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Realization of two-dimensional Aubry-André localization of light waves via electromagnetically
induced transparency
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We propose a scheme to construct a two-dimensional Aubry-André (AA) model and realize two-dimensional
AA localization of light waves via electromagnetically induced transparency (EIT). The system we suggest is
a cold, resonant atomic gas with an N -type level configuration and interacting with probe, control, assisted,
and far-detuned laser fields. We show that under EIT conditions the probe-field envelope obeys a modified
nonlinear Schrödinger equation with a quasiperiodic potential, which becomes a two-dimensional nonlinear AA
model when the system parameters are suitably chosen. The quasiperiodic potential is obtained by the cross-phase
modulation of the assisted field and the Stark shift of the far-detuned laser field. In addition, the cubic nonlinearity
term appearing in the model is contributed by the self-phase modulation of the probe field. We demonstrate that
the system can be used to not only realize various two-dimensional AA localizations of light waves, but also to
display nonlinearity and dimensionality effects on the AA localizations.

DOI: 10.1103/PhysRevA.89.033843 PACS number(s): 42.25.Dd, 42.50.Gy, 42.65.Hw, 72.15.Rn

I. INTRODUCTION

Great interest in a wide class of quantum transport systems
with periodic and disordered potentials has been triggered by
the development of condensed matter physics. One of the
most intriguing phenomena is the localization of particles
and waves, called Anderson localization (AL) [1]. AL is
important for the study of superconductors [2,3], Bose gases
[4], and the phase transition of interacting fermions with
a disorder potential [5], and so on. However, due to high
electron-electron and electron-phonon interactions, up to now
AL for noninteracting electrons has yet to be directly observed
in solid-state materials.

Because AL may occur in any wave system with disorder, in
recent years various setups where interaction or nonlinearity
is nearly absent have attracted much attention. As a matter
of course, sound and light waves [6–14], ultracold Bose and
Fermi gases [4,5,15–21], etc., have been selected to be ex-
plored. Note that not only random disorder but also quasiperi-
odic systems can be used to study wave localizations. There
are some differences between the wave localizations resulting
respectively from random disorder and from quasiperiodic
potentials. For instance, a transition from extended to localized
states in a one-dimensional (1D) Aubry-André (AA) model
[22] (also called the Harper model [23]) may occur, i.e., wave
localization is possible in 1D for a quasiperiodic system. For
convenience, in the following we call the localization resulting
from quasiperiodic potentials as AA localization. However, if
the potential is the one with random disorder, wave localization
with the transition from extended to localized states occurs
only for systems of more than two dimensions (2D).

In recent years, AA localization has become a topic of
focus, and has been realized by using photonic lattices [13]
and Bose-Einstein condensates [15]. Moreover, the effect of
interaction on wave localization has also been studied in the
AA model, but the conclusions obtained are still ambiguous.
Reference [11] shows that self-focusing nonlinearity can
result in a slight increase of the width of the localized wave
packet, and Ref. [18] demonstrates that a repulsive interaction

(equivalent to self-defocusing nonlinearity) may induce wave
delocalization. The interplay between disorder and interaction
is still an open question.

Though some means exist for adjusting the disorder
potential and interparticle interaction, an active control of
the disorder potential and interaction is desirable for practical
applications. However, in active optical media, optical absorp-
tion is usually significant. In recent years, such a paradigm
has been changed by the discovery of electromagnetically
induced transparency (EIT). Due to the quantum interference
effect induced by a control field, the optical absorption of
the probe field in resonant atomic systems can be largely
suppressed. Furthermore, EIT systems possess many striking
features, including a large reduction of group velocity, a
giant enhancement of Kerr nonlinearity, etc. [24]. Recently,
Cheng and Huang have proposed a scheme to realize 1D AA
localization via EIT [25].

In this article, we propose a scheme to construct a 2D AA
model and realize 2D AA localization of light waves via EIT.
The system we consider is a cold, resonant atomic gas having
an N -type level configuration and interacting with probe,
control, assisted, and far-detuned laser fields. We show that
under EIT conditions the envelope of the probe field satisfies
a modified (2+1)D nonlinear Schrödinger (NLS) equation
with a quasiperiodic potential, which can be designed to be
a 2D nonlinear AA model when the system parameters are
suitably chosen. The quasiperiodic potential is obtained by the
cross-phase modulation (CPM) of the assisted field and by
the Stark shift of the far-detuned laser field. Additionally, the
cubic nonlinearity term appearing in the model is contributed
by the self-phase modulation (SPM) of the probe field. We
demonstrate that the system can be used to not only realize
various 2D AA localizations of light waves, but also to display
the influence of nonlinearity and dimensionality effects on the
AA localization.

