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Surface polaritons in a negative-index metamaterial with active Raman gain
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We propose a scheme to realize stable propagation of linear and nonlinear surface polaritons (SPs) by placing
a N -type four-level quantum emitters at the interface between a dielectric and a negative-index metamaterial
(NIMM). We show that in linear propagation regime SPs can acquire an active Raman gain (ARG) from a pump
field and a gain doublet appears in the gain spectrum of a signal field induced by the quantum interference effect
from a control field. The ARG can be used not only to completely compensate the Ohmic loss in the NIMM
but also to acquire a superluminal group velocity for the SPs. We also show that in the nonlinear propagation
regime a huge enhancement of the Kerr nonlinearity of the SPs can be obtained. As a result, ARG-assisted
(1 + 1)- and (2 + 1)-dimensional superluminal surface polaritonic solitons with extremely low generation power
may be produced based on the strong confinement of the electric field at the dielectric-NIMM interface.

DOI: 10.1103/PhysRevA.91.023803 PACS number(s): 42.65.Tg, 05.45.Yv

I. INTRODUCTION

The study of surface plasmon polaritons (SPPs), i.e., propa-
gating excitations of charge-density waves and their associated
electromagnetic fields along metal-dielectric interfaces, is a
main issue in nanoplasmonics [1,2]. Recently, the resonant
interaction between light and quantum emitters doped at
metal-dielectric interfaces has become an active research
field, which involves quantum-mechanical control of SPPs
at subwavelength scales and quantum optical applications
including the design of active plasmonic devices [3–15].

For many optical processes based on SPPs, long-distance
propagation is necessary. However, the propagation length of
SPPs is severely limited by high Ohmic loss in metals, which
is a main impediment for further progress towards practical
nanoplasmonic devices. Compensating the Ohmic loss with a
gain medium at room temperature has become an important
topic in the research of nanoplasmonics [5]. Up to now,
several schemes for overcoming this limit have been proposed.
One scheme is to introduce two-level quantum emitters into
the dielectric-metal interface [3–8,12,13]. Although the gain
provided by the quantum emitters can be used to compensate
the loss in the metal, restrictions still exist for increasing the
SPP propagation length and obtaining high quantum efficiency
[5]. Several different proposals based on doped multiple-level
quantum emitters in plasmonic structures have also been
suggested [14,15].

Another scheme is to introduce quantum emitters into the
dielectric but with the metal replaced by a negative-index
metamaterial (NIMM) [16]. Here excitations are not SPPs
but surface polaritons (SPs), i.e., surface electromagnetic
waves propagating along a dielectric-NIMM interface. By
using electromagnetically induced transparency (EIT), it was
shown that the SPs have a very small attenuation. References
[17,18] extended this scheme for obtaining a large cross-
phase modulation (CPM) and hence realizing large phase
shifts or maximum entangled states of two optical pulses.
However, to obtain low-loss SPs and large CPM predicted
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in Refs. [16–18], a very low room-temperature condition is
needed.

In this article we propose a scheme to realize stable
propagation of linear and nonlinear SPs. The system we
suggest is a planar waveguide superposed by two-layer media
(one is a NIMM and the other is a dielectric) working at room
temperature, where N -type four-level quantum emitters are
placed at the interface between the two media and interact
with three (pump, signal, and control) laser fields through
an active Raman gain (ARG) [19] mechanism. Our findings
include two aspects. (i) In the linear propagation regime SPs
can acquire an ARG from the pump field and a gain doublet
appears in the gain spectrum of the signal field induced by
the quantum interference effect from the control field. The
ARG can be used not only to completely compensate the
Ohmic loss in the NIMM but also to get a superluminal group
velocity for the SPs [20]. (ii) In the nonlinear propagation
regime a huge enhancement of Kerr nonlinearity of the SPs
can be obtained. As a consequence, ARG-assisted (1 + 1)-
dimensional [(1 + 1)D] and (2 + 1)D superluminal surface
polaritonic solitons with extremely low generation power may
be created based on the strong confinement of the electric field
at the dielectric-NIMM interface. The results predicted here
may have potential applications in light information processing
and transmission at the nanoscale level.

Note that our work is different from Refs. [3–8,12–15],
where only linear SPPs were considered. It is also different
from Refs. [16–18], where the excitation scheme is based
on EIT. Here we explore both the linear and nonlinear SPs
excited along the NIMM-dielectric interface rather than the
metal-dielectric one. At variance with the EIT scheme, where
the signal field operates in an absorption mode and hence its
attenuation still exists, in our ARG scheme the signal field
operates in a stimulated Raman emission mode, which leads
to different propagation characteristics without loss and the
system can work at room temperature.

The rest of the article is arranged as follows. In Sec. II
we describe our theoretical model. In Sec. III we discuss
superluminal SPs via ARG at the linear level. In Sec. IV we
investigate the nonlinear dynamics of the superluminal SPs and
show that the system possesses a huge Kerr nonlinearity and
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supports (1 + 1)D superluminal surface polaritonic solitons. In
Sec. V we show that (2 + 1) superluminal polaritonic solitons
can also be obtained. Finally, in Sec. VI we summarize the
main results obtained in this work.

II. MODEL

Consider a planar waveguide superposed by a NIMM
in the lower half plane z < 0 (with permittivity ε1 and
permeability μ1) and a dielectric in the upper half z >

0 (with permittivity ε2 and permeability μ2) [Fig. 1(a)].
Quantum emitters denoted by black dots (they may be
atoms, quantum dots, etc.) with an N -type level configura-
tion are doped in the thin layer of the dielectric near the
NIMM-dielectric interface and interact with three (pump,

signal, and control) laser fields with angular frequency ωp,
ωs , and ωc, respectively (the inset of Fig. 1). The |j 〉 (j =
1,2,3,4) are the energy levels of the quantum emitters and the
�j (j = 2,3,4) are the corresponding detunings. The energy
levels |1〉, |2〉, and |3〉 combined with the pump and control
fields constitute a typical ARG core [19]. Surface polaritons
are excited at the NIMM-dielectric interface and propagate in
the positive x direction.

