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PARAMETRIC SIMULTONS IN ONE-DIMENSIONAL

NONLINEAR LATTICES
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Parametric simultaneous solitary wave (simulton) excitations are shown to be possible in nonlinear lattices. Taking

a one-dimensional diatomic lattice with a cubic potential as an example, we consider the nonlinear coupling between

the upper cut-o� mode of acoustic branch (as a fundamental wave) and the upper cut-o� mode of optical branch (as a

second harmonic wave). Based on a quasi-discreteness approach the Karamzin{Sukhorukov equations for two slowly

varying amplitudes of the fundamental and the second harmonic waves in the lattice are derived when the condition of

second harmonic generation is satis�ed. The lattice simulton solutions are given explicitly and the results show that

these lattice simultons can be nonpropagating when the wave vectors of the fundamental wave and the second harmonic

waves are exactly at �=a (where a is the lattice constant) and zero, respectively.
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I. INTRODUCTION

Since the pioneering work of Fermi, Pasta and

Ulam[1] on the nonlinear dynamics in lattices, the un-

derstanding of the dynamical localization in ordered,

spatially extended discrete systems have experienced

considerable progress. In particular, the lattice soli-

tons, which are localized nonlinear excitations due to

the balance between nonlinearity and dispersion of the

system, are shown to exist, and many important ap-

plications are found in transport of energy, proton

contactivity, structural phase transition and associ-

ated central-peak phenomena, etc.[2;3] In recent years,

the interest in localized excitations in nonlinear lat-

tices has been renewed due to the identi�cation of a

new type of anharmonic localized modes.[4�6] These

modes, called the intrinsic localized modes (ILM's),[4]

or discrete breathers,[5;6] are the discrete analogue of

the lattice envelope (or breather) solitons with their

spatial extension only a few lattice spacings and the

vibrating frequency above the upper cut-o� of phonon

spectrum band. The ILM's have been observed in a

number of experiments.[7�13] Recently, much atten-

tion has been paid to the gap solitons in diatomic

lattices.[14�25] In the linear case, a diatomic lattice

allows two phonon bands. There is an upper cut-o�

for phonon frequency and a frequency gap (forbidden

band) between acoustic and optical bands, induced

by mass and/or force-constant di�erence of two di�er-

ent types of particles. No interaction occurs between

phonons and the phonons cannot propagate in the sys-

tem when their frequencies are in the gap or above

the phonon bands. However, these properties of the

phonons change drastically when nonlinearity is intro-

duced into the system. New types of localized modes,

especially the gap solitons, may appear as nonlinear

localized excitations with their vibrating frequencies

in the band gap. The gap solitons and ILM's as well

as their chaotic motion have been observed in damped

and parametrically excited one-dimensional (1D) di-

atomic pendulum lattices.[26�28]

On the other hand, in recent years, numerous

achievements have been made for optical solitons in

nonlinear optical media.[29�31] Besides the temporal

optical solitons, which are promising for long-distance

information transmission in �bre, spatial optical soli-

tons also attract much attention. The spatial op-

tical solitons are believed to be the candidates for

all-optical devices, such as optical switches and logic

gates, etc.[32] Recently, the study of optical paramet-

ric processes, in particular the second harmonic gen-

eration (SHG), which marked the birth of nonlinear

optics, has generated a great deal of new interest.[33]

It was suggested that it is possible to obtain large

nonlinear phase shifts by using a cascaded second-
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order nonlinearity.[34] In 1974, Karamzin and Sukho-

rukov (KS) recognized that the cascaded second-order

parametric processes may support solitons under gen-

eral phase-matching conditions. They derived two

coupled nonlinear equations for the envelopes of the

fundamental and second harmonic waves.[35] The dif-

ference between the KS equations and the envelope

equations for usual SHG is the inclusion of disper-

sion and/or di�raction, which are necessary for short

pulses and/or narrow light beams. Simultaneous soli-

tons (i.e. two components are solitons) are found

for the KS equations and these solitons are later

termed as the parametric simultons.[36] The concept

of the simultons has been generalized to the nonlin-

ear optical media with periodically varying refractive

index.[37] Since the eigenspectrum of linear electro-

magnetic waves consists of many photonic bands and

the vibrating frequencies of the simultons may be in

the gaps between these bands, the name parametric

band-gap simulton is given by Drummond et al.[37�39]