The article is arranged as follows. In the next section, we
describe the system under study. In Sec. III, using a method
of multiple scales, we derive the modified NLS equation for
the envelope of the probe field. In Sec. IV, we design various
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FIG. 1. (Color online) (a) Energy-level diagram and excitation
scheme for the realization of the AA model. |l〉 (l = 1,2,3,4) are
energy levels and �3, �2, and �4 are one-, two-, and three-photon
detunings, respectively. �p , �c, and �a are half Rabi frequencies of
the probe, control, and assisted laser fields, respectively. (b) Possible
experimental arrangement of the laser fields, where Ep , Ec, Ea ,
and Es are probe, control, assisted, and far-detuned laser fields,
respectively. (c) Angles between the incident directions of the assisted
field Ea and the far-detuned laser field Es relative to the coordinate
axes x, y, and z.

AA models and demonstrate various AA localizations in 2D,
including the influence of nonlinearity and dimensionality. In
the final section, we summarize the main results obtained in
this work.

II. MODEL

We consider a cold, lifetime-broadened atomic gas
with an N -type level configuration [Fig. 1(a)]. The
levels are taken from the D1 line of 87Rb atoms,
with |1〉 = |5S1/2,F = 1〉, |2〉 = |5S1/2,F = 2〉, |3〉 = |5P1/2,

F = 1〉, and |4〉 = |5P1/2,F = 2〉. A weak probe field Ep =
epEp(x,y,z) exp [i(kpz − ωpt)] + c.c. and a strong control
field Ec = ecEc exp [i(−kcy − ωct)] + c.c. interact resonantly
with levels |1〉 → |3〉 and |2〉 → |3〉, respectively. Here ej and
kj (Ej ) are respectively the polarization unit vector in the j th
direction and the wave number (envelope) of the j th field. The
levels |l〉 (l = 1,2,3), together with Ep and Ec, constitute a
well-known �-type EIT core.

Furthermore, we assume the assisted field Ea with the form

Ea = eaEa exp (−iωat) + c.c.

= ea

1

2
(E+

a1 + E−
a1 + E+

a2 + E−
a2) exp (−iωat) + c.c. (1)

is coupled to the levels |2〉 → |4〉, where E±
aj = Eaj exp

[ika(sin θ±
aj cos ϕ±

aj x + sin θ±
aj sin ϕ±

aj y − cos θ±
aj z) + iψ±

aj ]
(j = 1,2) [Fig. 1(b)], with θ±

ai and ϕ±
ai shown in Fig. 1(c)

and ψ±
ai the phase of the j th component of the assisted field.

The assisted field Ea , when assumed to be weak (satisfying
Ep ∼ Ea � Ec), will contribute a CPM effect to the probe field
Ep. Note that the levels |l〉 (l = 1,2,3,4), together with Ep, Ec,
and Ea , form an N -type system, which was considered first by
Schmidt and Imamolu [26] for obtaining giant CPM via EIT.

In addition, we assume that another far-detuned (Stark)
optical lattice field,

EStark = es

√
2Es cos(ωst)

= es

1√
2

(E+
s1 + E−

s1 + E+
s2 + E−

s2) cos(ωst), (2)

is applied to the system. Here ωs is the an-
gular frequency and E±

sj = Esj exp[iks(sin θ±
sj cos ϕ±

sj x +
sin θ±

sj sin ϕ±
sj y − cos θ±

sj z) + iψ±
sj ] (j = 1,2), with θ±

sj and ϕ±
sj

shown in Fig. 1(c) and ψ±
si the phase of the j th component

of the Stark field. Due to the existence of EStark, a small
but space-dependent Stark level shift �El = − 1

2αl〈E2
Stark〉t =

− 1
2αl|Es |2 occurs, where αl is the scalar polarizability of the

level |l〉, and 〈· · · 〉 denotes the time average in an oscillating
cycle. The explicit forms of Ea and Es in (1) and (2)
will be chosen later on according to the requirement of the
quasiperiodic potential (see Sec. IV A). As will be shown
below, the CPM effect contributed by the assisted field Ea

given by (1) and the Stark shift contributed by the far-detuned
Stark field EStark given by (2) will provide the quasiperiodic
refractive index to the evolution of the probe-field envelope.

Under the electric-dipole and rotating-wave approxima-
tions, the Hamiltonian of the system in the interaction picture
reads

Ĥint = −�

4∑
l=1

�′
l|l〉〈l| − �(�p|3〉〈1| + �c|3〉

× 〈2| + �a|4〉〈2| + H.c.), (3)

with �′
l = �l + [αl/(2�)]|Es |2, where �p = (ep · p13)Ep/�,

�c = (ec · p23)Ec/�, and �a = (ea · p24)Ea/� are respectively
the half Rabi frequencies of the probe, control, and assisted
fields, with pj l the electric-dipole matrix element related to the
transition from |j 〉 to |l〉; �3, �2, and �4 are one-, two-, and
three-photon detunings in the relevant transitions, respectively.