Different from metal-dielectric interfaces where only the
transverse magnetic (TM) mode is allowed [1], the present
system supports both the TM mode and the transverse electric
mode [16]. For simplicity we consider only the TM mode here.
Solving Maxwell equations in the absence of the quantum
emitters, one obtains the expression of the TM mode

E(r,t) =

⎧⎪⎨⎪⎩
(kez − ik2ex) c

ε2ωl

√
�ωl

ε0LxLyLz
â(ωl)e−k2z+i(kx−ωl t) + c.c., z > 0

(kez + ik1ex) c
ε1ωl

√
�ωl

ε0LxLyLz
â(ωl)ek1z+i(kx−ωl t) + c.c., z < 0,

(1)

where ex (ez) is the unit vector along the x (z) direction, ωl is
the oscillating frequency, k2

α = k2 − ω2
l εαμα/c2 satisfies the

relation k1ε2 = −k2ε1, Lx (Ly) is the length of the NIMM-
dielectric interface along the x (y) direction, Lz is the mode
length in the z direction with the expression given by Eq. (A3),
k = k(ωl) = (ωl/c)[ε1ε2(ε1μ2 − ε2μ1)/(ε2

1 − ε2
2)]1/2 is the

propagation constant of the SP mode, and â(ωl) is the creation
operator of TM photons (see Appendix A for details). We
assume the photon numbers in all three laser fields are much
larger than one, so â(ωl) can be taken as the c-number a(ωl).

The Drude model is chosen to describe the permittivity
and permeability of the NIMM, i.e., ε1 = ε1(ωl) ≡ ε∞ −
ω2

e/[ωl(ωl + iγe)] and μ1 = μ1(ωl) ≡ μ∞ − ω2
m/[ωl(ωl +

iγm)]. Here ωe (γe) is the electric plasma frequency (decay
rate), ωm (γm) is the magnetic plasma frequency (decay rate),
and ε∞ and μ∞ are background constants. At variance with
conventional metal-dielectric interfaces, the SP loss along the
NIMM-dielectric interface can be largely suppressed and even
a lossless point [i.e., the point with Im(k) = 0] exists for

SP

Dielectric

Metamaterial

0

FIG. 1. (Color online) Surface polaritons excited via ARG at the
interface between a NIMM (with permittivity ε1 and permeability
μ1 in the region z < 0) and the dielectric (with permittivity ε2 and
permeability μ2 in the region z > 0). the inset shows the energy-level
diagram and ARG excitation scheme for the N -type quantum emitters
(denoted by black dots) doped in the dielectric near the interface. Here
ωp (ωc,ωs) is the angular frequency of the pump, control, and signal
field and �j is the detuning, with j = 2,3,4, respectively.

a particular value of ωl due to the destructive interference
between electric and magnetic responses [16], shown as the
blue solid line for the NIMM and black dash-dotted line for
the metal in Fig. 2. The system parameters are given by [16]
ε2 = 1, μ2 = 1, ε∞ = 6.5, μ∞ = 6.5, ωe = 1.37 × 1016 s−1,
γe = 2.37 × 1013 s−1 (as for Ag), ωm = 1015 s−1, and γm =
1012 s−1.

Unfortunately, the suppression of the SP loss is always
accompanied by a deconfinement of the SP in the dielectric
[i.e., Re(1/k2) → ∞ when Im(k) → 0], shown as the red
dashed and blue solid lines in Fig. 2. To obtain an acceptable
suppression of the SP loss and a required SP confinement
simultaneously, one is forced to select an appropriate excitation
frequency ωl that has a small deviation from the lossless
point. As a result, a small SP loss still exists [16–18]. One
aim of the present work is to show that this small SP loss
can be eliminated completely in our system (see Sec. III
below).
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FIG. 2. (Color online) The Im(k) of the SP in the NIMM (blue
solid line) and metal (black dash-dotted line) and the Re(1/k2) of the
electric field in the dielectric over the NIMM (red dashed line) as
functions of optical oscillating frequency ωl .
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We now derive the equations of motion describing
the resonant interaction between the TM mode and the
four-level quantum emitters (hereafter we assume they are
atomic gases for simplicity) with an N -type level configu-
ration, in which the pump field couples the levels |1〉 and
|3〉, the signal field couples the levels |2〉 and |3〉, and
the control field couples the levels |2〉 and |4〉 (Fig. 1).
For simplicity, we assume that the pump, signal, and
control fields belong to the TM mode given by Eq. (1).
Thus we have E(r,t) = ∑

l=p,c,s Elul(z)ei[k(ωl )x−ωl t] + c.c.,
with El = (�ωl/ε0LxLyLz)1/2a(ωl) and ul(z) = c[k(ωl)ez −
ik2(ωl)ex]e−k2(ωl )z/ε2ωl .

Under the rotating-wave approximation, the Hamiltonian
of the system in the interaction picture reads

Hint = −�

⎡⎣ 4∑
j=1

�j |j 〉〈j | + ζp(z)�p|3〉〈1| + ζs(z)�s |3〉〈2|

+ ζc(z)�c|4〉〈2| + H.c.

⎤⎦ , (2)

where �1 = 0, �2 = ωp − ωs − (E2 − E1)/�, �3 = ωp −
(E3 − E1)/�, and �4 = ωc + ωp − ωs − (E4 − E1)/� are de-
tunings (with Ej the eigenenergy of the state |j 〉); ζc(z) ≈
ζs(z) ≈ ζp(z) = e23 · us(z) ≡ ζ (z) (because ωc ≈ ωs ≈ ωp);
eij is the unit vector of the electric dipole matrix element
pij associated with the transition from state |i〉 to state |j 〉, i.e.,
pij = eijpij ; and �p = |p31|Ep/�, �s = |p32|Es/�, and �c =
|p42|Ec/� are the half Rabi frequencies of the pump, signal, and
control fields with the amplitudes Ep, Es , and Ec, respectively.
The motion of atoms is governed by the Bloch equation

i�

(
∂

∂t
+ 


)
σ = [Hint,σ ], (3)

where σ is a 4 × 4 density matrix in the interaction picture
and 
 is a 4 × 4 relaxation matrix describing the spontaneous
emission and dephasing of the system. Explicit expressions
of Eq. (3) are presented in Appendix B.