Di�erent from the self-trapping mechanism for Keer

solitons, the formation of the simultons is due to the

energy transfer and mutual self-trapping between the

fundamental and the second harmonic waves.

In contrast, the SHG in lattices is much less inves-

tigated. Although in the standard textbook of solid-

state physics[40] there exists a simple experimental de-

scription for three phonon processes in solids, it seems

that there is no detailed theoretical approach to the

SHG in nonlinear lattices until recently. In a recent

paper, Konotop considered theoretically the SHG in

a nonlinear diatomic lattice and obtained some inter-

esting results.[41]

In many aspects, a nonlinear lattice is similar to a

nonlinear, periodic optical media. The discreteness of

the lattice results in the symmetry breaking for con-

tinuous translation and makes the property of the sys-

tem periodic, in particular the frequency spectrum of

corresponding linear wave splits into many bands. It

should be stressed that the SHG does not occur in

one-dimensional monatomic lattices (see the next sec-

tion). However, a SHG can be realized if we consider

nonlinear multi-atomic lattices. The reason is that

in the monatomic lattices, an eÆcient energy trans-

fer (resonance) between any two modes in the system

does not occur. But the situation is di�erent for the

multi-atomic lattices. A multi-atomic lattice allows

many branches of linear dispersion relation, and the

dispersion relation is periodic with respect to lattice

wave vector. It is just the multiple-value and peri-

odic property of the dispersion relation makes it pos-

sible that the phase-matching condition for the SHG,

i.e. the condition by which the resonance between the

fundamental and second harmonic waves may occur,

can be satis�ed by selecting the wave vectors and

the corresponding frequencies from di�erent spectrum

branches.

Motivated by the study of the optical simultons,

in this paper we show that lattice simultons are possi-

ble in the multi-atomic lattices with cubic nonlinear-

ity (di�erent from the case in nonlinear optics, here the

order of nonlinearity means the order in the Hamilto-

nian of the system). The paper is organized as fol-

lows. The next section presents our model and an

asymptotic expansion based on a quasi-discreteness

approach. In section III we solve the KS equations

derived in section II and provide some lattice simul-

ton solutions. A discussion and summary is given in

the last section.

II. MODEL AND ASYMPTOTIC EXPAN-

SION

A. The model

As mentioned in the last section, principally the

SHG may occur in many multi-atomic lattice systems,

but for de�niteness and for the sake of simplicity we

consider here a one-dimensional diatomic lattice with

a cubic interaction potential. Such potential can be

obtained by Taylor expanding some realistic atomic

potentials in a power series of atomic displacements

from equilibrium con�guration. We focus on the dis-

placements with smaller amplitude thus the higher-

order nonlinear terms that give no contribution to un-

derlying nonlinear processes in the power series can be

disregarded. In fact, as in nonlinear optics, the sec-

ond harmonic resonance in lattice systems is a second-

order nonlinear process, thus only the cubic nonlin-

earity in the Hamiltonian is needed. Therefore, we

neglect the higher-order nonlinear terms and consider

a lattice Hamiltonian with the form

H =
X
n

�
1

2
m

�
dvn
dt

�2

+
1

2
M

�
dwn

dt

�2

+
1

2
K2(wn � vn)

2 +
1

2
K 0

2(vn+1 � wn)
2

+
1

3
K3(wn � vn)

3 +
1

3
K 0

3(vn+1 � wn)
3

+
1

3
V3v

3
n +

1

3
V 0

3w
3
n

�
; (1)

