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We consider a possible second harmonic generation (SHG) of propagating collective excitations in a two-component

Bose—Einstein condensate (BEC) with repulsive atom—atom interactions. We show that the phase-matching condition

for the SHG can be fulfilled if the wave vectors and frequencies of the excitations are chosen adequately from different

dispersion branches. We solve the nonlinear amplitude equations for the SHG derived using a method of multiple-scales

and provide SHG solutions similar to those obtained for a SHG in nonlinear optical media. A possible experimental

realization of the SHG for the propagating collective modes in a cigar-shaped two-component BEC is also discussed.
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1. Introduction

The remarkable experimental realization of Bose—
Einstein condensation in weakly interacting atomic
gases!!] has opened a new direction for the study
on the nonlinear properties of matter waves.[?l The
most spectacular experimental progress achieved re-
cently concerns the demonstration of atomic four-wave
mixing, 3! the discovery of superradiance,! the devel-
opment of matter-wave amplification,!®¢ and the ob-
servation of dark and bright solitons as well as vortices
in Bose-Einstein condensates (BECs).["l At the same
time, a large amount of theoretical study in this area
has appeared,® 4! and new phenomena such as atom
holography through BEC,['®! coherent matter-wave
amplification and superradiance in degenerate Fermi
gases, 18] etc, have been predicted. These researches
have enabled the extension of linear atom optics to a
nonlinear regime, i.e. nonlinear atom optics,['7l very
much like the laser led to the development of nonlinear
optics in the 1960s.

Wave resonance plays an important role in non-
linear optics.['8! In the nonlinear atom optics based on
BECs, even though many theoretical and experimen-
tal efforts on wave resonance exist,® % the phenom-

ena studied up to now belong to various processes of

four-wave mixing of BEC matter waves. Because the
interaction of the matter waves in BECs is described
by a cubic nonlinearity, a second harmonic genera-
tion (SHG), which is a second-order process and thus
requires a quadratic nonlinearity, is impossible. How-
ever, if we consider the excitations from the ground
state of a condensate, the interaction between the ex-
citations is of quadratic nonlinearity and hence a SHG
is possible. Recently, nonlinear coupling and har-
monic generation of collective modes created in a BEC
have been considered theoretically (see Refs.[19-21]
for details) and observed experimentally by Hechen-
blaikner et all??l and Hodby et al[?3] In these inter-
esting works the resonant interaction between two os-
cillating (or standing-wave) modes excited in BECs
have been taken into account. For such low-frequency
nonlinear oscillations, a resonant harmonic generation

requires only a frequency-matching condition.

In the present work, we explore the possibility of
a SHG based on the interaction of two propagating
collective modes excited in a two-component BEC.
A simple result for the limiting case in the absence
of mass and trapping frequency differences has been
given recently.?4] Here we provide a more general re-

sult to allow for different masses and trapping fre-
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quencies for the two BEC components. Note that dif-
ferent from standing-waves, the SHG for propagating
waves requires a phase-matching condition (or called
resonance condition, see Eq.(29) below) for wave vec-
tors and frequencies of the fundamental wave and the
second harmonic wave. For a single-component BEC
the SHG is not possible for collective excitations be-
cause its excitation spectrum, which takes the form
w(q)=q(c® + ¢?/4)'/? with the wave number of the ex-
citation ¢ and the sound speed of the system c,[*3] can
not satisfy the phase-matching condition. However, a
two-component BEC displays an excitation spectrum
with two branches and hence provides the possibil-
ity to fulfil the SHG phase-matching condition. Since
the SHG is a process of energy up-conversion, at zero
temperature such process can be well described by
two coupled Gross—Pitaevskii (GP) equations. Using
a method of multiple-scales we derive the nonlinearly
coupled envelope equations describing the SHG and
give their explicit solutions. We show that an experi-
mental realization of such SHG may give information
about the interaction between different components of

the condensate.

The paper is organized as follows. Section 2
presents our model and gives the ground state solu-
tion of the system. In Section 3 we consider the linear
excitations from the ground state. In Section 4 we
analyse the phase-matching condition and derive the
nonlinear amplitude equations for the SHG using a
method of multiple scales. The SHG solutions for the
amplitude equations similar to those obtained for a
photon SHG in a nonlinear optical medium are also
given in this section. The last section contains a dis-

cussion and summary of our results.

2.Model and ground state solu-
tion

2.1. The model

We consider a two-component BEC which is a bi-
nary mixture of alkali condensates. Such mixture may
consist of different alkalis such as ®Rb and 2°Na, or
different isotopes such as 8”Rb and 8°Rb, or even dif-
ferent hyperfine spin states of the same alkali such as
the |FF = 2,mp = 2) and |F = 1,mp = 1) states
of 8Rb. Denoting ¥;(r,t) as the order parameter
N; = [dr|@,?

of species j with particle number

(4 = 1,2), the equations of motion controlling ¥; are
L 0w n? _,
h =|-—V*+V
! ot |: 2m1 + 1(1")
+ g1 | ¥ ]? +912|W2|2] 71, (1)
5922 P V2 4 Va(r)
ih—= = — — r
ot 2m2 2

-|-921|&D1|2 +922|W2|2] ¥, (2)

where m; and V;(r) are respectively the atomic mass
and external trapping potential for the species 7,
gj1 = 27rh2ajl/mjl is the interaction parameter with
aji (4,1 = 1,2) being the s-wave scattering length be-
tween the species j and the species I (aj; > 0 for repul-
sive interaction) and m;; = m;jmy/(m;+m;) being the
reduced mass. We consider an anisotropic harmonic

trap for which the trapping potentials take the form

Ly +27)], 3)

where wj; and w;, are the trap frequencies of the

Vi(r) =

m;
i 2 2 2
T[wjzm + wj

species j in the axial (z) and the transverse (y and z)
directions, respectively.

