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We address the propagation of light in a parity-time (PT )
symmetric quasi-periodic optical lattice. We show that the
PT -symmetry breaking threshold of the system depends
on the relative strength of two simple lattices forming
quasi-periodic structure. The increase of the imaginary part
of such structure leads to a dynamical phase transition from
delocalization to re-localization for all eigenmodes. The
nontrivial interplay between PT -symmetry breaking and
the delocalization-localization transition in the system
opens new prospects for the manipulation of dynamical
evolution of light beams. © 2015 Optical Society of America

OCIS codes: (260.2710) Inhomogeneous optical media; (050.1940)

Diffraction.

http://dx.doi.org/10.1364/OL.40.002758

Propagating beams exhibit fundamentally different dynamics
for one-dimensional (1D) periodic and disordered media. In
the former case, the eigenstates of the beams are delocalized
Bloch modes, hence delocalized input beams that excite the
whole spectrum of the eigenmodes gradually spread out upon
evolution due to the dephasing of such modes. The opposite
situation is observed in disordered systems, where all eigenm-
odes are localized, so that initial excitation causes beating be-
tween multiple localized modes within a finite spatial domain.
This phenomenon is known as Anderson localization [1]. In a
1D disordered system, the modification of system parameters
leads to only a change of the degree of localization, i.e., no
dynamical phase transition from localization to delocalization
occurs.

The situation changes drastically if there is a modulation of
system parameters characterized by two different periods, with
the ratio of the two periods evolving between a periodic system
(when the ratio is a rational number) and a quasi-periodic one
(when the ratio is irrational number). In this case, a localiza-
tion-delocalization transition (LDT) can occur in a 1D system.

This phenomenon was first described on the basis of the
Harper [2] or Aubry and Andre [3] semi-discrete model (below
referred to as H-AA model), where a long-periodic potential
was added to the tight-binding approximation describing a
quantum particle in a short-periodic potential. In the H-AA
model, a LDT was shown to occur for some specific values
of the large period.
Since LDT is a ubiquitous wave phenomenon that can be

encountered in various areas of physics, it has attracted a con-
siderable attention during last several years (see e.g., [4–8] and
references therein). In particular, a number of rigorous math-
ematical results [9] as well as experimental validation [10] were
presented.
Although quasi-periodic structures exhibit no disorder, they

allow observation of LDT, thereby realizing an intermediate
situation between ordered and disordered systems. Being essen-
tially deterministic, quasi-periodic structures are promising for
various applications, such as controllable steering and diffrac-
tion engineering of light beams. From this viewpoint, they are
desirable for the management of system properties in situ.
Notice that, in contrast to conservative systems whose

parameters are usually fixed by fabrication process, dissipative
systems allow relatively simple dynamical control of their gain
and loss by using external pump fields. If only gain is present in
such a system, the amplitude of the wavepacket will unavoid-
ably grow upon its evolution. However, the spectrum of
eigenmodes may remain purely real for a very specific class of
dissipative system, where inhomogeneous gain and loss are
properly balanced to ensure that complex refractive index sat-
isfies the condition n�x� � n��−x�, known as the parity-time
(PT ) symmetry [11]. Such systems were already realized exper-
imentally in optics [12]. PT -symmetric systems may exhibit
entirely real spectrum even though the underlying potential
is complex (typically this occurs if the imaginary part of poten-
tial is below certain threshold value). This situation is referred
to as unbroken PT -symmetry [13]. In the state with broken
PT -symmetry, usually achieved when imaginary part of poten-
tial becomes high enough, the spectrum becomes complex. The
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point between broken and unbroken phases represents an ex-
ceptional point.

A PT -symmetric photonic quasi-periodic lattice allows one
to investigate the interplay between PT -symmetry breaking
and LDT transition. Our goal in this Letter is to show that in
a complex quasi-periodic potential, the PT -symmetry breaking
point is affected by the ratio of amplitudes of two periodic lat-
tices forming quasi-periodic structure, and that the imaginary
part of the potential strongly affects localization of eigenmodes
and can cause their delocalization or re-localization.