where vn=vn(t) (wn = wn(t) ) is the displacement
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from its equilibrium position of the nth particle with

mass m (M). n is the index of the nth unit cell with a

lattice constant a = 2a0, a0 is the equilibrium lat-

tice spacing between two adjacent particles. Here

for generality we assume that the nearest-neighbour

force constants Kj(j = 2; 3) in the same cell are

di�erent from the nearest-neighbour force constants

K 0
j(j = 2; 3) in di�erent cells. V3 and V

0
3 are the force

constants related to the on-site cubic potential for two

types of particles. Without loss of generality we as-

sume m < M , K 0
j � Kj(j = 2; 3), and V 0

3 � V3. The

equations of motion for describing the lattice read

d2

dt2
vn =I2(wn � vn) + I 02(wn�1 � vn) + I3(wn � vn)

2

� I 03(wn�1 � vn)
2 � �mv

2
n; (2)

d2

dt2
wn =J2(vn � wn) + J 02(vn+1 � wn)� J3(vn � wn)

2

+ J 03(vn+1 � wn)
2 � �Mw2

n; (3)

where Ij = Kj=m; I
0
j = K 0

j=m; Jj = Kj=M; J 0j =

K 0
j=M (j = 2; 3); �m = V3=m and �M = V 0

3=M . The

linear dispersion relation of Eqs. (2) and (3) is given

by

!�(q) =
1p
2

�
(I2 + I 02 + J2 + J 02)

� [(I2 + I 02 + J2 + J 02)
2

� 16I2J
0

2 sin
2(qa=2)]1=2

�1=2

; (4)

where the minus (plus) sign corresponds to acous-

tic (optical) mode. Thus we have two phonon bands

!�(q) and obviously !�(q + Q) = !�(q), here Q =

2j�=a, j is an integer and Q is the reciprocal lat-

tice vector of the system. At the wavenumber q = 0,

the phonon spectrum has a lower cut-o� !�(0) = 0

for the acoustic mode and an upper cut-o� !+(0) =

(I2 + I 02 + J2 + J 02)
1=2 for the optical mode. At

q = �=a there exists a frequency gap between the up-

per cut-o� of the acoustic branch !�(�=a) and the

lower cut-o� of the optical branch !+(�=a), where

!�(�=a) = (1=
p
2)f(I2+I 02+J2+J 02)� [(I2+I

0
2+J2+

J 02)
2�16I2J

0
2]
1=2g1=2. The width of the frequency gap

is !+(�=a) � !�(�=a), which approaches zero when

m ! M and K 0
2 ! K2. This is just the limit of

monatomic lattice with the lattice constant a0 = a=2.

We assume the gap is not small, i.e. we have (1�m=M)

and (1�K2=K
0
2) are of order unity.

Because of the periodic property of !�(q), the

condition of a second harmonic resonance in the sys-

tem (2) and (3) reads

q2 = 2q1 +Q; (5)

!2 = 2!1; (6)

where q1 (q2) and !1 (!2) are the wave vector and

frequency of the corresponding fundamental (second

harmonic) wave, respectively. Equations (5) and (6)

are also called the phase-matching conditions for the

SHG. It is easy to show that in the limit m!M and

K 0
2 ! K2 conditions (5) and (6) cannot be satis�ed

except for zero-frequency mode, i.e. the SHG is impos-

sible in monatomic lattices. For the diatomic lattice,

in order to ful�l (5) and (6) we may choose !1 2 !�(q)

and !2 2 !+(q), then the conditions (5) and (6) give

�
(I2 + I 02 + J2 + J 02)

2 � 4I2J
0

2 sin(q1a)
�1=2

=3(I2 + I 02 + J2 + J 02)� 4
�
(I2 + I 02 + J2 + J 02)

2

� 16I2J
0

2 sin
2(q1a=2)

�1=2
: (7)

It is possible to solve q1 from the above equation. For

simplicity we consider the cut-o� modes of the system.

