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Abstract A new numerical technique based on a lattice-Boltzmann method is presented for analyzing the fluid flow
in stratigraphic porous media near the earth’s surface. The results obtained for the relations between porosity, pressure,
and velocity satisfy well the requirements of stratigraphic statistics and hence are helpful for a further study of the
evolution of fluid flow in stratigraphic media.
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1 Introduction

The study of the fluid flows in stratigraphic porous
media near the earth’s surface has attracted much atten-
tion, due to its wide applications in petroleum resources,
gas production, geophysical fluid dynamics, and other re-
lated areas.[1,2] Although much work has been done, to our
knowledge a satisfactory description for the fluid flows in
stratigraphic porous media, like that done in nonporous
ones, is still lacking. One of the reasons for this is the
complicated physical structure in the flows. In particular,
our ability to understand the physical processes in such
systems is limited by the lack of a suitable mathematical
representation for the geometry. The models proposed up
to now are usually restricted to the cases in which the
geometry and the boundary conditions are highly sim-
plified and thus idealized. Some approximated analyti-
cal solutions[2,3] have been presented, but real systems of
porous media tend to have more intricate pore structures
and a wider distribution of pore sizes. It is necessary to
develop powerful numerical methods to treat such prob-
lems.

In recent years, as an efficient numerical tool Lattice
Boltzmann method (LBM) has been proposed to investi-
gate the fluid flows with highly complex geometries, such
as porous media.[4−8] LBM allows a detailed discretization
of the porous geometry and hence one can have an exact
simulation of the flows without using any semi-empirical
homogenization models. In some sense the LBM may
be considered as a “numerical experiment” with an ad-
ditional advantage because more information about local
flow properties can be obtained in comparison with the
numerical methods conventionally used. In this work we
develop an external LBM to simulate the fluid flow in

a stratigraphic porous medium near the earth’s surface.
The two-dimensional (2D) projection of a 3D flow and
a 3D simulation show that our numerical solutions agree
well with the analytical result obtained in Ref. [9]

The paper is organized as follows. In Sec. 2, we give a
brief introduction for the LBM and describe the simula-
tion frame for the fluid flow in stratigraphic porous media
near the earth’s surface. Section 3 deals with the scheme
for treatment of boundary conditions. The numerical re-
sults of our simulations are presented in Sec. 4. The last
section contains a summary of our results.

2 Model and Lattice Boltzmann Method

The dynamics of fluid flows in stratigraphic porous me-
dia near the earth’s surface, as well as the pore fluid dy-
namics, are associated with the accumulation of sediments
on the earth’s surface, the thermal and chemical processes
determining the rheological properties of the medium be-
neath the earth’s surface, and the actual flow mechanism
under the action of gravity. In order to understand this
problem, we need an idea of how a fluid flows in a strati-
graphic porous medium near the earth’s surface. Based
on the hypothesis in Ref. [9], the relation between the
pressure p of the fluid and the effective pressure of matrix
pmatrix can be written as

pmatrix = −(ρ +4ρ)gy − p , (1)

where ρ is the fluid density, g is gravity acceleration, y is
the positive vertical coordinate in the upward direction,
and 4ρ = ρmatrix − ρ. For simulating the fluid flow in
the stratigraphic porous medium we need its equations
of motion with corresponding boundary conditions, which
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are obtained by combining Eq. (1) with the LBM, as de-
scribed as follows.

Generally, the Boltzmann equation with the single re-
lation time approximation can be written as[10]

∂f

∂t
+ ~ξ · 5f = − 1

λ
(f − f eq) , (2)

where ~ξ is particle velocity, f is particle distribution func-
tion, f eq is equilibrium particle distribution function, and
λ is relaxation time. Discretizing Eq. (2) in the velocity
space ~ξ and using a finite set of discrete velocities ~ei, one
obtains

∂fi

∂t
+ ~ei · 5fi = − 1

λ
(fi − f eq

i ) . (3)