The motion of atoms is governed by the Bloch equation

∂σ

∂t
= − i

�
[Ĥint,σ ] − �σ, (4)

where σ is a 4 × 4 density matrix in the interaction picture,
and � is a 4 × 4 relaxation matrix describing the spontaneous
emission and dephasing of the system. Explicit expressions of
Eq. (4) are presented in the Appendix.

Under a slowly varying envelope approximation, the
Maxwell equation of the probe field is reduced to [27]

i
∂�p

∂z
+ c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p + κ13σ31 = 0, (5)

where κ13 = Naωp|ep · p13|2/(2ε0�c), with Na the atomic
concentration. Note that the dynamics of �a is negligible
during the probe-field evolution because the assisted field
couples with the levels |2〉 and |4〉, which have a vanishing
population due to the EIT induced by the strong control field.

III. ASYMPTOTIC EXPANSION AND MODIFIED (2+1)D
NLS EQUATION

We employ the standard method of multiple scales [27]
to investigate the evolution of the probe field. We make
the asymptotic expansion σij = εσ

(1)
ij + ε3σ

(3)
ij + · · · (ij =

21,31), σkl = σ
(0)
kl + ε2σ

(1)
kl + ε3σ

(3)
kl + · · · (kl 	= ij ) (with

σ
(0)
kl = δk1δl1), �p = ε�(1)

p + ε3�(3)
p + · · · , �a = ε�(1)

a , Es =
εE(1)

s , dij = d
(0)
ij + ε2d

(2)
ij (with d

(0)
ij = �i − �j + iγij and

d
(2)
ij = αi−αj

2�
|E(1)

s |2). Here ε is a small parameter characterizing
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the typical amplitude of the probe and the assisted fields. All
quantities on the right-hand sides of the asymptotic expansion
are considered as functions of the multiple scale variables
zl = εlz (l = 0,2), x1 = εx, and y1 = εy. Substituting the
expansion into Eqs. (A1) and (5), one can obtain a series
of linear but inhomogeneous equations for σ

(l)
ij and �(l)

p

(l = 1,2,3, . . .), which can be solved order by order.
At ε order, we obtain the linear solution

�(1)
p = FeiKz0 = Feiθ , (6a)

σ
(1)
31 = d

(0)
21

D
Feiθ , (6b)

σ
(1)
21 = −�∗

c

D
Feiθ , (6c)

with D = |�c|2 − d
(0)
21 d

(0)
31 . In above expressions, K =

κ13d
(0)
21 /D and F is to be the determined envelope function.

At ε3 order, using the solvability condition for �(3)
p , we

obtain the (2+1)D NLS equation

i
∂F

∂z2
+ c

2ωp

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
F + α11|F |2F + α12

∣∣�(1)
a

∣∣2
F

+α13

∣∣E(1)
s

∣∣2
F = 0, (7)

where

α11 = −κ13

D

[
6
d

(0)
21

�13
+ �23

�13

(
d

(0)
32

γ32
+ d

(0)
21

γ32

∣∣∣∣d
(0)
32

�c

∣∣∣∣
2
)]

Im

(
d

(0)
21

D

)

− κ13

D

[
|�c|2
γ32

Im

(
1

D

)
+ d

(0)
21

γ32
Im

(
d

(0)
32

D

)]
, (8a)

α12 = − κ13

d
(0)
41

|�c|2
D2

, (8b)

α13 = κ13(α3 − α1)

2�D2

(
d

(0)
21

)2
. (8c)

After returning to the original variables, the (2+1)D NLS
equation (7) takes the dimensionless form

i
∂u

∂s
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u + V (ξ,η)u = 0, (9)

with

V (ξ,η) = Vex(ξ,η) + Vint(ξ,η), (10a)

Vex(ξ,η) = g12cv|v|2 + g13cw|w|2, (10b)

Vint(ξ,η) = g11|u|2, (10c)

where u = �p/U0, v = �a/(
√

cvV0), w = Es/(
√

cwEs0),
s = z/Ldiff , (ξ,η) = (x,y)/R⊥, g11 = α11U

2
0 /|α13E

2
s0|, g12 =

α12V
2

0 /|α13E
2
s0|, and g13 = α13/|α13|. Here Ldiff ≡ ωpR2

⊥/c

is the typical diffraction length (R⊥ is the typical trans-
verse beam radius). We have taken Ldiff = LNL [LNL =
1/(|α13E

2
s0|) is the typical nonlinearity length], which yields

Es0 =
√

c/(ωpR2
⊥|α13|). Note that U0 and V0 are respectively

typical Rabi frequencies of the probe and assisted fields, Es0

is the typical amplitude of the far-detuning laser field, and all
of these parameters can be used to adjust the potential V (ξ,η).

