1l �xl(z0)exp(�i!x1t0) + c:c:

�
+ � � � ;

(20)

E(2)
y =E

(2)
0 +

��X
l

E
(2)
2l �yl(z0)

� exp(�i!y1t0) + c:c:

�
+ � � �

�
; (21)

where E
(2)
0 = E

(2)
0 (z1; z2; � � � ; t1; t2; � � �) is an optical

recti�cation �eld originating from the self-interaction

of the fundamental-frequency light �elds E
(1)
i (i=1,2).

E
(2)
il = E

(2)
il (z1; z2; � � � ; t1; t2; � � �) results from the

non-uniform of the dielectric function of the system.

In Eqs.(20) and (21) there exist double-, sum- and

di�erence-frequency components, which are not given

explicitly here. We do not consider the three-wave

resonance process in the present work.

Using the results of the �rst-order and second-

order solutions given above, one can calculate M
(3)
x

andM
(3)
y . When considering the solution at the third-

order approximation (i=3), the solvability conditions

of Eq.(7) give rise to the equations for E
(1)
i (i=1,2) as

follows

�11

2

@2E
(1)
1

@z21
�

1

2!x1

@2E
(1)
1

@t21
+ i

�
vgx

@E
(1)
1

@z2
+
@E

(1)
1

@t2

�

+ [�12E
(2)
0 + �13jE

(1)
1 j2 + �14jE

(1)
2 j2]E

(1)
1 = 0;

(22)

�21

2

@2E
(1)
2

@z21
�

1

2!y1

@2E
(1)
2

@t21
+ i

�
vgy

@E
(1)
2

@z2
+
@E

(1)
2

@t2

�

+ [�22E
(2)
0 + �23jE

(1)
2 j2 + �24jE

(1)
1 j2]E

(1)
2 = 0;

(23)

where

�11 =
c2hx1jx1i

!x1
+

4c2

!x1

X
l 6=1

jhx1j�̂jxlij2

!2
x1 � !2

xl

;

�21 =
c2hy1jy1i

!y1
+

4c2

!y1

X
l 6=1

jhy1j�̂jylij2

!2
y1 � !2

yl

;

�12 =
!x1
2
C

(2)
x1;x1;x1;

�13 =!x1

�X
l

2!2
x1C

(2)
y1;yl;x1x1C

(2)
x1;x1x1;yl

!2
yl � 4!2

x1

+
3

2
C

(3)
x1;x1x1;x1x1

�
;

�22 =!y1C
(2)
y2;y1;y1;

�23 =!y1

�X
l

4!2
y1jC

(2)
y2;y1y1;ylj

2

!2
yl � 4!2

y1

+
3

2
C

(3)
y1;y1y1;y1y1

�
;

�14 =
!x1
2

�X
l

(!y1 + !x1)
2jC

(2)
x1;xl;x1y1j

2

!2
xl � (!y1 + !x1)2

+
X
l

(!y1 � !x1)
2jC

(2)
x1;xlx1;y1j

2

!2
xl � (!y1 � !x1)2

+ 2C
(3)
x2;x1y1;x1y1

�
;

�24 =!y1

�X
l

2(!x1 + !y1)
2C

(2)
y1;y1x1;xlC

(2)
x1;xl;x1y1

!2
xl � (!x1 + !y1)2

+
X
l

(!y1 � !x1)
2C

(2)
y1;y1;xlx1C

(2)
x1;xlx1;y1

!2
xl � (!y1 � !x1)2

+ C
(3)
y2;y1x1;y1x1

�
;
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hx1jx1i =

dZ
0

��x1(z0)�x1(z0)dz0;

C
(2)
x1;x1;x1 =

dZ
0

�
(2)
x1 (z0)�

�
x1(z0)�x1(z0)dz0;

C
(2)
y2;y1;y1 =

dZ
0

�
(2)
y2 (z0)�

�
y1(z0)�y1(z0)dz0;

C
(3)
x1;x1x1;x1x1 =

dZ
0

�
(3)
x1 �

�
x1�

�
x1�x1�x1dz0;

C
(2)
y1;yl;x1x1 =

dZ
0

�
(2)
y1 (z0)�

�
yl(z0)�

2
x1(z0)dz0;

C
(3)
y1;y1y1;y1y1 =

dZ
0

�
(3)
y1 �

�
y1�

�
y1�y1�y1dz0:

From Eqs.(22) and (23) we �nd that there is a nonlin-

ear coupling among the optical recti�cation �eld E
(2)
0

and two fundamental-frequency �elds E
(1)
1 and E

(1)
2 .