Expressing the order parameters in terms of their
U; = /njexp(ig;), we ob-

tain a set of coupled nonlinear equations for n; and

modulus and phases, i.e.

¢; (7 = 1,2), which have the dimensionless form

8’!?,1 0 8¢1 _

E +V,- (’nlvl(ﬁl)—i-sa—m(nl%) =0, (4)
Ons 9] 0da\|
T +— [VJ_ (n2V 1)+ €92 (M@)] =0, (5)

[%—§V2 ;( +2%)+ 5 (Vﬂﬁl)}\/"_

1 82 1_222
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1/0
+ 5(%) + G11n1 +012n2:|\/a: 0, (6)
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Bt 2y

1 2
+ W(V“ﬁ” }\/n—

o? —2
- m 522
+s[ 90t 2 L

15)
27 < ¢2) + Ga1nq + Gagna | /12 =0, (7)

where v, = ma/mi, Yo = wal/Wil, Yz = Woz/Wig,

Gi1 =1, Gz = 912/911, Ga1 = 921/911, and Ggp =
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g22/911- The condensate density, time, axial spatial
coordinate and transverse spatial coordinates are mea-
sured respectively in the units of ng = Ni/(lpa? ),
to = wlll, ly = 7:L/(mlnog11)1/2 = (47rn0a11)_1/2
(healing length), and a1, = [h/(mywi1)]/? (har-
monic oscillator length in the transverse directions).
Vi1 = (0/0y,0/0z) is the transverse gradient oper-
The normalization conditions for ¥; and ¥,
now read fd'r n; = 1 and fd'r ng = Na /Ny, respec-

tively.

ator.

We see that, in addition to v, Yw, Yz, and
Gji (4,1 = 1,2), the system is characterized by two
other dimensionless parameters € = nggy1/(hw; | ) and
d = wiy /w1 . The parameter € describes the ratio be-
tween the atomic interaction and the strength of the
transverse confinement of the system, while the pa-
rameter § reflects the extent of the anisotropy of the
trapping potentials. Equations (4)—(7) are equivalent
to the equations of motion in hydrodynamics for a two-
fluid mixture. Note that when transferring Egs.(1)
and (2) into Egs.(4)—(7), no approximation has been

made.
2.2. Ground state

We first study the ground state of the system.
We consider a long cigar-shaped trap, for which w;, <
w;1 (j =1,2), and assume that the transverse confine-
ment is strong enough so that the conditions a;; < [
and Awi, < nggi1 < hwiy can be satisfied. In
this situation we have § < ¢ <« 1. We assume
also that § = This

means that the trapping potentials along the axial

21162 with £4; of order unity.

direction are slowly-varying functions of z because
U, = ¢ 2§%22%/2 appearing in Egs.(6) and (7) reads
as Uy = 24,X?/2 with X =

Thus if the dimensionless parameters v,,, Yw, Yz and

ez (a slow variable).

Gji (j,! = 1,2) are fixed and are assumed to be
of the order of unity, then in Eqgs.(4)—(7) we have
only one small parameter €, which can be taken as
an expansion parameter in the perturbation expan-
sion given below.!) On the other hand, because of
the strong confinement in the transverse directions,
the system can be taken as quasi-one-dimensional.
This implies that at sufficiently low temperature the
transverse motion of the atoms is essentially ‘frozen’
and is governed by the ground-state wavefunctions

of corresponding transverse harmonic oscillators.[26:27]

A1(z, t)po(y)vo(2),

Thus one can assume /n; =

J) and 9¢;/9z = 0 (i.e.

Vnz = Ax(z,t)Yo(Yoy)Yo(voz), é1 = ¢1(z,t) and
¢o = ¢a(z,t), where o(y)o(z) is the ground
state wavefunction of the two-dimensional harmonic
oscillator satisfying the equation [-V?/2 + (y? +
2%)/2]%0(y)%o(2)= %o (y)vo(2). Then, by setting yo =
v/ ¥mYo and using the normalized ground harmonic
oscillator wavefunction wo(y) = 7 4exp(—y?/2),
Eaqs.(4)—(7) are reduced to

0A, 3A1 0¢1 ¢
ot Oz Oz 152 | =0 @
04y 1 [04;0¢, 1 82452
ot Oz 81‘
1 10% 1/08¢;
(W“)Al “[— 2022 5(
+ UL (X) + GriToA2 + G12J0A2 =0, (10)
ds 1 92 1 [9¢2\?
(W”w)f‘ﬁe[‘ Py 022 m<a—
+ Us(X) + Gay JoA2 + GaoIgAZ| Ay = 0, (11)

where

I - / dydzpd(y)wi(z) = 1/(2m),

Jo = / dyd =63 (1) V3 ()R (v Ay (v )
=1/[7(1+ YmYw)l,

U(X) = 224,X2/2, Uy(X) = Ymy2U(X) with X =
ex.