Obviously, the potential V (ξ,η) given in expression (10a)
includes the external potential (10b) contributed by the CPM
effect from the assisted and far-detuned laser fields, and the
nonlinear potential (10c) contributed by the SPM effect from
the probe field. From the coefficients α11,12,13 given by expres-
sion (8), we see that the coefficients g11,12,13 are controlled by
U0, V0, Es0, �2,3,4, and the intensity of the control field.

Note that under the EIT condition |�c|2 
 γ3γ2, the
absorption of the probe field is largely suppressed, and hence
the imaginary parts of the complex coefficients in Eq. (9) are
relatively small (see the numerical examples given below).

IV. DESIGN OF THE 2D AA MODEL AND REALIZATION
OF 2D AA LOCALIZATIONS

A. Design of the 2D AA model

To obtain a quasiperiodic potential required by the con-
struction of a 2D AA model, we make an estimation of
the numerical values of the coefficients in Eq. (9). We
consider a typical cold atomic gas of 87Rb atoms with
D1 line transitions 52S1/2 → 52P1/2. The energy levels are
chosen as those illustrated in Fig. 1(a). From the data of
87Rb [28], system parameters can be chosen as 2γ2 = 1 ×
103 Hz, �3,4 = 36 MHz, κ13 = 1.0 × 1011 cm−1 s−1, ωp =
2.37 × 1015 s−1, R⊥ = 3.6 × 10−3 cm, �c = 2.5 × 107 s−1,
�2 = 0 s−1, �4 = −�3 = 6.0 × 108 s−1, Es0 = 6.31 × 106

V cm−1. Based on these parameters, we obtain Ldiff = 1.0 cm,
U0 = 1.07 × 107 s−1, and V0 = 1.92 × 106 s−1. Thus we have

g11 = 1.0 − 0.03i, g12 = −1.0 + i0.03,

g13 = −1.0 + 0.001i. (11)

Since Re(g11) is positive, the system in this case has the
property of self-focusing. If we take �3 = 6.0 × 108 s−1, we
obtain

g11 = −1.0 − 0.03i, g12 = −1.0 + i0.03,

g13 = −1.0 − 0.001i, (12)

corresponding to a case of self-defocusing. In fact, the
coefficients gjl in Eq. (9) can be actively adjusted by choosing
different system parameters, especially with different �3, �4,
and Es0. Thus the different 2D AA models can be realized in
our system, as shown below.

From the results given by (11) and (12), we see that the
imaginary parts of the coefficients in Eq. (9) are indeed much
less than their real parts. The physical reason for such small
imaginary parts is due to the EIT effect induced by the control
field that makes the absorption of the probe field be largely
suppressed. In the following, the small imaginary parts of
these coefficients of gjl will be neglected for simplicity.

By selecting different assisted and far-detuned laser fields,
we can obtain many different Vex, which are 2D quasiperiodic
functions. Four of them are listed in the following:

Potential (1): By taking θ+
ai = −θ−

ai = θai , ϕ±
ai = 0, ψ+

ai =
−ψ−

ai = −π/2 (i = 1,2), θ+
si = −θ−

si = θsi , ϕ
±
si = π/2, ψ+

si =
−ψ−

si = −π/2 (i = 1,2), cos θj ≈ 1, and sin θj � 1 (j =
a1,a2,s1,s2), we obtain

Ea = Ea1 [sin(x/R⊥) + c1 sin(βx/R⊥)] exp(−ikaz), (13a)

Es = Es1 [sin(y/R⊥) + c1 sin(βy/R⊥)] exp(−iksz), (13b)
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FIG. 2. (Color online) 3D surface plot of quasiperiodic
potential Vex as a function of ξ and η. (a) Vex =
2.724| sin ξ + c1 sin(βξ )|2 + 2.724| sin η + c1 sin(βη)|2. (b) Vex =
3[sin2 ξ + c2

1 sin2(βξ )] + 3[sin2 η + c2
1 sin2(βη)]. (c) Vex =

3[sin2 ξ + c2
1 sin2(βξ )] + 2.724| sin η + c1 sin(βη)|2. (d) Vex =

c1| sin(βξ ) + sin(βη)|2 + | sin ξ + sin η|2. For all panels, c1 = 0.7
and β =

√
5−1
2 .