In order to gain a set of closed equations for E
(2)
0 ,

E
(1)
1 and E

(1)
2 , we still need another equation. This

equation can be obtained from Eq.(7) at the fourth

order (i=4). One obtains

v2py
@2E

(2)
0

@z21
�
@2E

(2)
0

@t21

� 2

�
C

(2)
y1;x1;x1

n2yd

@2jE
(1)
1 j2

@t21

+
C

(2)
y2;y1;y1

n2yd

@2jE
(1)
2 j2

@t21

�
= 0; (24)

where vpy = c=ny, n
2
y =

dZ
0

n2y(z0)dz0=d. Obviously,

vpy is the phase velocity of the low-frequency op-

tical recti�cation �eld. From Eq.(24) we see that

the low-frequency optical recti�cation �eld E
(2)
0 is

due to the contribution of the self-interaction of two

fundamental-frequency optical �elds E
(1)
1 and E

(1)
2 .

And inversely, the optical recti�cation �eld E
(2)
0 gives

a nonlinear modulation to two fundamental-frequency

optical �elds E
(1)
1 and E

(1)
2 (see Eqs.(22) and (23)).

4.Vector soliton solutions

Equations (22){(24) are a set of coupled-mode

equations determining the nonlinear evolution of E
(2)
0 ,

E
(1)
1 and E

(1)
2 . Note that the solutions of the coupled-

mode equations must ful�l Eqs.(18) and(19). From

Eqs.(18) and (19) we see that, since E
(1)
1 and E

(1)
2

have been selected from di�erent branches, princi-

pally one can choose !x1 and !y1 so that the two

modes have nearly equal group velocity. In this sit-

uation two fundamental-frequency optical �elds have

small walk-o� e�ect and hence the interaction will be

strong. For example, one can choose two band-edge

modes which have the same group velocity, i.e. zero.

If this group-velocity matching condition can be sat-

is�ed, one has vgx � vgy = vg and thus we can assume

that E
(1)
i = E

(1)
i (�; z2; t2) (i=1, 2) with � = z1� vgt1.

Then Eqs.(18) and (19) are satis�ed automatically. By

using Eq.(24) we obtain

E
(2)
0 =

2v2g(C
(2)
y1;x1;x1jE

(1)
1 j2 + C

(2)
y2;y1;y1jE

(1)
2 j2)

(v2py � v2g)n
2
yd

: (25)

From this result we see that the optical recti�ca-

tion �eld disappears if the group velocity vg vanishes.

Consequently, when the vibrating frequency of the

fundamental-frequency optical �elds approaches the

edge of the bands (typically when k = 0 or k = �=d),

the optical recti�cation �eld goes to zero.

By taking Ei = �E
(1)
i (i=1, 2), �2�2 = z2 � vgt2

and noting that � = ��, � = z�vgt and t2 = �2t, when

returning to the original variables z and t, Eqs.(22)

and (23) become

i
@E1

@t
+
!00x1
2

@2E1

2�2
+b11jE2j

2E1+b12jE1j
2E1 = 0; (26)

i
@E2

@t
+
!00y1
2

@2E2

2�2
+b21jE1j

2E2+b22jE2j
2E2 = 0; (27)

where

b11 =
!x1v

2
gC

(2)
x1;x1;x1C

(2)
y2;y1;y1

(v2py � v2g)n
2
yd

+ �14;

b21 =
2!y1v

2
gC

(2)
y2;y1;y1C

(2)
y1;x1;x1

(v2py � v2g)n
2
yd

+ �24; (28)

b12 =
!x1v

2
gC

(2)
x1;x1;x1C

(2)
y1;x1;x1

(v2py � v2g)n
2
yd

+ �13;

b22 =
2!y1v

2
gC

(2)
y2;y1;y1C

(2)
y2;y1;y1

(v2py � v2g)n
2
yd

+ �23; (29)

!00j1 =
d2!j
dk2

����
j=j1

=
c2hj1jj1i

!j1
+

4c2

!j1

�
X
l 6=1

jhj1j�̂jjlij2

!2
j1 � !2

jl

�
(vgj)

2

!j1
; (30)
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with j=x and y, where !00j1 is the group-velocity dis-

persion of the fundamental-frequency optical �elds.