The ground state of such a quasi-one-dimensional
system corresponds to taking 0¢;/0t = —i; ( 4 is
the dimensionless chemical potential for the species
no flow in the system).
This, from Eqgs.(8) and (9), results in A; = Ajgs
being time-independent in the ground state. Letting
1 = ,ugo) + z—:,ug-l), Eqgs.(10) and (11) become

2

(—p® + 1) Asgs + ¢ [ — - Ui(X) - Y

2 8z
+ GuilpAjgs + GIQJOAgGS:| Aigs =0, (12)
1 82
( (0 + "/w)AQGs + E[ o A2 + UQ(X) — /J,gl)
2vm Oz
+ GglJ(]A?GS + G2210A3G5:| Asqgs = 0. (13)

DWe stress that to obtain a controllable and consistent perturbation expansion for a nonlinear system with many variables and

parameters, it is helpful and sometimes necessary to make a non-dimensionalization of the equations of motion and compare with

each other the relative orders of magnitude of the dimensionless parameters appearing in the system, see Ref.[25].
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To solve Egs.(12) and (13) we make the Taylor ex-
pansion Aj;gs = A?gs + EAE‘I(*BS + EQAS%ZS + --- with

Ag-l();s (j =1,21 =0,1,2,...) being functions of the

slow variable X. At £%-order we obtain ugo) =1 and
,ug)) =,. At g-order one has the solution for Ag(gs:

- (10022 - JOGI2'Ym'73)U1 (X)

0
(AlQs

)2 = 10022N§1) - J0G12Ngl)

, 14
I3G11Gay — J§G12Ga (14)
_ IoGiip) — JoGarpl”) — (I0G117my2 — JoGa1))Ui (X)

(AfRs)? =

We find that high-order A;l();s can be taken as zero
up to ! = 3. Other higher-order terms are too small to
play any role in the SHG process discussed in Section
4 below. Accordingly, we can safely take Egs.(14) and
(15) as the ground-state solution in the axial direction

of the condensate.

Depending on the parameters of the system, the
ground state of a multi-species BEC can have very
rich structures. One of them is the phase separation if
the interaction between different species (represented
by Gi2 = Ga; in our model) is big enough.?8! Here,
however, we assume that G2 is not very big so that
I2G11Gas — JEG12Ga1 > 0 (ie. (14+79m7Yw)?G11Gaa —
4G12Gy1 > 0).

state solution given above is modulationally stable and

Under this condition, the ground

13G11G22 - J3G12G21

. (15)

hence the phase separation does not occur (see the dis-
cussion in Section 3 below). From Egs.(14) and (15), if
both IyGoy — JOGlﬂmﬁ and IOGH’ym'yg — JoGa1 are
positive one can easily obtain the radius R; (j = 1, 2)

of the ground-state condensate in the axial direction:

V2 (Ioamugl) - J0G12Ngl) ) /2 (16)

Ri=—
! iy IoGao — JoGlz’)’mW’%

Ry, = V2 (1.0011#51) - JoG21#§1)>1/2, (17)

9—11 IoGuvmv% — JoGa1

for the species 1 and the species 2, respectively. The
(1)
J

from the normalized conditions [dzA%qq = 1 and

modified chemical potentials p;’ can be obtained

fda:AgGs = YmYwN2a/N1. For the harmonic poten-

tials given above we have

H1i

I
44/2

(1) _

N.
a <3911 )2/3 IoG11(IoGag — JoGravmy2) '/ + JOGH(%”%}Fj)2/3(100117m73 — JoGa1)V/3
(I3G11Ga2 — JEG12G21)Y/3 ’

(18)

€
H2 44/2
If there is no confinement in the axial direction, i.e.
U,(X) = 0, the modified chemical potentials take the

simple form

pY = I,G11 /Ly + JoGra¥mYwNa/ (M1 Ls), (20)
uél) = JoGa1/L1 + IoGao¥mYuwNa/(N1La), (21)

where L; is the condensate length in the z-direction of
the species j ( = 1, 2). In practice any condensate has
a finite length. But if the length is long enough one
can for simplicity neglect its boundary effect in the ax-
ial direction and the quantity L; can be approximated
by R; given in Egs.(16) and (17). From Egs.(18), (19)
and Eqgs.(20), (21) we see that the correction terms
(1)

of the chemical potentials ujl are the functions of
the parameters vm, Yw, Yz, Gji and Np/N;. Note
that the chemical potential for the species j in phys-

ical units is given by p; = hwiiij. Thus we have

N-
30, 2/3 IOG22(’Ym"/wf)2/3(10011"/m’73 - J0G21)1/3 + J0G21(IOG22 - Jonmﬁ)m
1
( ) (I3G11Ga2 — JZG12G21)'/3