The evolution of the electric field in the system is
controlled by the Maxwell equation ∇2E − (1/c2)∂2E/∂t2 =
(1/ε0c

2)∂2P/∂t2 with the electric polarization intensity given
by

P(r,t) = Na

∫ ∞

−∞
dvf (v)(p13σ31e

i(kpx−ωpt)

+ p23σ32e
i(ksx−ωs t) + p24σ42e

i(kcx−ωct) + c.c.), (4)

where Na is atomic density and f (v) =
1/

√
πvT exp[−(v/vT )2] is the velocity distribution function,

with vT = (2kBT /M)1/2 the most probable atomic speed at

temperature T . The Doppler width defined by �ωD ≡ ksvT is
usually adopted to derive analytic expressions without losing
the validity of the analysis. Under the slowly varying envelope
approximation the Maxwell equation reduces to

i

(
∂

∂x
+ 1

neffc

∂

∂t

)
�s + κ23

∫ ∞

−∞
dvf (v)〈σ32〉 = 0, (5)

where κ23 = Naωs |p32|2/2�ε0c, c is the light speed in vac-
uum, and neff = cks(ωs)/ωs is the effective refraction index.
The average in the second term is defined by 〈ψ(z)〉 ≡∫ +∞
−∞ dz ζ ∗(z)ψ(z)/

∫ +∞
−∞ dz|ζ (z)|2.

III. SURFACE POLARITONS VIA ARG THE IN LINEAR
PROPAGATION REGIME

We first study the linear excitations, i.e., SPs, of the system.
To this end, we must know the base state of the Maxwell-Bloch
(MB) equations (3) and (5). The base state is the state in the
absence of the signal field �s = 0 and ∂/∂t = 0. Then the
base state reads

σ
(0)
11 = 
14|ζ (z)�c|2[
3X31 + |ζ (z)�p|2]

D
, (6a)

σ
(0)
22 = 
23|ζ (z)�p|2[
4X42 + |ζ (z)�c|2]

D
, (6b)

σ
(0)
33 = 
14|ζ (z)�c|2|ζ (z)�p|2

D
, (6c)

σ
(0)
44 = 
23|ζ (z)�c|2|ζ (z)�p|2

D
, (6d)

σ
(0)
31 = −ζ (z)�p

d31


14
3X31|ζ (z)�c|2
D

, (6e)

σ
(0)
42 = −ζ (z)�c

d42


23
4X42|ζ (z)�p|2
D

, (6f)

with X31 ≡ |d31|2/2γ31, X42 ≡ |d42|2/2γ42, and D ≡

14|ζ (z)�c|2[
3X31 + 2|ζ (z)�p|2] + 
23|ζ (z)�p|2[
4X42 +
2|ζ (z)�c|2].

We now focus on the linear excitation of the system:
When the signal field is switched on, the system will involve
into a time-dependent state. In the linear regime, i.e., at
the first order of �s , the population and the coherence
between both the states |1〉 and |3〉 and the states |2〉 and
|4〉 are not changed. The linear excitation of the system
can be obtained by linearizing the MB equations (3) and
(5) around the base state. By taking σjl = σ

(0)
j l + εσ

(1)
j l and

�s = ε�(1)
s , where ε is a small parameter denoting the typical

amplitude of �s , we obtain the linear (first-order) solu-
tion �(1)

s = Feiφ , σ
(1)
32 = a

(1)
32 ζ (z)Feiφ , σ

∗(1)
21 = a

∗(1)
21 ζ (z)Feiφ ,

σ
∗(1)
43 = a

∗(1)
43 ζ (z)Feiφ , and σ

∗(1)
41 = a

∗(1)
41 ζ (z)Feiφ , with other

σ
(1)
j l = 0. Here F is a constant, φ = K(ω)x − ωt [21], and

K = ω

neffc
+ κ23

∫ ∞

−∞
dvf (v)

〈
ζ (z)

B
(
σ

(0)
33 − σ

(0)
22

) − [Dp + |ζ (z)�c|2]ζ (z)�pσ
∗(0)
31 − [Dc + |ζ (z)�p|2]ζ (z)�cσ

∗(0)
42

(ω + d32)B − |ζ (z)�p|2[Dp + |ζ (z)�c|2] − |ζ (z)�c|2[Dc + |ζ (z)�p|2]

〉
(7)

is the linear dispersion relation of the excitation, with Dc ≡ (ω − d∗
21)(ω − d∗

41) − |ζ (z)�c|2, Dp ≡ (ω − d∗
41)(ω − d∗

43) −
|ζ (z)�p|2, and B ≡ (ω − d∗

21)(ω − d∗
41)(ω − d∗

43) − (ω − d∗
21)|ζ (z)�p|2 − (ω − d∗

43)|ζ (z)�c|2. The explicit expressions of a
(1)
32 ,

a
∗(1)
21 , a

∗(1)
43 , and a

∗(1)
41 are given in Appendix C.
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FIG. 3. (Color online) Linear dispersion relation of SPs: (a) −Im(K) and (b) RK(K) as functions of ω. The blue solid (red dashed) line is
for the case with (without) the Doppler effect.

In Figs. 3(a) and 3(b), −Im(K) (characterizing the gain
spectrum) and Re(K) (characterizing the refractive index) are
plotted as functions of ω. In both panels, the blue solid (red
dashed) line is for the case with (without) the Doppler effect.
The system parameters are given by 
3 = 
4 = 6 MHz, 
13 =

23 = 
14 = 
24 = 
3/2, γ21 = 1 kHz, �2 = �4 = 0, �3 =
2 GHz, �p = 3 MHz, �c = 10 MHz, �ωD = 250 MHz, and
κ23 = 5 × 1010 s−1 cm−1.