Note that in our system the materials dispersion is

not taken into account. The contribution to disper-

sion only comes from the periodic distribution of the

linear dielectric function ("(z) = "0n
2(z)), i.e. the

geometric dispersion. In addition, it is noted that,

from expressions (28) and (29), when the group ve-

locity of the fundamental-frequency optical �elds vg

approaches the phase velocity of the optical recti�-

cation �eld vpy, bi1 and bi2 (i=1, 2) tend to in�nity

and hence Eqs.(26) and (27) lose their validity for a

reasonable description for the nonlinear dynamics of

the system. This interesting phenomenon corresponds

to a resonance between a long wave and a short wave,

requiring a detailed discussion not given in this paper.

From Eqs.(26) and (27) it is seen that, due to the

group-velocity matching, two fundamental-frequency

optical �elds E1 and E2 possess stronger coupling. In

addition to a self-phase modulation represented by the

term jEij
2Ei, there is also a cross-phase modulation

denoted by the term jEij
2E3�i (i=1, 2). The existence

of the cross-phase modulation will bring a signi�cant

change in the type and property of coupled solitons.

Depending on the value of the coeÆcients, Eqs.(26)

and (27) are completely integrable in some particular

cases, i.e. they can be solved exactly by the inverse

scattering method. In general, they are not integrable

and the types of the solutions depend on bil and !00j1.

Equations (26) and (27) are similar to the

coupled-mode equations obtained in Ref.[14] where a

scalar model is employed. Some exact coupled soli-

ton solutions have been given in Ref.[14] and obvi-

ously these solutions are also valid in our present case.

The types of solutions include bright{bright, dark{

dark and bright{dark coupled solitons, depending on

particular cases by taking di�erent values of the co-

eÆcients appearing in the equations. It is not nec-

essary to repeat these solutions here. But we should

note that, although their mathematical forms are sim-

ilar, the physical meanings are di�erent. In Ref.[14] a

scalar model is considered and hence only one branch

of dispersion relation is possible. The coupling dis-

cussed there is of two solitons excited in the same elec-

tric �eld component but from di�erent bands. In the

present work, a vector model is taken into account.

The system displays two branches of dispersion rela-

tion and the soliton coupling discussed here is of two

solitons excited in di�erent electric �eld components

and from di�erent bands.

It is easy to show that Eqs.(26) and (27) allow a

coupled grey{bright soliton solution. Under the con-

ditions !00y1 6= 0 and b11b21 > b12b22, !
00
x1b22 > !00y1b11,

!00x1b21 > !00y1b12 (or inverse), one has

E1 =W1[tanh[K0� � !00x1K0(K0�+K1)t] + i�]

� exp(i(K1� � 
1t)); (31)

E2 =W2sech [K0� � !00x1K0(K0�+K1)t]

� exp(i(K2� � 
2t)); (32)

where K0, K1 and � are arbitrary constants, and

K2 = !00x1(K0�+K1)=!
00
y1; (33)

jW1j
2 = K2

0 (!
00
x1b22 � !00y1b11)=(b11b21 � b12b22); (34)


1 = (K2
1!

00
x1=2)� (1 + �2)b12jW1j

2; (35)

jW2j
2 = K2

0 (!
00
x1b21 � !00y1b12)=(b11b21 � b12b22); (36)


2 = ((K2
2+K

2
0 )!