(19)

w1 = hwyy (1+ E,ugl)) and pg = hwyy (Y. + Eﬂgl))-

3. Linear excitations

Now we begin to consider the elementary excita-
tions, i.e. collective modes, created from the ground
state obtained in the preceding section. Because the
system is considered to be strongly confined in the
transverse directions and the trapping potentials in
the axial direction are slow-varying functions of z, the
collective modes with wavelength smaller than the ax-
ial size of the condensate can be created and propagate
in the axial direction. To investigate such excitations
we take A; = Aj(z,7), ¢; = —fi;t + éj(m,'r) with
T = et, then Eqs.(8)—(11) take the form

or or Oz

1, 9%

27 922

—0,  (22)
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Ay | 1 [(8A204y 1, 0% _

ot 'ym< 0z Oz 2A2 oz2 ) 0. (23)
%_18_2_1_1 6;;51 2+U(X)_ (1)
ot  20x%2 2\ Oz ! 1

+ GuloA? + GI2JOA§:| A1 =0, (24)

[% o1 e (8432
oz

2
. —) + Un(X) — pg”
+ Ga1JpA? + GQ2IOA§} Ay = 0. (25)

Note that these equations are valid for both linear and
nonlinear excitations. For linear excitations we take
Aj — Ajgs(X) = efj(x, X, 7) and q~5j = ep;(z, X, T).
Substituting them into Eqgs.(22)-(25) and keeping the
terms only to the power of &, one obtains the lin-
Then by
assuming the plane-wave solution for the fluctua-

tion (f1, f2, 1, 2) =(f10; f20, ¥10, P20)exp(ib) + c.c.,
where 6 = gz — wT is the phase of the plane wave, c.c.

ear equations for f; and ¢; (j = 1,2).

represents the complex conjugate, fjo and ¢ o are in-
dependent of  and 7 but may be functions of the slow
variable X, we get the linear dispersion relation of the

collective modes:

w(q)/q® =wi(q)/q*

1, =~ ~ 1
25(011 + Y Gaz) + g(l + 12
(4 in
+ 1 2(G11 — v, G22)
1 1/2

2
+ (1—%;2)‘12] +16’Y;L1G12G21} )

(26)

2

where G1; = IiG11(A\%g)2, Gra = JoG12(A90)?,
Gar = JoGoi (A2 and Gay = I,Gaa(ANG)2.
(Ag'(gs)2 are given by Egs.(14) and (15). From Eq.(26)
we see that the dispersion curve of the collective modes
has two branches, i. e. the upper branch w (g) and the
lower branch w_(gq).

On the basis of Eqgs.(26) we can discuss the mod-
ulational stability of the ground state. Note that (26)

can be rewritten as
B2wa Q% = b+ /b2 — 4c, (27)

where b = 2G1; + 277;161'22 + (1 +7,2)Q? and ¢ =
(2G11 + Q) (277, G2z + 77,2Q?) — 447! G12Goy with
Q= q/\/§ Because both b and b% — 4c are positive,

wy(q) is always real and thus there is no instability

of the ground state under the perturbation with fre-

quency wy(q). q
¢ < 0. This will happen if Gis, i.e. the repulsive

However, w_(q) will be imaginary if

interaction between two different condensate species,
becomes larger. In this case, the fluctuation will grow
exponentially and thus the ground state of the system
is modulationally unstable. This type of instability is
in fact a type of cross-phase modulational instability,
well known in nonlinear optics.?®l Through this in-
stability the system will undergo a symmetry break-
ing and hence a phase transition into a new ground
state. This may result in the appearance of a phase
separation in space for two condensates with different
species. However, the modulational instability and
hence the phase separation does not occur if ¢ > 0. It
is obvious that the quantity c is always positive when
éu é22 > é12é21. This is just the stability condition
(1 +YmYw)?G11Ga2 — 4G12G2; > 0 mentioned in Sec-
tion 2.2. We see that the parameters of both the trap-
ping potentials and the interactions between like and
unlike species can be used to control the modulational
stability and hence the phase separation. In this work,
in order to have an efficient SHG discussed in the next
section, we assume that there is no phase separation
in the ground state of the system. For small g the
collective modes are actually the low-energy phonons
of the system. From Eq.(26) one obtains the sound

speed c of the system as

dw4 2 1, =~ ~
?=ci = <—) = E(Gll + Yo' G22)
q—0
7. . o q12
+ 5 [(Gll — 7;1G22)2 + 4’)’;1012021 . (28)

We see that the system has two sound speeds, ¢y and
c_, originating from the two components in the con-

densate.

4.Second harmonic generation

4.1. Phase-matching condition

We are interested in a possible SHG based on the
interaction of the propagating collective modes in the
system. As mentioned in the Introduction, for a SHG
to occur, two necessary conditions must be satisfied.
One of them is the phase-matching condition, i.e.

g2 = 2q1, wy = 2wy, (29)

where g1 (g2) and w; (w3) are the wave vector and fre-

quency of the fundamental (second harmonic) waves,
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respectively. Note that, for a single-component con-
densate, one obtains a single branch of Bogoliubov
excitation spectrum, ie. w(q) = gq(c® + ¢%/4)/2,
(see Ref.[13]), which cannot satisfy the SHG phase-
matching condition (29) for any finite ¢ and hence a
SHG is impossible in the single-component conden-
sate. We now show that the two-component BEC,
which has two branches of excitation spectrum, can

provide this possibility.