To be specific we address the Schrödinger equation

i
∂q
∂ξ

� 1

2

∂2q
∂η2

� U �η�q � 0; (1)

for the dimensionless field amplitude q, where ξ is the propa-
gation distance, and η is the transverse coordinate. Equation (1)
describes propagation of a beam in the external complex
potential

U �η� � U 0fcos�s1η� − iw sin�s1η� � ϵ�cos�s2η�
− iw sin�s2η��g; (2)

where U 0 characterizes the potential depth, s1 and s2 are spatial
frequencies of two PT -symmetric sub-lattices creating the
quasi-periodic structure, ϵ is the relative amplitude of the sec-
ond sub-lattice, and w is the relative depth of the imaginary part
in each sub-lattice, which is selected to be identical for both
sub-lattices. In what follows, we consider s1 ≥ s2 and set
U 0 � 1. In order to observe LDT phenomenon, one should
operate with incommensurate frequencies. Therefore, below we
select s1 �

ffiffiffi
5

p � 1 and s2 � 2 and vary the remaining free
parameters in the system, i.e., the depth of the imaginary part
w and relative lattice strength ϵ. One should mention that the
case w � 0 corresponds to conservative quasi-periodic lattice,
the case of ϵ � 0 corresponds to a simple PT -symmetric lattice
[14], and in the limit s2 ≪ s1 and ϵ ≫ 1 and in the tight-
binding approximation, the model can be reduced to the
discrete PT -symmetric H-AA model studied in [15,16].

Turning to possible experimental implementation of the
model, we notice that the effects reported below are purely
linear, and hence it is possible to use passive waveguiding con-
figurations, such as those implemented in [17], or active wave-
guides with proper arrangement of domains with gain and
losses [12]. Alternatively, one can exploit a PT -symmetric re-
fractive index profile imprinted in a cold gas of two atomic iso-
topes with a Λ-type energy-level configuration loaded in an
atomic cell [18]. In this last case, the dielectric susceptibility
of the cold atomic gas is determined by two external control
fields that allow to fine-tune all the parameters of the imprinted
lattices, including their periods.

In order to characterize the LDT of the system quantita-
tively, we introduce the integral form-factor χ �R jqj4dη∕�R jqj2dη�2 which is inversely proportional to the
width of the eigenmode. Therefore, spatially localized (delocal-
ized) distribution is characterized by a large (small) value
of χ. For excitations in the form of a single eigenmode
q�η; ξ� � A�η� exp�iλξ�, where A is the complex mode profile,
and λ is the propagation constant, the form-factor χ remains
constant, but it is ξ-dependent for a wavepacket consisting
of several eigenmodes.

Propagation constants λ of the eigenmodes are determined
by solving the stationary Schrödinger eigenvalue problem
�H 1 � ϵH 2�q � λq with Hj � ��1∕2�d 2∕dη2 � Uj�η�� and
Uj�η� � cos�sjη� − iw sin�sjη�. For each operator Hj, the ex-
ceptional point is wPT � 1 [14], but, importantly, this is not
the case for their sum. This follows from the fact that at w �
wPT generally speaking, H 1 and H 2 are not reducible to a
Jordan form simultaneously at arbitrary nonzero ϵ. In other
words, in the case of quasi-periodic lattice, the exceptional
point at ϵ > 0 differs from wPT , and one may expect the pos-
sibility of the PT -symmetry breaking already at w < wPT .
Among all eigenmodes of the quasi-periodic lattice (2) below

we follow mainly the eigenmodes with maximal real or maximal
imaginary parts of the propagation constant λ, since the former
mode is usually the most localized one, while the latter mode
experiences fastest growth upon evolution if the PT -symmetry
is broken, and thus determines the PT -symmetry breaking.
In Figs. 1(a) and 1(c) we show the evolution of the field

modulus distributions jqj of these two modes as functions
of η and ϵ for a relatively small imaginary part of the lattice
(w � 0.5). Like in a conservative system, the increase of ϵ re-
sults in a transition from delocalized to localized eigenmodes
around ϵ � 0.62. Since we use large, but finite integration win-
dow that contains more than 100 periods for each of the
sub-lattices, the LDT is slightly smoothed. Upon calculation
of these dependencies, we dropped out edge modes that
may arise at the edge of integration window due to lattice
truncation and considered only modes residing in the bulk
of the lattice.