We see from Fig. 3(a) that when the Doppler effect is absent
the gain spectrum displays a gain doublet in which the width
between the two peaks of the doublet is very wide (the red
dashed line). However, when the Doppler effect is present
the width of the doublet becomes very narrow and the peaks
become asymmetric and are amplified significantly (the blue
dashed line). Such a gain property can be used to compensate
the Ohmic loss near the lossless point of Im(k) described in
the preceding section.

From Fig. 3(b) we see that the system has an abnormal dis-
persion near ω = 0 [i.e., ∂ Re(K)/∂ω < 0] and the dispersion
property is quite different for the cases with and without the
Doppler effect. In the presence of the Doppler effect, Re(K)
has a much steeper slope near ω = 0 than that without the
Doppler effect, which means that the superluminal effect can
be largely enhanced by the Doppler effect.

The physical reason for the property of the linear dispersion
relation of the system described above is the following. Due
to the Doppler effect, atoms with different velocities have
different contributions to the gain spectrum. After the Doppler
averaging, all contributions result in constructive interference.
As a result, the two peaks in the gain spectrum are narrowed
and greatly amplified. Furthermore, due to the large detuning
�3, the weights for the thermal motion of different atoms
change very much, which results in the breaking of the gain
spectrum’s symmetry.

IV. SURFACE POLARITONS VIA ARG IN THE
NONLINEAR PROPAGATION REGIME

A. Nonlinear envelope equation and giant Kerr nonlinearity

We now investigate the nonlinear excitations, in particular
superluminal optical solitons, of the system. For this aim, we
take the asymptotic expansion [22] σjl − σ

(0)
j l = ∑

m εmσ
(m)
j l

and �s = ∑
m εm�(m)

s , where all quantities on the right-hand
side of the asymptotic expansion are considered as functions of
the multiscale variables xm = εmx (m = 0,1,2) and tm = εmt

(m = 0,1). Substituting the expansion into the MB equations,
we obtain a series of linear but inhomogeneous equations for
σ

(m)
ij and �(m)

s (m = 1,2,3,4), which can be solved order by
order.

The zeroth-order (m = 0) and the first-order (m = 1)
solutions are the same as that given in the preceding section,
by now φ = K(ω)x0 − ωt0 and F is the yet to be determined
envelope function of the slow variables t1, x1, and x2. In the
second order (m = 2), a divergence-free solution for �(2)

s gives
the solvability condition

i

(
∂

∂x1
F + 1

Vg

∂

∂t1
F

)
= 0, (8)

which means that F travels with group velocity Vg ≡
(∂K/∂ω)−1. Explicit expressions of the second-order solution
are given in Appendix D.

In the third order (m = 3) the solvability condition for �(3)
s

requires

i
∂F

∂x2
− 1

2
K2

∂2F

∂t2
1

− W |F |2Fe−2ᾱx2 = 0, (9)

where ᾱ = ε2Im(K), K2 = ∂2K/∂ω2 is the coefficient char-
acterizing group-velocity dispersion, and

W = κ23

∫ ∞

−∞
dvf (v)

〈
ζ (z)|ζ (z)|2 B

(
a

(2)
22 − a

(2)
33

) + [Dp + |ζ (z)�c|2]ζ (z)�pa
∗(2)
31 + [Dc + |ζ (z)�p|2]ζ (z)�ca

∗(2)
42

(ω + d32)B − |ζ (z)�p|2[Dp + |ζ (z)�c|2] − |ζ (z)�c|2[Dc + |ζ (z)�p|2]

〉
(10)
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FIG. 4. (Color online) Giant Kerr nonlinearity. Third-order opti-
cal susceptibility −Re(χ (3)

ss ) as a function of ω with confinement (blue
solid line) and with no confinement (red dashed line).

is the coefficient characterizing the self-phase modulation of
the signal field. The third-order nonlinear optical susceptibility
χ (3)

ss is proportional to W via the relation

χ (3)
ss = 2c

ωs

|p23|2
�2

W. (11)

Shown in Fig. 4 is −Re(χ (3)
ss ) as a function of ω when there

is confinement [i.e., with the mode modulation ζ (z), the blue
solid line] and no confinement [i.e., ζ (z) = 1, the red dashed
line]. The system parameters are chosen to be the same as those
used in Fig. 3, but here �c = 20 MHz. We see that |Re(χ (3)

ss )|
is significantly enhanced due to the light confinement near the
NIMM-dielectric interface. Typically, we have

Re(χ (3)
ss ) = −5.02 × 10−3 cm2 V−2 (12)

for ω = 1.0 × 105 s−1. This value corresponds to the Kerr
coefficient n2 = 3 Re(χ (3)

ss )/[2(1 + 2cK/ωs)1/2] = −7.53 ×
10−3 cm2 V−2. Hence the system possesses a giant Kerr
nonlinearity, which is very useful for practical applications
of nonlinear optics, e.g., the formation of surface polaritonic
solitons, as described below. Combining the solvability condi-
tions at the second and third orders, we obtain the dimensional
envelope equation

i
∂

∂x
U − 1

2
K2

∂2U

∂τ 2
− W |U |2Ue−2αx = 0, (13)

with τ = t − x/Vg and U = εF .

B. Superluminal surface polaritonic solitons

Since Eq. (13) obtained above has complex coefficients,
i.e., it is a Ginzberg-Landau equation, it does not allow a
stable soliton solution in general. However, as shown below,
we can find a realistic parameter set under the ARG condition
to make the imaginary parts of these coefficients much smaller
than their corresponding real parts. Thus shape-preserving
nonlinear localized solutions that can propagate a long distance
without a significant distortion are available.