251

20

15

10

Fig.1. Dispersion curve of a two-component BEC consist-
ing of two different hyperfine spin states |1, —1) and |2,2) of
87Rb in a trap with v;m = vw = vz = 1.0 and the parti-
cle numbers Ny = Ny = 2 x 109.
sent the upper branch, wy(g), and the lower branch, w_(g),

Curves 1 and 2 repre-

respectively. The interaction parameters of the system are
G11 = 1.0, G12 = G271 = 0.9926 and G295 = 1.0027. For the
fundamental wave and the second harmonic wave, the phase-
matched wave vectors and frequencies for the SHG are respec-
tively (g1 = 2.743,w1 = 7.536) and (g2 = 5.486, w2 = 15.072),
which have been illustrated by the points A = (¢1,w1) and
B = (g2, w2) in the figure.

According to the linear dispersion relation given
by (26), we choose w; = wy(q1) and ws = w_(g2) =
w_(2q1).
w_(2q1) = 2w4(q1)- It results in the equation for de-

Then the condition (29) is equivalent to
termining g;:

3 _
5 +7.%)at
=2{[C11 — 7,  Gaz + (1 — ;. 2)d3)?

+ 4’)’;1612621}1/2
2

~ ~ 1
+ { [2(6’11 =¥ G22) + 5 (1 = 7")ad
5 ~ 1/2
+ 16’)’;1 GI2G21} . (30)

This allows a solution of a finite ¢;. In particular,

when 7, = 1, the solution takes the simple form

Q= %[(éu - é22)2 + 4612621]1/4- (31)
Thus the SHG phase-matching condition can be satis-
fied in the two-component BEC due to the multi-value
property of the linear dispersion relation. We see that
one can control experimentally the system parame-
ters Ym, Yuw, Yz, N2/N1 and Gj; (4,1 = 1,2). Shown
in Fig.1 is the dispersion curve of the collective modes
of a two-component BEC consisting of different hy-
perfine spin states |1, —1) and |2,2) of *’Rb,% in a
trap with ¥m = ¥4 = 7z = 1,1 and the particle num-
bers Ny = Ny = 2 x 108. For this system one has
G11 = 1.0, G153 = 0.9926 and Go3 = 1.0027. Note that
both curves are acoustic. The modes satisfying the
phase-matching condition (29) for the SHG have been
clearly shown as the point A = (g1, wy) (the funda-
mental wave) and the point B = (ga, ws) (the second
harmonic wave). From Eq.(31) we obtain ¢; = 2.743
and hence w; = 7.536, g3 = 5.486 and w, = 15.072.
Because the locality (i.e. the dependence on the slow
variable X) in the phase-matching condition (29) in
the SHG process is not significant if the condensate is
long enough, for simplicity here and after we assume
that the system is uniform in the axial direction.
4.2. Nonlinear amplitude equations

We know that an optical SHG occurs in active me-
dia with no inversion symmetry. For trapped atoms
this symmetry is not broken and hence the SHG in
the BEC is possible only when the ground state (con-
This

imposes a constraint that the amplitude of the ex-

densate) is not depleted by the excitations.
citations can not be too large. Here we develop a
weak nonlinear theory for the SHG in the BEC by
making the asymptotic expansion, 2] Aj — Ajgs =
AQy(eFD +2FP 1) and §; = e¢{) +e2¢) +- -
with Fj(l) and ¢§-l) being functions of z, 7 (fast vari-
ables) and X = ez, T = e (slow variables), Egs.(22)-
(25) are transferred into a set of linear equations for
Fj(l) and ¢§-l) (1 =1,2;1=1,2,3,...) (see Appendix
A). Note that due to the asymptotic expansion from
the ground state, these equations become linear but
inhomogeneous. The nonlinear terms in Eqs.(22)—(25)
now become a driving source and some quadratic non-
linear terms appear on the right hand side of the equa-
tions on Fj(l) and ¢§-l) (see Appendix A). This is the

DIn this way, two species have maximum overlap in the ground state. By adjusting the parameters of rotating magnetic field of

TOP trap, one can obtain the same radial and axial oscillation frequencies for the trapping potentials V5 and V5 for the species 1

and the species 2, see Ref.[31].
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reason why a condition for the SHG mentioned in the
Introduction, i.e. the interaction between the excita-
tions must be characterized by a quadratic nonlinear-
ity, can be satisfied under the mechanism based on the
collective-mode interaction.