In this work, we use the D3Q19 LBM, developed in
Ref. [11]. The lattices with nineteen velocities are e0 =
(0, 0), e1,2, e3,4, e5,6 = (±1, 0, 0), (0,±1, 0), (0, 0,±1), and
e7,...,10, e11,...,14, e15,...,18 = (±1,±1, 0), (±1, 0,±1), (0,
±1,±1). The local equilibrium distribution function in
Eq. (2) can be written as

f eq
i = tpρ

{
1 +

~eiα · ~uα

c2
+

~uα · ~uβ

2c2

(~eiα · ~eiβ

c2
− δαβ

)}
, (4)

where α and β represent the component of Cartesian co-
ordinates (with implied summation for repeated indices),
c = δx/δt is the lattice speed (where δx and δt are the lat-
tice constant and the time step, respectively), the index p

is the square modulus of particle’s velocity, and tp is the
corresponding equilibrium distribution for ~u = 0, which is
determined to achieve isotropy of the fourth-order tensor
of velocities and Galilean invariance.[11] We take the val-
ues of tp as t0 = 1/3, t1 = 1/18, t2 = 1/36, t3 = 0. The
density ρ and the velocity u of the fluid are defined by

ρ =
∑

i

fi and ~u =
∑

i

fi~ei/ρ . (5)

The lattice Boltzmann equation[12] is obtained by further
discretizing Eq. (3) in space ~x and time t,

fi(x + δ~x · ~ei, t + δt)− fi(~x, t) = −1
τ

(fi − f eq
i ) , (6)

where τ = λ/δt. Using a multiscale technique we can ob-
tain the macroscopic equations for the motion of the fluid
in the second-order approximation, which are the conti-
nuity equation,

∂tρ + ∂α(ρ~uα) = 0 , (7)

and the Navier–Stokes equations,

∂t(ρ~uα) + ∂α(ρ~uα~uβ)

= −∂α(c2ρ) + µ∂β [∂β(ρ~uα) + ∂α(ρ~uβ)] , (8)

where the viscosity µ is given by

µ =
(2τ − 1)

6
c2δt . (9)

Without loss of generality, we set c = 1.
Combining our previous discussions in Ref. [7], we ob-

tain the macroscopic dynamic equations for the fluid in a

stratigraphic porous medium near the earth’s surface as

∂(φρ)
∂t

+∇ · (φρ~u ) = 0 , (10)

φ(~u− ~umatrix) = −k

µ
(∇p + ρ~g ) , (11)

∇ · ~umatrix = − 1
µ

pmatrix . (12)

In the above equations, φ represents porosity. By intro-
ducing the characteristic length, pressure, and time scales

L =
√

Uµ0/4ρg, P = 4ρgL, T = L/U , (13)

we define the non-dimensional quantities

y′ = y/L, t′ = t/T, φ′ = φ/Φ ,

u′ = u/ΦU, p′ = p/P , (14)

where U is the velocity of boundary, and Φ is the porosity
on the upper boundary. The boundary conditions can be
written as

y′ = 0 : ~u ′ = 0, ~u ′
matrix = 0 , (15)

y′ = Ut : φ′ = 0.176, p′ = 0 . (16)

The initial conditions are

~u′ = 0, ~u′matrix = 0, p = 0 . (17)

The values of other parameters are U = 10−6 m/s, µ =
0.5× 1021 kg/(m · s), k = 0.5× 10−14 m2, ρ = 103 kg/m3,
ρmatrix = 1.6× 103 kg/m3, g = 9.8 m/s2.

3 Analysis of Boundary Conditions

The boundary conditions[13] are extremely important
to obtain an accurate results for the numerical simula-
tion. Bouncing-back boundary condition[14] is a primary
method in the lattice Boltzmann simulation and has been
proved to be have first-order accuracy. More accurate
boundary conditions have been proposed in the past few
years.[15−18] In this work we use the scheme for the treat-
ment of the boundary condition by considering a curved
boundary lying between the nodes of the equidistant lat-
tice of space ∆δx for a 2D projection of a 3D body, as
shown in Fig. 1.