with c1 = Ea2/Ea1 = Es2/Es1, β = sin θa2/ sin θa1 =
sin θs2/ sin θs1, R⊥ = (ka sin θa1)−1 = (ks sin θs1)−1. As a
result, we have |v|2 = | sin ξ + c1 sin(βξ )|2, |w|2 = | sin η

+ c1 sin(βη)|2, and hence

Vex(ξ,η) = 2.724| sin ξ + c1 sin(βξ )|2
+ 2.724| sin η + c1 sin(βη)|2. (14)

Shown in Fig. 2(a) is the three-dimensional (3D) surface plot
of the potential Vex as a function of ξ and η for cv = cw =
2.724, c1 = 0.7, and β =

√
5−1
2 . We see that around the middle

point (ξ,η) = (0,0) there are four nearest-neighbor potential
traps, by which four localized peaks of |u| will form (see
Fig. 3 below). The potential is quasiperiodic but has a regular
distribution.

Potential (2): By taking θ+
ai = −θ−

ai = θai , ϕ±
ai = 0 (i =

1,2), ψ+
a1 = −ψ−

a1 = −π/2, ψ+
a2 = 0, ψ−

a2 = π , θ+
si = −θ−

si =
θsi , ϕ±

si = π/2 (i = 1,2), ψ+
s1 = −ψ−

s1 = −π/2, ψ+
s2 = 0,

ψ−
s2 = π , cos θj ≈ 1, and sin θj � 1 (j = a1,a2,s1,s2), we

get

Ea = Ea1 [sin(x/R⊥) + ic1 sin(βx/R⊥)] exp(−ikaz), (15a)

Es = Es1 [sin(y/R⊥) + ic1 sin(βy/R⊥)] exp(−iksz). (15b)

Then one has |v|2 = [sin2 ξ + c2
1 sin2(βξ )], |w|2 = [sin2 η +

c2
1 sin2(βη)], and β =

√
5−1
2 . Thus we obtain the quasiperiodic

potential

Vex(ξ,η) = 3
[

sin2 ξ + c2
1 sin2(βξ )

]
+ 3

[
sin2 η + c2

1 sin2(βη)
]

(16)

for cv = cw = 3, c1 = 0.7, and β =
√

5−1
2 . Figure 2(b) shows

Vex as the function of ξ and η. The potential distribution looks
homogeneous, but it is indeed quasiperiodic.

Potential (3): If we take θ+
ai = −θ−

ai = θai , ϕ±
ai = 0 (i =

1,2), ψ+
a1 = −ψ−

a1 = −π/2, ψ+
a2 = 0, ψ−

a2 = π , θ+
si = −θ−

si =
θsi , ϕ±

si = π/2 ψ+
si = −ψ−

si = −π/2 (i = 1,2), cos θj ≈ 1,
and sin θj � 1 (j = a1,a2,s1,s2), we have

Ea = Ea1[sin(x/R⊥) + ic1 sin(βx/R⊥)] exp(−ikaz), (17a)

Es = Es1[sin(y/R⊥) + c1 sin(βy/R⊥)] exp(−iksz). (17b)

In this case, |v|2 = [sin2 ξ + c2
1 sin2(βξ )], |w|2 = | sin η +

c1 sin(βη)|2. As a result, we obtain the quasiperiodic potential

Vex(ξ,η) = 3
[

sin2 ξ + c2
1 sin2(βξ )

]
+ 2.724| sin η + c1 sin(βη)|2 (18)

for cv = 3, cw = 2.724, c1 = 0.7, and β =
√

5−1
2 . The corre-

sponding 3D surface plot is illustrated in Fig. 2(c).
Potential (4): When taking θ+

ai = −θ−
ai = θa , ϕ±

a1 =
0, ϕ±

a2 = π/2, ψ+
ai = ψ0 − π/2,ψ−

ai = ψ0 + π/2(i = 1,2),
θ+
si = −θ−

si = θs , ϕ±
s1 = 0, ϕ±

s2 = π/2, ψ+
si = −ψ−

si = −π/2
(i = 1,2), cos θj ≈ 1, and sin θj � 1 (j = a1,a2,s1,s2), we
get

Ea = Ea1[sin(βx/R⊥) + sin(βy/R⊥)] exp(−ikaz), (19a)

Es = Es1[sin(x/R⊥) + sin(y/R⊥)] exp(−iksz), (19b)

where Ea2/Ea1 = Es2/Es1 = 1, β = ka sin θa/(ks sin θs), R⊥ =
(ks sin θs)−1. Thus we have |v|2 = | sin(βξ ) + sin(βη)|2, and
|w|2 = | sin ξ + sin η|2. The quasiperiodic potential is given
by