For an analytical analysis, we first neglect the small
imaginary parts of the coefficients and take ω = 0. Then

Eq. (13) can be converted into the dimensionless form

i
∂

∂s
u + ∂2

∂σ 2
u + 2|u|2u = 0, (14)

with s = −x/2LD , σ = τ/τ0, and u = U/U0. Here τ0 is a
typical pulse duration, LD = τ 2

0 /K̃2 is a typical dispersion
length, and U0 = (K̃2/W̃ )1/2/τ0 is a typical half Rabi fre-
quency of the signal field, with K̃2 and W̃ the real parts
of K2 = (∂2K/∂ω2)|ω=0 and W |ω=0, respectively. A single-
soliton solution in terms of the half Rabi frequency is

�s = [(K̃2/W̃ )1/2/τ0]sech[(t − x/Ṽg)/τ0]

× exp[i(K̃0 + 1/2LD)x],

with K̃0 = Re(K)|ω=0, which describes a bright soliton travel-
ing with the propagating velocity Ṽg = [Re(∂K/∂ω)]−1|ω=0.
The corresponding signal field is a surface polaritonic soliton
with the form

Es(r,t) = �

|p23|τ0

√
K̃2

W̃
us(z)sech

[
1

τ0

(
t − x

Ṽg

)]
× exp

{
i

[(
k(ωs) + K(ω) + 1

2LD

)
x

− (ωs + ω)t

]}
+ c.c. (15)

We see that the total absorption of the surface polaritonic
soliton is given by Im[k(ωs) + K(ω)]. As indicated in Sec. II,
to obtain light-field confinement one should choose ωs to
deviate from the lossless point (i.e., the point Im[k(ωs)] = 0)
so Im[k(ωs)] > 0, i.e., the Ohmic loss of the system is
unavoidable if the quantum emitters are not used. In our
system, the Ohmic loss can be completely eliminated by
using the quantum emitters under the ARG condition because
ImK(ω) < 0 for a nonzero ω. That is to say,

Im[k(ωs) + K(ω)] ≈ 0. (16)

Consequently, the problem between the confinement and the
suppression of the Ohmic loss, which is usually needed to be
traded off, is solved in our system. As a result, the linear and
nonlinear surface polaritons can propagate for a fairly long
distance (about 1 cm) with nearly no absorption.

We now give a realistic parameter set for the formation of
a lossless surface polaritonic soliton. For a 85Rb atomic vapor,
we choose �p = 3 MHz, �c = 8 MHz, �3 = 2.0 × 109 s−1,
τ0 = 1.0 × 10−6 s, ωs = 3.84 × 1014 s−1, �4 = 0 s−1, and
�2 = 4.01 × 104 s−1 and the other parameters are the same
as those given above. Then we obtain Im(k) = 0.183 cm−1

and Im(K) = −0.182 cm−1 and hence Im(k + K) = 0.001
cm−1. Furthermore, we have K2 = −(8.23 + 0.20i) × 10−11

cm−1 s2, W = −(9.11 + 0.036i) × 10−15cm−1 s2, LD =
LNL = 0.92 cm, and U0 = 9.5 × 107 s−1. One can see that
the imaginary parts of K2 and W are indeed much smaller
than their corresponding real parts. The physical reason for
such small imaginary parts is contributed by the quantum
interference effect contributed by the control field.
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FIG. 5. (Color online) Propagation and interaction of superluminal surface polaritonic solitons: (a) wave shape |�s/U0|2 for a
superluminal surface polaritonic soliton as a function of x/LD and t/τ0 and (b) collision between two superluminal surface polaritonic
solitons.

Using the above, we obtain the propagating velocity of the
surface polaritonic soliton

Ṽg ≈ −2.17 × 10−4c, (17)

which means that the surface polaritonic soliton travels
with a superluminal velocity. The threshold of the optical
power density P̄max for generating the superluminal surface
polaritonic soliton can be calculated by using Poynting’s vector
[22]. We obtain

P̄max = 2.61 μW. (18)

Thus, very low input power is needed to generate the surface
polaritonic soliton. The reason for such low generation power
is the giant Kerr nonlinearity of the system, also contributed by
the quantum interference effect contributed by the control field.

The stability of the superluminal surface polaritonic soliton
is checked by using a numerical simulation. Figure 5(a) shows
the wave shape of |�s/U0|2 as a function of x/LD and t/τ0.
The result is obtained by numerically solving Eq. (13) with
full complex coefficients taken into account. We see that the
soliton remains almost unchanged for propagation distances
up to 4 cm, and much longer than that (several millimeters)
for the linear surface polariton obtained in Ref. [16].

A simulation of the collision between two superluminal
surface polaritonic solitons is also carried out, with the result
presented in Fig. 5(b). We see that the two solitons keep their
identity after the collision.

V. THE (2 + 1)D SUPERLUMINAL SURFACE
POLARITONIC SOLITONS

In the discussion given above, an assumption was impli-
cated in Eq. (5), i.e., the motion of the SPs is independent
of the transverse coordinate y, which is valid only for the
probe pulse with large transverse spatial width. Because the
NIMM-dielectric interface is a plane, such an assumption will
be broken if the transverse width of the pulse is small. In this
case Eq. (5) is replaced by

i

(
∂

∂x
+ 1

neffc

∂

∂t

)
�s + c

2ωs

(
∂2

∂x2
+ ∂2

∂y2

)
�s

+ κ23

∫ ∞

−∞
dvf (v)〈σ32〉 = 0, (19)

i.e., the diffraction effect must be taken into account.
To obtain stable polaritonic solitons in 2 + 1 dimensions,

we assume that the half Rabi frequency of the control field
is spatially modulated with �c = �(0)

c [1 + ε2�(2)
c (y)], where

�(0)
c is a constant and �(2)

c (y) is a slowly varying function of y

[i.e., �(2)
c (y1) with y1 = εy]. Then the envelope equation (13)

is replaced by

i
∂

∂x
U − 1

2
K2

∂2U

∂τ 2
+ c

2ωs

∂2U

∂y2
− W |U |2Ue−2αx

+V (y)U = 0, (20)

where

V (y) = κ23

∫ ∞

−∞
dvf (v)

〈
ζ (z)

ζ (z)�(0)
c �(2)

c (y)a∗(1)
43 − [Dc + |ζ (z)�p|2]ζ (z)�(0)

c P1 − [
Dp + ∣∣ζ (z)�(0)

c

∣∣2]
ζ (z)�pP2

(ω + d32)B − |ζ (z)�p|2[Dp + ∣∣ζ (z)�(0)
c

∣∣2] − ∣∣ζ (z)�(0)
c

∣∣2
[Dc + |ζ (z)�p|2]

〉
, (21)

with

P1 = ζ ∗(z)�∗(0)
c �∗(2)

c (y)
[
a

(1)
32 − ζ (z)�pa

∗(1)
21

/
(ω − d∗

41)
]

and

P2 = ζ (z)�(0)
c �(2)

c (y)a∗(1)
41

+ ∣∣ζ (z)�(0)
c

∣∣2
�∗(2)

c (y)a∗(1)
21

/
(ω − d∗

41).