Fig. 1 Layout of the regularly spaced lattice and curved
wall boundary.
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The lattice node on the solid and fluid side are denoted
by ~xb and ~xf respectively. We assume ~ei = ~xb − ~xf and
~ei′ = −~ei. The filled small circle at ~xw is the intersection
with the physical boundary on the link between ~xb and
~xf . The fraction of an intersected link in the fluid is Θ,
defined by

Θ =
|~xf − ~xw|
|~xf − ~xb|

, 0 ≤ Θ ≤ 1 . (18)

After a collision step, the distribution functions at ~xf and
t are known as the following streaming step,

fi(~xf , t + δt) = fi(~xff , t) , (19)

while fi′(~xf ) can be obtained by

fi′(~xf , t + δt) = fi′(~xb, t) . (20)

However, the distribution function fi′( ~xb, t) at boundary
node is unknown. According to Ref. [16], we assume that
the fi′(~xb, t) can be satisfied with the following linear in-
terpolation formula,

fi′(~xb, t) = (1−χ)fi(~xf , t)+χf∗
i (~xb, t)+6αi~ei′ ·~uw , (21)

where ~uw = ~u(~xw, t) is the velocity at the physical bound-
ary and χ is a parameter. f∗

i is a fictitious equilibrium
distribution function given by

f∗
i (~xb, t) = tpρ

{
1 + ~eiα · ~uαbf +

~uαf · ~uβf

2

× (~eiα · ~eiβ − δαβ)
}

, (22)

where ~uαf = ~uα(~xb, t) and ~uβf = ~uβ(~xb, t) are the fluid
velocity near the solid and ~ubf . In Ref. [18], Fillipova and
Hanel proposed

~ubf = (Θ− 1)~uf/Θ + ~uw/Θ and

χ = (2Θ− 1)/τ for Θ ≥ 1
2

, (23)

and

~ubf = ~uf and

χ = (2Θ− 1)/(τ − 1), for Θ ≤ 1
2

, (24)

in order to obtain a second-order scheme for the “slow
flow”. Mei et al.[19] improved the stability of the scheme
by replacing Eq. (23) by

~ubf = ~uff and

χ = (2Θ− 1)/(τ − 2), for Θ ≤ 1
2

. (25)

They have used this improved technique to study several
flow problems such as the fully developed flow in a square
duct, 3D lid-driven cavity flows, fully developed flows in-
side a circular pipe and a uniform flow over a sphere to
demonstrate its accuracy and robustness.

4 Computational Results and Discussion

In our simulation the computational domain is chosen
to be x× y× z = 30× 500× 30 lattice units. A very good
convergence of the numerical solution is achieved.

Fig. 2 A comparison between the analytical solution
with numerical solution in 2D at t = 3.6.

Figure 2 shows a comparison between our numerical
solution in 2D at t = 3.6 and the result from an analytical
solution given in Ref. [9]. One sees that both results agree
very well.

Fig. 3 The relation between effective pressure, porosity, and vertical depth at t = 3.6, 5.2, and 7.6.
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Shown in Fig. 3 are the numerical solutions for the porosity and effective pressure (i.e. the pressure in the matrix) for
three different time values. In this case, it is clear that the result for the porosity almost remains steady as the vertical
coordinate and the time increase, but the qualitative difference between the results is appreciable. From Fig. 3(a) we
see that there is a slow growth for the effective pressure as the vertical depth of stratum increases. With the geologic
age increasing, the numerical values of the effective pressure near the earth surface almost remain steady but it shows
a sharp growth in deep medium as the vertical depth of stratum increases (see Figs. 3(b) and 3(c)).

Fig. 4 The numerical value of porosity (φ) decreases sharply while t and y increase.

Figure 4 displays the porosity for three difference parameters: (a) 0 ≤ y ≤ 10 and 0 ≤ t ≤ 10, (b) 0 ≤ y ≤ 50, and
0 ≤ t ≤ 10, and (c) 0 ≤ y ≤ 10 and 0 ≤ t ≤ 100. The numerical result shows that the porosity decreases sharply when
t and y increase. This is consistent with the hydrostatic and lithostatic principles.[9]

5 Conclusion

We have proposed a new numerical technique based on a lattice Boltzmann method for analyzing the fluid flow in
stratigraphic porous media near the earth’s surface. A series of results of the fluid flow through stratigraphic porous
media are constructed. The properties of the solutions with the dimensionless time t are described. The simplicity of
our model will make it possible to determine the porosity, pressure, and velocities for particular geological conditions
using simple numerical calculations. The method and the results presented here are helpful for a further study for the
evolution of the fluid flows in stratigraphic media.
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