At the first-order (I = 1), we have the plane-wave

solution:
Fl(l) =Uexp(if) + c.c., (32)

~1
Fz(l) :<@12q2) Li(w,q)Uexp(if) + c.c., (33)

¢§1) = —i(2w/q*)Uexp(if) + c.c., (34)
-1
¢gl) = — 12’)’mw <G12q4)
x Li(w, q)Uexp(if) + c.c., (35)

where 8 = gz — wt is the phase of the plane-wave,
Li(w,q) = w? — (éll +¢?/4)g® and U is a function
of X and T, called the amplitude (or envelope) func-
tion. w is given by (26) (the linear dispersion relation).
Because the linear superposition of plane waves with

different wave vector ¢ is also a solution, we can take

Fl(l) =Uexp(ib1) + Uzexp(ifs) + c.c., (36)

-1
P =(Guae?)  Lafor,an)iexn(on)

1
+ (Glgq§> Ly (wsa, g2)Uszexp(ifs) + c.c., (37)

1) =~ (201 /g})Urexp(i6y)
— i(2ws/q3)Usexp(ifs) + c.c., (38)

—1
gl) = — 129w <Glgqil> Ll(wla ql)UleXp(iel)

1
— 129mws (Glzq§>
X Ly (w2, g2)Uszexp(if2) + c.c., (39)

where ¢1, g2, wi and wy are chosen according to the
SHG phase-matching condition (29), i.e. w1 = w4(q1)
and wy = w_(g2) with go = 2¢;. Uy and U, are the
amplitude functions of the fundamental wave (with
the phase 6; = g1z — w17) and the second harmonic
wave (with the phase 3 = goz — waT), respectively.
At the second-order (I = 2), by solvability condi-

tions we obtain the closed equations for U; and Us:

ou oUu; X .

8—T1 + vgla—); + iUy Usexp(—idgX) = 0, (40)

oU. Uy .

8—T2 + vgga—; +iMUzexp(idgX) = 0, (41)
where

Vg1 = (dw /dq)g=g, and vge = (dw_/dq)g=g,

are respectively the group velocity of the fundamental
and second harmonic waves. The explicit expressions
of the group velocities vg; (j = 1,2) and the nonlinear
coefficients I'; and I's have been given in Appendix B.
In Egs.(40) and (41) we have included a small wave-
vector mismatch g — 2g; = €dq (dq is of order unity).
Equations (40) and (41) are the nonlinear amplitude
equations for the SHG between two collective modes

in the system.
4.3. SHG solutions

We now consider the solutions of Eqs.(40) and
(41) corresponding to the SHG of the system. By the

transformation U; = eu; and note that X = ez and
T = e1, Egs.(40) and (41) can be written as

Ouq ou

e + v B_anl + iMujusexp(—iAgz) = 0, (42)
b3} b3}
% + ’Ug2£ + iluiexp(iAgz) = 0, (43)

where Aq = £dq. For a stationary case, i.e. /01 =
0, and for ¢ = 0, Egs.(42) and (43) admit the

solutions!18]

_ 1/2 _ 1/2 9
ur= ( FlW) sech [£< F2W) m} e, (44)
Vg1 Vg1 Vg2

1/2 1/2
UF<—F2W) tanh[ﬂ(ﬂ) x]eu@mm,

’Ugg ’Ug2

(45)

where W = —(vg1/I1)|u1]? — (vea/I2)|uz|? is a con-
stant denoting the total power of the excitation and
(o is an arbitrary constant. At z = 0, the fundamen-
tal wave takes the total power W of the system and
thus the power of the second harmonic wave is zero.
As z increases the power of the fundamental wave in
converted gradually to the second harmonic wave. At
the distance z, the conversion efficiency of the power
from the fundamental wave to the second harmonic

wave is given by

B 1/2
=20 oy [ﬂ <—F2W) x] (46)
W1(0) Vg1 Vg2

where W;(z) = —(vg;/T})|u;|* is the power of jth
wave. Thus the conversion efficiency for the SHG is
determined by vgj, I'; ( = 1,2), and the propagating

distance .
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Fig.2.

species interaction parameter G (= G12 = G21) and

Conversion efficiency as a function of inter-

input power W for a stationary SHG in the case of
Ym = Yw = Yz = 1.0, Gll = 1.0, G22 = 1.0027.
Curves 1, 2, and 3 correspond to the propagating dis-
tance z = 10.0 with the input power W taking the
values 5.0, 10.0 and 20.0, respectively.

Note that the solutions (44) and (45) are valid
only for (It /vg1)(I'2/vg2) > 0. Because both vg; and
Vg are positive, it is required that Iy and I have
the same sign. It can be shown that, for the case of
Ym = Yo = Yz = 1.0, both I} and Iy are negative for
the interaction parameters Gi; = 1.0, Go2 = 1.0027
when G4 lies in the interval between zero and 1. Thus
the solutions (44) and (45) are physically realizable.

Shown in Fig.2 is the conversion efficiency 7 as a
function of G2 (= G2;1) and the input power W when
taking v, = Yo = vz = 1.0, G11 = 1.0, G2 = 1.0027.
The propagating distance z is taken as 10.0 (i.e. ten
times of the healing length). The curves 1, 2, and 3
correspond to the input power W taking the values
5.0, 10.0 and 20.0, respectively. For G2 = 0.9926,128]
n will be 1.465 x 107° if z = 10.0 and W = 20.0. We
see that, when increasing the interspecies interaction
parameter G19, the conversion efficiency of the power
from the fundamental wave to the second harmonic
wave increases rapidly from zero to a maximum first
and then decreases to a smaller value. This property
of the conversion efficiency can be explained as follows.
If G2 is zero or near zero, the SHG is impossible or the
interaction between the excitations excited from two
species is not significant and hence the conversion effi-
ciency 7 is also small. Increasing G5 results in larger
interaction and thus 7 increases. The reason for the
decrease of 7 after passing over a maximum is that the
interspecies interaction is repulsive. For larger G152 the
overlapping between two species decreases and hence
the decrease of the conversion efficiency.