Expression (21) is an external potential contributed by the
modulation part of the control field, which can be used to
arrest the collapse of (2 + 1)D surface polaritonic solitons.
Generally, the nonlinear coefficient W is y dependent [i.e.,
W = W (y)], with the expression of W (y) the same as that
given in (10). Because the populations in states |2〉 and |4〉 are
very small, the contribution from �(2)

c (y) is negligible, i.e., W

has only a very weak dependence on y.
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FIG. 6. (Color online) Propagation of (2 + 1)D superluminal surface polaritonic solitons by taking |�s/U0|2 as a function of η, τ , and s:
(a) initial hyperbolic secant pulse at s = 0, (b) the (2 + 1)D surface polaritonic soliton by evolving the initial hyperbolic secant pulse to the
distance s = 1, and (c) the (2 + 1)D surface polaritonic soliton at s = 2.

Neglecting the small imaginary part of the coefficients and
taking ω = 0, Eq. (20) can be written into the dimensionless
form

i
∂u

∂s
+ ∂2u

∂σ 2
+ 2|u|2u − d1

∂2u

∂η2
− V ′(η)u = 0, (22)

with s = −x/2LD , σ = τ/τ0, η = y/Ry , u = U/U0, d1 =
LD/Ldiff , and V ′(η) = 2LDV (y). Here Ry is the spatial width
of the probe pulse in the y direction and Ldiff = ωsR

2
y/c is the

characteristic diffraction length.
We give a realistic parameter set for the formation

of a (2 + 1)D surface polaritonic soliton in the
system. For a 85Rb atomic vapor, we choose �(0)

c =
9 MHz, �(2)

c (y) = 8 exp[−y2/(2Ry)2], τ0 = 5.0 × 10−7 s,
�2 = 4.09 × 105 s−1, and Ry = 100 μm and the other
parameters are the same as those given in the previous
section. We obtain K2 = (2.93 − 0.83i) × 10−13 cm−1 s2,
W = (4.07 − 1.15i) × 10−18cm−1 s2, V (y) = (−5.65 +
0.48i)exp[−y2/(2Ry)2] cm−1, LD = LNL = 0.85 cm,
Ldiff = 1.28 cm, and U0 = 5.37 × 108 s−1. One can see that
the imaginary parts of K2, W , and V (y) are indeed much
smaller than their corresponding real parts.

We numerically solve Eq. (22) by using a split-step Fourier
method. Figure 6 shows the result of the signal-field intensity
|�s/U0|2 as a function of η, τ0, and s. In the numerical
simulation a hyperbolic-secant-type initial pulse [i.e., u =
sech(τ 2 + η2)] is taken, as shown in Fig. 6(a). Plotted in
Fig. 6(b) is the result of the signal field by evolving the initial
pulse to the propagation distance s = 1. We see that the initial
pulse is compressed in the η direction and the strength of the
signal field increases, meaning that the initial pulse evolves to
a (2 + 1)D surface polaritonic soliton. Illustrated in Fig. 6(c) is
the signal field at the propagation distance s = 2. We see that
the (2 + 1)D surface polaritonic soliton can indeed propagate
stably for a fairly long distance.

VI. CONCLUSION

In recent years, nonlinear plasmon excitations propagating
along dielectric-metal interfaces, i.e. surface plasmon solitons,
have attracted much attention [23–27]. However, our work
is different from Refs. [23–27] because what we considered
here is a dielectric-NIMM interface doped with quantum
emitters. Furthermore, the group-velocity dispersion effect of
the SPs were taken into account in our work. In addition, the
nonlinearity of our system comes from the resonance between
the quantum emitters and the signal, pump, and control fields.

Because the pump, signal, and control fields are weak and far
from material resonances, both the dielectric and the NINM
can be safely taken as linear optical materials.

Recently, a type of superluminal SP was discussed via a
coherent population oscillation (CPO) [28]. The present ARG
scheme suggested in the present work is very different from
the CPO scheme of Ref. [28] and possesses many attractive
advantages. The reasons are the following. (i) To acquire a gain
in the CPO scheme some particular requirements are needed
that are not easy to fulfill. In the present ARG scheme the
system always has a gain. Due to the quantum interference
effect (which is absent in the CPO scheme) contributed by
the control field, the gain can be enlarged and can be used
to completely eliminate the Ohmic loss in the NIMM. (ii) In
the CPO scheme a harmful influence of the four-wave-mixing
effect is hard to avoid, while in the ARG scheme such a mixing
effect is absent. (iii) The Kerr nonlinearity obtained in the
CPO scheme is much smaller than that in the ARG scheme.
(iv) The superluminal polaritonic solitons in the ARG scheme
are easier to realize and manipulate experimentally than in the
CPO scheme.

Note that the experimental research of SPs excited in an
air-NIMM interface has been carried out in the microwave
regime [29] and recent efforts have moved to the optical
frequency regime [30]. One outstanding work is the realization
of a NIMM at 780 nm [31]. To experimentally realize the
theoretical model and test the calculated results presented in
our work, one can design an experimental setup with the
geometry shown in Fig. 1. The SPs can be excited at the
dielectric-NIMM interface via the technique of optical grating
coupling or end-fire coupling [1]. In the dielectric region near
the interface, dilute quantum emitters are doped. The pump,
control, and signal fields are selected from the TM mode
of the electric field that propagates along the x direction.
Because the electric field decays exponentially away from
both sides of the interface, stacking several layers or even one
layer of the NIMM is enough.