00
y1=2)�b22jW2j

2��2b21jW1j
2: (37)

Noting that tanhu + i� = [(1 + �2) � sech 2u]1=2

exp(i'(u)) with '(u) = arc tan(�= tanhu); and when

taking �j1(z) = j�j1(z)jexp(i'j(z)) (j = x; y) and

Wl = jWljexp(i�l) (l=1,2), in the leading-order ap-

proximation we obtain the expression of the optical

�eld as follows

Ex =2jW1k�x1(z)j[(1 + �2)

� sech 2[K0z �K0(vg + !00x1K0�+ !00x1K1)t]]
1=2

� cos[K1z � (!x1 + vgK1 + 
1)t

+ '(z; t) + 'x(z) + �1]; (38)

Ey =2jW2k�y1(z)jsech [K0z �K0(vg

+ !00x1K0�+ !00x1K1)t]

� cos[K2z � (!y1 + vgK2 + 
2)t

+ 'y(z) + �2]: (39)

For band-edge modes one has K1 = vg = � = 0,

and the condition of group-velocity matching can be

satis�ed. In this situation Eqs.(38) and (39) repre-

sent two coupled non-propagating optical solitons. If

vg+!
00
x1K0�+!

00
x1K1 = 0 can be ful�lled, Eqs.(38) and

(39) describe also two coupled non-propagating opti-

cal solitons. According to the symmetry of Eqs.(26)

and (27), one can also obtain bright{grey soliton so-

lutions under appropriate conditions, which are not

discussed here.
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5.Summary and discussion

From expressions (38) and (39) we can see that,

for the grey{bright soliton pair, the phases of the two

light �eld components are complicated functions of

time and space. The vibrating frequencies of Ex and

Ey are determined by

!x =!x1 +K1vg +
!00x1K

2
1

2
� (1 + �2)b12jW1j

2

+
�K0[vg + !00x1(K1 +K0�)]sech

2u

�2 + tanh2 u
; (40)

!y =!y1 +K2vg +
!00y1
2

(K2
2 +K2

0 )

� b22jW2j
2 � �2b21jW1j

2; (41)

respectively, where u = K0z�K0[vg+!
00
x1(K1+K0�)]t.

For photonic crystals, eigenfrequency displays a band

structure, and we are interested in their band-edge

modes. For such modes, one has vg = 0. In this case,

if K0, K1 and � are chosen appropriately, the vibrat-

ing frequency of the optical solitons may be located in

the frequency bands or in gaps. From expression (40)

we know that !x may be di�erent for di�erent time

and space coordinates.

In summary, in this paper we have studied the

dynamics of vectorial coupled-mode solitons in 1D

photonic crystals with quadratic and cubic nonlinear-

ities. For a weak nonlinear e�ect, we have presented

an asymptotic expansion for the nonlinear Maxwell

equations and derived nonlinear coupled-mode equa-

tions for the envelopes of fundamental-frequency �elds

and the optical recti�cation �eld by using the method

of multiple scales. Due to the quadratic nonlinearity

of the system, the self-interaction of the fundamental-

frequency �elds result in the appearance of the optical

recti�cation �eld, and the produced optical recti�ca-

tion �eld contributes inversely a modulation to the

fundamental-frequency �elds. We have provided some

coupled soliton solutions for the vectorial coupled-

mode equations. The results show that, although the

form of the envelope equations obtained in the case of

vectorial coupled-mode excitations considered is the

same as that obtained in the case of scalar coupled-

mode excitations discussed in Ref.[14], the physics in

the two models are di�erent. The former (i.e. the vec-

torial coupling case discussed in the present work) has

considered the vectorial property of the optical �eld

and thus the system displays two dispersion relations,

and the soliton coupling corresponds to the interac-

tion between two eigenmodes chosen from di�erent

dispersion branches. The coupling appearing in the

vectorial description comes from the self-interaction

and the mutual interaction between di�erent vector

components. The latter (i.e. the scalar coupling case

discussed in Ref.[14]) disregarded the vectorial prop-

erty of optical �eld, and hence only one dispersion

relation is obtained for the system, and the soliton

coupling is between two eigenmodes of the same dis-

persion branch. The coupling appearing in the scalar

description results from the interaction between the

modes in the same electric �eld component. The

condition for a stronger coupling between two di�er-

ent modes requires group-velocity matching. As the

band structure of the dispersion relation appears in

the photonic crystals, the group-velocity matching can

be satis�ed easily if one chooses band-edge modes, all

of which have equal group velocity, i.e. zero. Our

results also show that the optical recti�cation �eld

disappears when the frequency of the fundamental-

frequency �elds approaches the band-edge of photonic

crystals.

|||||||||||||||||||||||||||
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