Figure 3 shows the conversion efficiency as a func-
tion of G2 and the propagating distance (or sample

length) z, in which the parameters v, Y, Yz, G11

and Ga9 are chosen the same as in Fig.2 but the input
power is fixed (W = 10.0). The curves 1, 2, and 3
correspond to the propagating distance z taking the
values 5.0, 10.0 and 20.0, respectively. From Figs.2
and 3 we see that to obtain a significant conversion
efficiency of the SHG, in addition to a large propagat-
ing distance (equivalent to large sample length) and a
large input power (equivalent to large-amplitude fun-
damental wave excitation), one must choose an ap-
propriate interspecies interaction strength Gi5. This
provides us also a possibility for determining G152 by
measuring the SHG conversion efficiency 7.

For the situation when u; (j = 1,2) depend only
on 7, similar results can be obtained as those given by
(44), (45), and (46) by replacing = with 7 and formally
taking vg; = 1 (j = 1,2). If d¢ # 0, i.e. the funda-
mental wave and the second harmonic wave are not
exactly phase-matched, the energy will be exchanged
periodically between two wave modes!*8 which is not

discussed here.

1.0

0.8

0.6 1 3

0.4 7 2

0.2

0.004 0.006  0.008

G

0.0 T
0.000 0.002

Fig.8. Conversion efficiency as a function of inter-
species interaction parameter G (= G12 = Ga21) and
propagating distance z in a stationary SHG for the
case of Ym = Yw = vz = 1.0, G11 = 1.0, G22 = 1.0027.
Curves 1, 2, and 3 correspond to the input power
W = 10.0 with the propagating distance x taking the
values 5.0, 10.0 and 20.0, respectively.

For short-pulse excitations, one cannot assume
8/t = 0 (ie.
a walk-off effect due to different group velocity for

a non-stationary case) and hence

the fundamental and the second harmonic wave

must be taken into account.'® By the transforma-
tion u; = [vglvgg/(Flf’Q)]1/2w1exp(ig0) and uy =
(vg1/T1)waexpli(2¢ + 7/2)] (w1, we and ¢ are real
functions of z and 7) and assumption Aq = 0,
Egs.(42) and (43) become
8’1.1)1 1 8u1
—t—— = 47
oz + Vg1 OT itz (47)
ng 1 8’1.1)2 2
— 4+ —— = —wy. 48
o Ugo OT 1 (48)
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Consider a travelling-wave solution, i.e. take w; (j =
1,2) as functions of z and { = 7 —z/v,1, Eqs.(47) and

(48) are transferred as

9]

% = Wwi1waz, (49)
ng 6’(.02 _ 2

6$ + v 8C - le (50)

where v = 1/vgo — 1/v,1 is a parameter denoting the
If at

z = 0 the fundamental wave and the second harmonic

walk-off (or group-velocity dispersion) effect.

wave take the form:
Ao
14 72/7¢’
w2(O:T) =0, (51)

wy(0,7) =

where 7 is the initial pulse-width and Ay is a constant
representing the initial amplitude of the fundamental
wave, then Egs.(49) and (50) allow the following solu-

tion:

wy (¢, ) = Ao
16, —(1 + 62)1/2[1 + ((‘:“ _ 5.)2]1/2
y L (52)
cosh& + ¢/ fosinh¢
Ter A
w(C, @) :Tm
% jCOSh& + [fO - 5(5; j)/fo] Sinh£7 (53)
cosh& + ¢/ fo

where { = ¢/70, 8 =x/L,, fo = (12/72 —1)V/2, 7 =
vIny, € = fo[tan™' { — tan~({ — Z)] with L, = 7o /v
(walk-off or dispersion length) and Lyi, = 4, ! (non-
linear length).

When the walk-off length is much larger than the
nonlinear length, i.e. L, > Ly, the walk-off effect
can be neglected. In this case the solutions (52) and

(53) is simplified to

wi(¢,z) =

A0~ sech[ A0~ m], (54)
1+¢2 (1+9)

A0~ tanh[ A0~ .’E:| (55)
1+ ¢2 (140)

Obviously, this situation corresponds to a quasi-

wy(¢,z) =

stationary SHG process and only in this case the con-
version efficiency of the power from the fundamental

wave to the second harmonic wave is significant.
5. Discussion and summary

We have made a theoretical prediction of a

SHG for propagating collective excitations in a long

cigar-shaped two-component Bose—FEinstein conden-
sate with a repulsive atom—atom interaction. We have
investigated the ground state of the system and shown
that the linear dispersion relation of the collective
excitations in such system consists of two branches
and thus provides a possibility to fulfil the phase-
matching condition of the SHG if the wave vectors
and frequencies of the fundamental and the second
harmonic waves are chosen adequately from different
dispersion branches. Because the collective excita-
tions under consideration are created from the ground
state of the system, the interaction between these ex-
citations is characterized by a quadratic nonlinearity
and hence another necessary condition for the SHG
can also be satisfied. We have derived the nonlinear
amplitude equations for the SHG using the method of
multiple-scales and presented the SHG solutions sim-
ilar to those obtained for a photon SHG in nonlinear
optical media. The conversion efficiency of power from
the fundamental wave to the second harmonic wave
has also been discussed.