Vex(ξ,η) = c1| sin(βξ ) + sin(βη)|2 + | sin ξ + sin η|2 (20)

for cv = c1, cw = 1, and β =
√

5−1
2 . The corresponding 3D

surface plot is shown in Fig. 2(d).
Because the potentials given above are quasiperiodic,

Eq. (9) with any of them is a 2D nonlinear AA model. Note
that for all four potentials given above, the parameter c1 is
used to modulate the periodicity of Vex. With an increase
of c1, Vex is changed from periodic, to nearly periodic, and
then to quasiperiodic. Of course, we can also choose different
ϕ±

a1,a2,s1,s2, θ±
a1,a2,s1,s2, and ψ±

a1,a2,s1,s2 to construct some other
types of quasiperiodic potentials, which are not listed here to
save space.

B. Delocalization-localization transition in
the 2D linear AA model

We now turn to investigate various 2D AA localizations of
the system by using the 2D AA model obtained above. If the
amplitude of the probe field is small, the nonlinear potential
in Eq. (10a) (i.e., Vint) is negligible. In this situation, Eq. (9) is
reduced to the 2D linear AA model

i
∂u

∂s
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u + Vex(ξ,η)u = 0. (21)

Figure 3 shows the absolute value of the ground-state wave
function |u| of Eq. (21) with different quasiperiodic potentials
Vex(ξ,η). Figures 3(a)–3(c) illustrate the results of the first kind
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FIG. 3. (Color online) Delocalization-localization transition in the 2D linear AA model. (a)–(c) show the numerical results of |u| for the
ground state of Eq. (21) with the potential (14) when the modulation depth c1 takes 0, 0.15, and 0.7, respectively. (d)–(f) show the numerical
results of |u| for the ground state of Eq. (21) with the potential (16) when c1 takes 0, 0.25, and 0.7, respectively. (g)–(i) show the numerical
results of |u| for the ground state of Eq. (21) with the potential (18) when c1 takes 0, 0.3, and 0.7, respectively. (j)–(l) show the numerical results
of |u| for the ground state of Eq. (21) with the potential (20) when c1 takes values 0, 0.1, and 0.7, respectively.

of quasiperiodic potential (14) when the modulation strength
c1 takes different values. Figure 3(a) displays the result for
c1 = 0. Since the potential Vex(ξ,η) in this case is periodic, the
ground state is a periodic extended state. Figure 3(b) shows
the result for c1 = 0.15. In this case Vex(ξ,η) is quasiperiodic,
and four wave peaks appear near the center of the figure, i.e.,
the state begins to localize. Because each peak has a rugged
structure and a large width, the localization is not complete.
However, when c1 is increased to 0.7 [Fig. 3(c)], a perfect
2D localization occurs. In this case, the four peaks become
extremely smooth and have a very small width.

Illustrated in Figs. 3(d)–3(f) are the results of the second
kind of quasiperiodic potential (16) when c1 takes 0, 0.25, and
0.7, respectively. We see that the ground-state wave function
|u| displays a perfect transition from a periodic extended state
to a localized state. In particular, in this situation only a single
wave peak appears near (ξ,η) = (0,0) in the localized state.

Illustrated in Figs. 3(g)–3(i) are the results of the third kind
of quasiperiodic potential (18) for c1 taking 0, 0.3, and 0.7,
respectively. In this situation, the localized state has two wave
peaks appearing along the η axis at ξ = 0. Shown in Figs. 3(j)–
3(l) are the results of the fourth kind of quasiperiodic potential
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(20) when c1 takes 0, 0.1, and 0.7, respectively. Differently,
here in the localized state, two large wave peaks appear along
the diagonal direction of the (ξ,η) plane.

From Fig. 3 we see that for all four kinds of quasiperiodic
potentials, the system displays an AA localization and under-
goes a delocalization-localization transition when changing
the modulation depth c1. We stress that in our system such
a delocalization-localization transition can be manipulated
actively because c1 depends on Ea2, Ea1, Es2, and Es1. That
is to say, we can choose different amplitudes of the assisted
field and the optical lattice field [see Eqs. (1) and (2)]
to obtain different values of c1, and hence to realize the
delocalization-localization transition in a controllable way.

C. Effects of dimensionality and nonlinearity
on the AA localization

1. Dimensionality effect on the localization in the linear AA model

In Refs. [13,25], AA localization in discrete and continuous
1D linear AA models has been clearly demonstrated. As shown
above, the 2D linear AA model can also be used to realize AA
localization. One may ask the question regarding the difference
between 1D and 2D localizations in models with quasiperiodic
potentials.