Fig. 1. Field modulus distribution jqj as a function of η and ϵ [panel
(a)] and integral form-factor χmax Re (i.e., χ for the mode whose eigen-
value has maximal real part) as a function of ϵ [panel (b)] for w � 0.5.
Panels (c) and (d) show the same dependencies, but for the mode jqj
corresponding to the eigenvalue with maximal imaginary part. Vertical
dashed lines indicate approximate localization and symmetry breaking
threshold.
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Above the transition point, the integral form-factors χmax Re

and χmax Im (they denote χ for the modes with maximal real and
imaginary parts of the eigenvalue) grow rapidly with increase
of ϵ, but eventually they saturate for large values of ϵ when
the width of the mode becomes comparable with periods of
the sub-lattices [Fig. 1(b) and 1(d)]. The spectrum of the sys-
tem becomes complex, i.e., PT -symmetry breaking occurs
(recall that here w � 0.5 < wPT ), practically at the same value
of ϵ at which LDT occurs for the mode with maximal real part
of λ [Fig. 1(c)]. It is at this ϵ value, the mode with maximal
imaginary part of the eigenvalue becomes spatially localized too
[cf. vertical dashed lines in Figs. 1(b) and 1(d)]. Figure 1 illus-
trates an important conjecture that symmetry breaking in this
system can be achieved even at w � 0.5, i.e., below the sym-
metry breaking point wPT � 1 for strictly periodic potentials.

The second important result of this Letter is that the imagi-
nary part of the lattice also affects LDT. In Fig. 2, we plot the
evolution of mode shape jqj [panels (a) and (c)] and integral
form-factor χ [panels (b) and (d)] upon increase of the imagi-
nary part of quasi-periodic lattice w for fixed relative amplitude
ϵ � 1.4 that corresponds to fully localized eigenmodes in the
conservative limit. Now the PT -symmetry breaking threshold
is w � 0. Increasing imaginary part of the lattice leads to simul-
taneous delocalization of all modes, both with maximal real and
maximal imaginary parts of eigenvalues. Relatively sharp LDT
occurs around w � 0.9, when all modes of the system become
delocalized nearly simultaneously. However, further increase of
the gain/loss coefficient results in the unexpected restoration
of localization even for growing modes. The localization is
restored first for modes with maximal real part of the eigenvalue

and a bit later for modes with maximal imaginary part of the
eigenvalue. This dependence of the localization degree on w
suggests that delocalization is induced by the symmetry break-
ing point at wPT , i.e., the LDT transition for the entire com-
plex quasi-periodic lattice seems to be directly connected with
the symmetry breaking point for each individual lattice. The
width of delocalization domain strongly depends on ϵ and de-
creases when ϵ grows. Also, for ϵ < 0.6, when all eigenmodes
are delocalized at w � 0, one can observe only one transition
from delocalized to localized states with increase of w from
zero value.
In Fig. 3, we show the form-factors [panels (a) and (c)] and

the imaginary parts of the eigenvalues [panels (b) and (d)] of
modes having maximal real and imaginary parts of the eigen-
value on the �ϵ; w� plane. From Figs. 3(a) and 3(c), we see that
at w < wPT � 1, the above mentioned modes remain delocal-
ized for ϵ < ϵloc, where ϵloc is the localization threshold in the
conservative quasi-periodic lattice. The spectrum remains
purely real in this domain as it follows from Fig. 3(d).
Above ϵloc, the spectrum simultaneously becomes complex
and localization occurs [cf. the position of the left domain with
nonzero λmax Im in Fig. 3(d) indicating on the existence of
growing modes with position of left domains in Figs. 3(a)
and 3(c), showing form-factors of the eigenmodes]. At
w < wPT , the domains where form-factors are high (modes
are localized) coincide for most localized mode (the mode with
maximal real part of the eigenvalue) and for mode that expe-
riences fastest growth (the mode with maximal imaginary part
of the eigenvalue). The LDT point shifts toward larger w values
with increase of ϵ in the region where ϵ > 0.6. For w > wPT ,
the increase of the imaginary part of the lattice results in tran-
sition from delocalization to localization irrespectively of the

Fig. 2. Field modulus distribution jqj as a function of η and w
[panel (a)] and integral form-factor χmax Re of the mode as a function
of w [panel (b)] for ϵ � 1.4. Panels (c) and (d) show the same depend-
encies, but for the mode jqj corresponding to the eigenvalue with
maximal imaginary part. Vertical dashed lines indicate approximate
localization/delocalization thresholds.