Note that in the experiment of Myatt et al an
elongated magnetic trap was used to create conden-
sates of 2 x 108 atoms in either of the |2,2) or |1, —1)
spin states of 8Rb.[3% In such a two-component BEC
system one has v, = 1.0 and G1; = 1.0, G132 = Go; =
0.9926 and Gy = 1.0027. In order to make the two
species have maximum overlap in the ground state
hence large power conversion efficiency for the SHG
based on the collective modes in the condensate, one
can adjust the parameters of rotating magnetic field
of TOP trap to obtain almost the same radial and ax-
ial oscillation frequencies for the trapping potentials
and hence to obtain v, = 7, = 1.0.31 In this way the
SHG resonance condition shown in Fig.1 can be easily
satisfied.

In fact, the quasi-one-dimensional approximation
used above is not necessary and one can easily ex-
tend the analysis developed here to the case includ-
ing higher-order eigen-modes in the transverse direc-
tions as done for the soliton dynamics in BECs, 33!
and to a two-dimensional or a three-dimensional two-
component condensate. To experimentally test the
prediction predicted in this work, one can use the
method developed in Ref.[34] to generate high fre-
quency and weak nonlinear excitations of small size by
suddenly modifying the trapping potential using opti-
cal dipole force of a focused laser beam. To get a larger
conversion efficiency one can adjust the parameters of

the trapping potential. It is better to use a conden-
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sate long enough (as in Ref.[34]) so that the two wave
modes can have a significant energy transfer. Another
way is to change the interspecies interaction param-
eter G15 using Feshbach resonance technique.3 In-
versely, the measurement of the conversion efficiency
7 in the SHG may provide a possibility to determine
the interspecies interaction parameter Gis for a two-

component BEC.
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The equations controlling the motion of F ;l) and (j);-l) are given by

1) )
BFl 162¢1 — P(l), (56)
or 2 Ox2
ory) 1 9% 0
87' 2’Ym 61‘2 - Q ? (57)
1 82F(l) a¢(l) - 1 - I
5 8;1:; - 671' - 2G’11F11( ) - 2GI2F2() = R(l): (58)
1 _,02F"  agl) 0 O _ @
B R 2Go Y — 2Goy BV = SO, (59)
l=1,2,... with
PO =M = M) = g = ¢, (60)
po__ OF _ORV 08 o 1041 00" 00 1 0%)" (61)
oT dr Oz 1GS X Oz dzdX 2°' 8x2
o —_ 9 OV 0] | o) 941G 941 | 0240 | 1 pa) 2y (62)
oT ™| 0z Oz 1GS 80X Oz 0z0X = 2 oz2 |’
R 94" | pooe” PR _( 40 1P A5Gs | 10817’
aT Y oar 9z0X 168 0x2 2\ oz
—i—3C~7’11(1“—11(1))2 +2@12F1(1)F2( '+ & (F(l)) (63)
52 :a‘ﬁgl) +F(1)a¢gl) ,y—l 82F(1) ( (0) ) 10 Ag(gs . 1 aqﬁgl) ?
aT 2 o zox | 2\has 90Xz 2\ oz
+ 3G (FSV)? + 260 FU R + Ggl(Fl(l))2, (64)
where Ag(gs (j = 1,2) are given by (14) and (15). Higher-order P, Q®), R® and S® (I = 3,4,...) are not

needed for the SHG process. Note that some quadratic nonlinear terms appear in the expressions of P(3), Q)

R® and S@.
Appendix B

The group velocity vg; is given by

Ly (“)J:q])(w T Tm q]/4)+L2(wJan)(w +q]/4)

Vgj = (65)
& qjw;[L1(wj, q5) + L2(wj, g5)]
j=1,2 with L (w,q) = &? = (G11 + ¢3/4)¢* and Ly(w,q) = w? — (7,,' Gz + 7,26 /4) ¢
The expressions of the nonlinear coefficients appearing in Egs.(40) and (41) read
Ay
= , 66
Y7 2wi[Li(wi, 1) + La(wi, a1)] (66)
A
I, = 2 (67)

2ws[L1 (w2, q2) + La(wa, q2)]’
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where
2, A 9 1 Li(w1,q1)L1(wa, q2)
Ay =Lo(w1,q1) |3(wi + G11¢7) + L1(w1,q1) + —L1(w2, ¢2) + =
4 4G12‘11
I 3(w? + ;11@ 2
+ Yo' G12G21q7 + (1 4C~Z 2 22q1)L1(w1;(I1)L1(w2;Q2)
1247
1A 1
+ Y Go14; [Ll(wh q) + ZLI (‘%#12)} ; (68)
24 wi i~ A A4 1A 2
Ay :G—Ll(wl,ql) z + Y Gaz | + 87, G12Ga1q; + 167, G21q7 L1(w1, q1)
12 1
~ 202 (wy,
+ La(ws, g2) [wa +6G11q; +4L1(w1,q1) + {(—12(11) : (69)
G12q1
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