In conclusion, we have suggested a scheme to realize
stable propagation of linear and nonlinear SPs by placing
N -type four-level quantum emitters at the interface between
a dielectric and a NIMM. We have shown that in the linear
propagation regime the SPs can acquire an ARG from a pump
field and a gain doublet appears in the gain spectrum of the
signal field induced by the quantum interference effect from
a control field. The ARG can be used not only to completely
compensate the Ohmic loss in the NIMM but also to acquire a
superluminal group velocity for the SPs. We have also shown
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that in the nonlinear propagation regime a huge enhancement
of the Kerr nonlinearity of the SPs can be obtained. As a
result, ARG-assisted (1 + 1)D and (2 + 1)D superluminal
surface polaritonic solitons with extremely low generation
power can be generated based on the strong confinement of the
electric field at the dielectric-NIMM interface. The huge Kerr
nonlinearity obtained here can also be used to realize some
additional nonlinear optical processes and may have promising
applications in light information processing and transmission
at the nanoscale level based on the NIMM. Thus the present
work opens an avenue for the research of nanotechnology
nonlinear and quantum optics.
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APPENDIX A: THE TM MODE OF THE
ELECTROMAGNETIC FIELD

We assume that the SP propagates in the positive
x direction. The form of TM mode of the electro-

magnetic (EM) field is H(r,t) = −eyH (z)eiθ + c.c. and
E(r,t) = E(z)eiθ + c.c., with θ = kx − ωlt . Substitution of
these expressions into Maxwell equations yields E(r,t) =
(i/ε0εωl){[dH (z)/dz]ex − ikH (z)ez}eiθ + c.c. Here H (z)
satisfies the equation ∂2H (z)/∂z2 + (ω2

l εμ/c2 − k2)H (z) =
0, which can be solved in combination with the boundary
conditions of the EM field. Then one obtains [16]

E(r,t) =
⎧⎨⎩(kez + ik1ex) A

ε0ε1ωl
ek1z+iθ + c.c., z < 0

(kez − ik2ex) A
ε0ε2ωl

e−k2z+iθ + c.c., z > 0,

(A1a)

H(r,t) =
{−eyAek1z+iθ + c.c., z < 0
−eyAe−k2z+iθ + c.c., z > 0,

(A1b)

where A is an arbitrary constant, eα (α = x,y,z) is the unit
vector along the α direction, and k2

j ≡ k2 − ω2
l εjμj/c

2 (j = 1
for the NIMM and j = 2 for the dielectric) satisfies the relation
k1ε2 = −k2ε1. The propagation constant of the SP is given by
k(ωl) = ωl[ε1ε2(ε1μ2 − ε2μ1)/(ε2

1 − ε2
2)]1/2/c.

The energy of the pulsed EM field can be expressed
as U = 1

2

∫ ∫ ∫
dx dy dz(ε0ε̃|E|2 + μ0μ̃|H|2), with ε̃ ≡

Re[∂(ωlε)/∂ωl] and μ̃ ≡ Re[∂(ωlμ)/∂ωl]. Based on the above
formula, we obtain a quantized electric field with the form

E(r,t) =

⎧⎪⎨⎪⎩
(kez + ik1ex) c

ε1ωl

√
�ωl

ε0LxLyLz
â(ωl)ek1z+iθ + c.c., z < 0

(kez − ik2ex) c
ε2ωl

√
�ωl

ε0LxLyLz
â(ωl)e−k2z+iθ + c.c., z > 0,

(A2)

where â(ωl) is the creation operator of TM photons, Lx and Ly are the lengths of the NIMM-dielectric interface in the x and y

directions, respectively, and Lz is defined as

Lz ≡ 1

2

[
ε̃1

|k1|
c2

ω2
l

|k|2 + |k1|2
|ε1|2 + ε̃2

|k2|
c2

ω2
l

|k|2 + |k2|2
|ε2|2

]
+ 1

2

(
μ̃1

|k1| + μ̃2

|k2|
)

, (A3)

which is the effective mode length characterizing EM-field confinement in the z direction.

APPENDIX B: BLOCH EQUATIONS IN THE INTERACTION PICTURE

The Bloch equations in the interaction picture are given by

i
∂

∂t
σ11 − i
13σ33 − i
14σ44 + ζ ∗(z)�∗

pσ31 − ζ (z)�pσ ∗
31 = 0, (B1a)

i
∂

∂t
σ22 − i
23σ33 − i
24σ44 + ζ ∗(z)�∗

s σ32 − ζ (z)�sσ
∗
32 + ζ ∗(z)�∗

cσ42 − ζ (z)�cσ
∗
42 = 0, (B1b)

i

(
∂

∂t
+ 
3

)
σ33 + ζ (z)�sσ

∗
32 + ζ (z)�pσ ∗

31 − ζ ∗(z)�∗
s σ32 − ζ ∗(z)�∗

pσ31 = 0, (B1c)

i

(
∂

∂t
+ 
4

)
σ44 + ζ (z)�cσ

∗
42 − ζ ∗(z)�∗

cσ42 = 0, (B1d)(
i

∂

∂t
+ d21

)
σ21 + ζ ∗(z)�∗

cσ41 + ζ ∗(z)�∗
s σ31 − ζ (z)�pσ ∗

32 = 0, (B1e)(
i

∂

∂t
+ d31

)
σ31 + ζ (z)�p(σ11 − σ33) + ζ (z)�sσ21 = 0, (B1f)(

i
∂

∂t
+ d32

)
σ32 + ζ (z)�pσ ∗

21 + ζ (z)�s(σ22 − σ33) − ζ (z)�cσ
∗
43 = 0, (B1g)
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(
i