Fig. 3. Integral form-factor (a) and imaginary part of the eigenvalue
(b) for the mode corresponding to eigenvalue with maximal real part
on the �ϵ; w� plane. Panels (c) and (d) show the same dependencies,
but for the mode corresponding to the eigenvalue with maximal imagi-
nary part. Im λmax Re and Im λmax Im are plotted in the logarithmic
scale. Vertical and horizontal dashed lines denote PT breaking point
for the periodic lattice wcr ≈ 1 and localization threshold for the real
lattice ϵloc ≈ 0.6, respectively.
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value of ϵ. This actually means that imaginary part of potential
can cause localization even below localization threshold ϵ �
ϵloc in the conservative case. The threshold value of ϵ required
for localization in this regime monotonically decreases with in-
crease of w [see Figs. 3(a) and 3(c)]. Finally, for mode with
maximal real part of the eigenvalue, the symmetry breaking oc-
curs nearly in the same point where increasing w (i.e., the gain
and loss of the system) results in re-localization of this mode [cf.
the edges of right bright domains in Figs. 3(a) and 3(b)].
However, for the mode with maximal imaginary part of the
eigenvalue, re-localization and symmetry breaking points dras-
tically differ. Symmetry breaking for this mode (that indicates
also on global symmetry breaking in the system) takes place
exactly at w � wPT [Fig. 3(d)]. However, this mode becomes
spatially localized at substantially larger w value [see the border
of right domain in Fig. 3(c)].

In Fig. 4, we show the examples of beam propagation ob-
tained by direct simulations using Eq. (1). Below localization
threshold in conservative lattice ϵ < ϵloc, one observes usual
diffraction without any growth of the energy flow P �R jqj2dη at w < wPT � 1 [Fig. 4(a)]. When w increases above
the symmetry breaking threshold wPT but does not reach yet
LDT point, one also observes the expansion of the pattern,
although with a smaller rate [Fig. 4(b)]. Above the localization
threshold the growing localized modes are excited [Fig. 4(c)].
At ϵ > ϵloc, the modes are localized even at small w, but they
grow upon evolution [Fig. 4(d)]. Increasing gain-losses initially
cause rapid delocalization [Fig. 4(e)]. In this regime, the energy

flow remains nearly constant, since the imaginary parts of all
eigenvalues also decrease. This delocalization is replaced by
re-localization (accompanied by fast growth of the energy flow)
for large w values [Fig. 4(f)].
Finally, we have verified numerically that the LDT can also

be observed in a lattice where only the imaginary part of the
periodic potential is incommensurable, while the real part is
periodic, i.e., in the complex potential of the form U �η� �
U 0�cos�s1η� − iw sin�s1η� − iwϵ sin�s2η��.
In conclusion, we have studied the LDT of light in a

PT -symmetric quasi-periodic optical lattice. We have shown
that growing imaginary part of the lattice may induce delocal-
ization around PT -symmetry breaking threshold of the
individual constituents of quasi-periodic potential. This delo-
calization may be followed by an unexpected re-localization of
the eigenmodes of the system. Moreover, the PT -symmetry
breaking threshold in this system depends on the strength of
second lattice forming the quasi-periodic structure.
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Fig. 4. Propagation of the localized input beam of the form q �
sech�η∕1.5� in the complex quasi-periodic potential (2) for various
sets of �ϵ; w� indicated in the plots. In order to illustrate the detail
of diffraction patterns even in the regime with broken symmetry, at
each propagation distance ξ, the power was renormalized. Propagation
distance ξ � 150 is chosen for all panels.
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