In order to illustrate the dimensionality effect and make a
comparison of localizations between linear AA models in both
1D and 2D, we calculate the participation ratio (PR) defined
by [13,25]

PR = [
∫∫ |u(ξ,η,s)|2dξdη]2∫∫ |u(ξ,η,s)|4dξdη

, (22)

which describes the width of the wave function |u|. For
comparison, in addition to the 2D linear AA model given by
Eq. (21), we also consider the 1D linear AA model of the form

i
∂u

∂s
+ 1

2

∂2u

∂ξ 2
+ Vex(ξ )u = 0. (23)

Note that such a model can be obtained for a probe beam
having a large width in the y direction, i.e., the diffraction
term ∂2u/∂η2 can be disregarded. In addition, the assisted and
optical lattice fields are taken to be y independent and hence
there is no η dependence in the quasiperiodic potential. In this
situation, the 2D linear AA model Eq. (21) is converted into the
1D linear AA model (23). To save space here we only present
the results for the first and second kinds of quasiperiodic
potentials [i.e., (14) and (16)].

Shown in Fig. 4(a) is the result of PR1 (normalized PR)
as a function of c1 for the 2D linear AA model (21) (blue
dashed line) and the 1D linear AA model (23) (red solid line)
with the quasiperiodic potential (14). The black dot in the
figure indicates the transition point from delocalization (left)
to localization (right). We see the following: (i) The transition
points from delocalization to localization in the c1 axis are
almost the same for both the 1D and 2D AA models (i.e.,
c1 ≈ 0.095). (ii) The AA localization is more pronounced in
2D than in 1D because the value of PR1 in 2D is smaller than
that in 1D for all c1.

Figure 4(b) shows the result of PR1 as a function of c1 for the
2D linear AA model (21) and the 1D linear AA model (23) with
the quasiperiodic potential (16). One sees that a conclusion

0 0.095 0.25
0

0.5

1

(a)

c1

P
R

1

1D
2D

0 0.205 0.4
0

0.5

1

(b)

c1

P
R

1

1D
2D

FIG. 4. (Color online) Dimensionality effect on the localization
in linear AA models. (a) Normalized PR curve PR1 as a function of
modulation depth c1 for the 2D linear AA model (21) (blue dashed
line) and the 1D linear AA model (23) (red solid line) with the
quasiperiodic potential (14). (b) Normalized PR curve PR1 as a
function of c1 for the 2D linear AA model (21) and the 1D linear
AA model (23) with the quasiperiodic potential (16). The black point
in each panel indicates the transition point from delocalization (left)
to localization (right).

similar to that of Fig. 4(a) can be obtained. However, in this
case the value of c1 at the transition point is larger (around 0.2).

2. Nonlinear effect on the localization in the 2D AA model

If the amplitude of the probe field is not small, the nonlinear
effect of the system must be taken into account. In the situation
of weak nonlinearity considered in the present work, the
amplitude equation is given by the 2D nonlinear AA model
(9) where the nonlinear potential Vint cannot be neglected. One
can also ask the question regarding the effect of nonlinearity
on the 2D AA localization.

In this section, we discuss the nonlinearity effect on the AA
localization by numerically solving the 2D AA model (9) with
the first kind of quasiperiodic potential (14).

Figures 5(a) and 5(b) show the results of the 2D nonlinear
AA model (9) for the first kind of quasiperiodic potential (14)
and for a propagation distance s = 10. Shown in Fig. 5(a)

0 0.095 0.25
0

0.5

1

(a)

c1

P
R

1

g11 = −0.5
g11 = 0.0
g11 = 0.5

−0.5 0 0.5
0.3

1

1.8

(b)

g11

P
R

1

c1 = 0.050
c1 = 0.095
c1 = 0.150

FIG. 5. (Color online) Nonlinear effect on the localization in the
2D AA model. (a) PR1 curve as a function of the modulation
depth c1. The solid, dashed, and dotted-dashed lines are for g11 =
−0.5,0,0.5, respectively. (b) PR1 curve as a function of the nonlinear
coefficient g11. The solid, dashed, and dotted-dashed lines are for
c1 = 0.050,0.095,0.150, respectively. When obtaining the results in
(a) and (b), the quasiperiodic potential (14) is used. All these PR1

curves have been normalized by the maximum PR value for g11 = 0
in (a) and by PR values for g11 = 0 in (b).
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REALIZATION OF TWO-DIMENSIONAL AUBRY-ANDRÉ . . . PHYSICAL REVIEW A 89, 033843 (2014)

is the PR1 curve as a function of the modulation depth c1.
The solid, dashed, and dotted-dashed lines in the figure are
for the nonlinear coefficients g11 = −0.5, 0, 0.5, respectively.
Note that all these PR1 curves have been normalized by the
maximum PR value for g11 = 0 in (a) and by PR values for
g11 = 0 in (b). We see that the nonlinearity (i.e., g11 	= 0)
indeed has an obvious effect on the localization property of the
system. In particular, the self-focusing nonlinearity (i.e., g11 >

0) can enhance the AA localization, but the self-defocusing
nonlinearity (i.e., g11 < 0) contributes a delocalization effect.
Interestingly, the delocalization-localization transition points
are nearly the same for different values of g11.