∂

∂t
+ d41

)
σ41 + ζ (z)�cσ21 − ζ (z)�pσ43 = 0, (B1h)(

i
∂

∂t
+ d42

)
σ42 + ζ (z)�c(σ22 − σ44) − ζ (z)�sσ43 = 0, (B1i)(

i
∂

∂t
+ d43

)
σ43 + ζ (z)�cσ

∗
32 − ζ ∗(z)�∗

pσ41 − ζ ∗(z)�∗
s σ42 = 0, (B1j)

where d21 = −(kp − ks)v + �2 − �1 + iγ21, d31 = −kpv + �3 − �1 + iγ31, d32 = −ksv + �3 − �2 + iγ32, d41 = −(kp +
kc − ks)v + �4 − �1 + iγ41, d42 = −kcv + �4 − �2 + iγ42, and d43 = −(kc − ks)v + �4 − �3 + iγ43, with γjl = (
j +

l)/2 + γ col

j l (j,l = 1–4). Here 
j and 
l are the total decay rates of the population out of levels |j 〉 and |l〉, respectively,
defined by 
i = ∑

j �=i 
ji . The quantity γ col
ij is the proper dephasing rate.

APPENDIX C: EXPRESSIONS OF THE COEFFICIENTS OF THE LINEAR SOLUTION

The expressions of the coefficients of the linear solution are given by

a
(1)
32 = B

(
σ

(0)
33 − σ

(0)
22

) − [Dp + |ζ (z)�c|2]ζ (z)�pσ
∗(0)
31 − [Dc + |ζ (z)�p|2]ζ (z)�cσ

∗(0)
42

(ω + d32)B − |ζ (z)�p|2[Dp + |ζ (z)�c|2]|ζ (z)�c|2[Dc + |ζ (z)�p|2]
,

a
∗(1)
21 = 1

B

{
Dpσ

∗(0)
31 + �c�

∗
p|ζ (z)|2σ ∗(0)

42 − [Dp + |ζ (z)�c|2]ζ ∗(z)�∗
pσ

(1)
32

}
,

a
∗(1)
43 = 1

B

{
[Dc + |ζ (z)�p|2]ζ ∗(z)�∗

cσ
(1)
32 − Dcσ

∗(0)
42 − �p�∗

c |ζ (z)|2σ ∗(0)
31

}
,

a
∗(1)
41 = 1

ω − d∗
41

[
ζ (z)�ca

∗(1)
21 − ζ (z)�pa

∗(1)
43

]
.

APPENDIX D: EXPRESSIONS OF THE SECOND-ORDER SOLUTION

The expressions of the second-order solution are given by

σ
(2)
11 = [2(
23 + 
14)γ42|ζ (z)�c|2 − i
23A4]J1 + iA3
14J2 + [A4 + 2iγ42|ζ (z)�c|2]A3J3

−2
23γ31A4|ζ (z)�p|2 − 2γ42|ζ (z)�c|2[A3
14 + 2i(
13 + 
14)γ31|ζ (z)�p|2]
|ζ (z)|2|F |2e−2αx

≡ a
(2)
11 |ζ (z)|2|F |2e−2αx, (D1a)

σ
(2)
33 = 2iγ31|ζ (z)�p|2a(2)

11 + J1

A3
|ζ (z)|2|F |2e−2αx ≡ a

(2)
33 |ζ (z)|2|F |2e−2αx, (D1b)

σ
(2)
44 = i
23a

(2)
33 + J3

i
14
|ζ (z)|2|F |2e−2αx ≡ a

(2)
44 |ζ (z)|2|F |2e−2αx, (D1c)

σ
(2)
22 = A4a

(2)
44 − J2

2iγ42|ζ (z)�c|2 |ζ (z)|2|F |2e−2αx ≡ a
(2)
22 |ζ (z)|2|F |2e−2αx, (D1d)

σ
(2)
31 = 1

d31

[
ζ (z)�p

(
a

(2)
33 − a

(2)
11

) − a
(1)
21

]|ζ (z)|2|F |2e−2αx ≡ a
(2)
31 |ζ (z)|2|F |2e−2αx, (D1e)

σ
(2)
42 = 1

d42

[
ζ (z)�c

(
a

(2)
44 − a

(2)
22

) + a
(1)
43

]|ζ (z)|2|F |2e−2αx ≡ a
(2)
42 |ζ (z)|2|F |2e−2αx, (D1f)

with A3 = i[
3|d31|2 + 2γ31|ζ (z)�p|2], A4 = i[
4|d42|2 + 2γ42|ζ (z)�c|2], J1 = |d31|2a(1)
32 + d31ζ (z)�pa

∗(1)
21 − c.c., J2 =

d∗
42ζ

∗(z)�∗
ca

(1)
43 − c.c., and J3 = a

(1)
32 − c.c. The other matrix elements of the second-order solution are

⎛⎜⎜⎜⎜⎜⎝
σ

∗(2)
21

σ
(2)
32

σ
∗(2)
41

σ
∗(2)
43

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
ω − d∗

21 ζ ∗(z)�∗
p −ζ (z)�c 0

ζ (z)�p ω + d32 0 −ζ (z)�c

−ζ (z)�c 0 ω − d∗
41 ζ ∗(z)�∗

p

0 −ζ ∗(z)�∗
c ζ (z)�p ω − d∗

43

⎞⎟⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎜⎜⎜⎝
−i ∂

∂t1
σ

∗(1)
21

−i ∂
∂t1

σ
(1)
32

−i ∂
∂t1

σ
∗(1)
41

−i ∂
∂t1

σ
∗(1)
43

⎞⎟⎟⎟⎟⎟⎟⎠ . (D2)
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When the half Rabi frequency of the control field is spatially modulated with �c = �(0)
c [1 + ε2�(2)

c (y)], the expressions of the
second-order solution are the same as Eqs. (D1) and (D2), but with J2 = d∗

42ζ
∗(z)�(0)∗

c [a(1)
43 + �(2)

c (y)(σ (0)
44 − σ

(0)
22 )/|F |2e−2αx] −

c.c. and with �c replaced by �(0)
c .
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