Shown in Fig. 5(b) is the PR1 curve as a function of the
nonlinear coefficient g11. The solid, dashed, and dotted-dashed
lines are for c1 = 0.050, 0.095, 0.150, respectively. This figure
shows clearly that the AA localization in the self-focusing case
(g11 > 0) is more pronounced than that in the self-defocusing
case (g11 < 0) in spite of the value of c1.

Based on the results obtained above, we have the following
conclusions: (i) Dimensionality, nonlinearity, and the form
of the quasiperiodic potential have effects on the AA
localization. (ii) Generally, the system with a higher spatial
dimensionality has more pronounced AA localization. (iii)
Self-focusing nonlinearity can enhance the AA localization,
but self-defocusing nonlinearity weakens the AA localization.
We stress that the system we consider here not only provides a
simple way of realizing 2D AA localization via EIT, which is
quite different from off-resonant mechanisms, but also has the
advantages of actively controlling the quasiperiodic potential,
dimensionality, and nonlinearity, allowing easy manipulation
of the delocalization-localization transition based on atomic
coherence.

V. SUMMARY

In this article we have proposed a scheme to construct the
2D AA model and realize 2D AA localizations of light waves
via EIT. The system we consider is a cold, resonant atomic
gas having an N -type level configuration and interacting with
probe, control, assisted, and far-detuned laser fields. We have
shown that under EIT conditions the envelope of the probe
field satisfies a modified NLS equation with a quasiperiodic
potential, which can be designed to be a nonlinear 2D AA
model when the system parameters are suitably chosen.
The quasiperiodic potential is obtained by the CPM of the
assisted field and the Stark shift of the far-detuned laser field.
Additionally, the cubic nonlinearity term appearing in the
model is contributed by the SPM of the probe field. We have
demonstrated that the system can be used not only to realize
various 2D AA localizations of light waves, but also to display
the influence of nonlinearity and dimensionality effects on
the AA localizations.
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APPENDIX: EQUATIONS OF MOTION FOR σi j

Equations of motion for σij are given by

i
∂

∂t
σ11 − i�13σ33 + �∗

pσ31 − �pσ ∗
31 = 0, (A1a)

i
∂

∂t
σ22 − i�23σ33 − i�24σ44 + �∗

cσ32 − �cσ
∗
32

+ �∗
aσ42 − �aσ

∗
42 = 0, (A1b)

i

(
∂

∂t
+ �3

)
σ33 − �∗

pσ31 + �pσ ∗
31

− �∗
cσ32 + �cσ

∗
32 = 0, (A1c)

i

(
∂

∂t
+ �4

)
σ44 − �∗

aσ42 + �aσ
∗
42 = 0, (A1d)

(
i

∂

∂t
+ d21

)
σ21 + �∗

cσ31 + �∗
aσ41 − �pσ ∗

32 = 0, (A1e)

(
i

∂

∂t
+ d31

)
σ31 + �p(σ11 − σ33) + �cσ21 = 0, (A1f)

(
i

∂

∂t
+ d41

)
σ41 + �aσ21 − �pσ43 = 0, (A1g)

(
i

∂

∂t
+ d32

)
σ32 + �c(σ22 − σ33)

+ �pσ ∗
21 − �aσ

∗
43 = 0, (A1h)(

i
∂

∂t
+ d42

)
σ42 + �a(σ22 − σ44) − �cσ43 = 0, (A1i)

(
i

∂

∂t
+ d43

)
σ43 + �aσ

∗
32 − �∗

pσ41 − �∗
cσ42 = 0, (A1j)

where �ij is the rate at which the population decays from
the state |j 〉 to the state |i〉, dij = �′

i − �′
j + iγij with

�′
i = �i + αi

2�
|E0|2, �3 = ωp − (ω3 − ω1), �2 = ωp − ωc −

(ω2 − ω1), and �4 = ωp − ωc + ωa − (ω4 − ω1) are the one-,
two-, and three-photon detunings, respectively, γij ≡ (�i +
�j )/2 + γ

dph
ij . Here �i = ∑

Ei<Ej
�ij and γ col

ij denotes the
dipole dephasing rate caused by atomic collisions.
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