We take q1 = �=a; q2 = 0 and Q = �2�=a, then condi-
tion (5) is automatically satis�ed. Condition (6) (the

same as (7) ) now reads

I2 + I 02 + J2 + J 02 =
8p
3

p
I2J 02: (8)

Equation (8) also means that !1 = !�(�=a) =

(1=2)(I2 + I 02 + J2 + J 02)
1=2 = (4I2J

0
2=3)

1=4 and !2 =

!+(0) = (I2 + I 02 + J2 + J 02)
1=2 = 2(4I2J

0
2=3)

1=4. If all

the harmonic force constants are equal, i.e. K 0
2 = K2,

Eq.(8) gives m = M=3. Another particular case is all

masses are the same, i.e. m =M . In this case, Eq.(8)

requires K 0
2 = K2=3. In general, the phase-matching

conditions (5) and (6) impose a constraint on masses

and harmonic force constants of the lattice.

B. Asymptotic expansion

We employ the quasi-discreteness approach

(QDA) developed in Refs.[17] and [24] for diatomic

lattices to investigate the SHG in the system (2) and

(3). We are interested in the cascading processes of

the system in which the width of excitation is nar-

rower than the usual SHG case. Thus we use di�erent

spatial-temporal scales in deriving the envelope equa-

tions for the fundamental and the second harmonic

waves. We make the expansion

un(t) = �
h
u(0)n;n + �1=2u(1)n;n + �u(2)n;n + � � �

i
; (9)
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where un(t) represents vn(t) or wn(t). � is a smallness

and ordering parameter denoting the relative ampli-

tude of the excitation and u
(�)
n;n = u(�)(�n; � ;�n(t)),

with

�n = �1=2(na� �t); (10)

� = �t; (11)

�n = qna� !(q)t; (12)

where � is a parameter to be determined by a solvabil-

ity condition (see below). Substituting (9){(12) into

Eqs.(2) and (3) and equating the coeÆcients of the

same powers of �, we obtain

@2

@t2
v(j)n;n � I2(w

(j)
n;n � v(j)n;n)

� I 02(w
(j)
n;n�1 � v(j)n;n) = M (j)

n;n; (13)

M (0)
n;n = 0; (14)

M (1)
n;n = 2�

@2

@t@�n
v(0)n;n � I 02a

@

@�n
w

(0)
n;n�1; (15)

M (2)
n;n = 2�

@2

@t@�n
v(1)n;n �

�
2
@2

@t@�
+ �2

@2

@�2n

�
v(0)n;n

+ I 02

�
�a @

@�n
w

(1)
n;n�1 +

a2

2!

@2

@�2n
w

(0)
n;n�1

�

+ I3(w
(0)
n;n � v(0)n;n)

2

� I 03(w
(0)
n;n�1 � v(0)n;n)

2 � �m(v
(0)
n;n)

2; (16)

...
...

and

@2

@t2
w(j)
n;n � J2(v

(j)
n;n � w(j)

n;n)

� J 02(v
(j)
n;n+1 � w(j)

n;n) = N (j)
n;n; (17)

N (0)
n;n = 0; (18)

N (1)
n;n = 2�

@2

@t@�n
w(0)
n;n + J 02a

@

@�n
v
(0)
n;n+1; (19)

N (2)
n;n = 2�

@2

@t@�n
w(1)
n;n �

�
2
@2

@t@�
+ �2

@2

@�2n

�
w(0)
n;n

+ J 02

�
a
@

@�n
v
(1)
n;n+1 +

a2

2!

@2

@�2n
v
(0)
n;n+1

�

� J3(v
(0)
n;n � w(0)

n;n)
2

+ J 03(v
(0)
n;n+1 � w(0)

n;n)
2 � �M (w(0)

n;n)
2; (20)

...
...

with j = 0; 1; 2; � � �. Equations (13) and (17) can be

rewritten in the following form:

L̂w(j)
n;n =J2M

(j)
n;n + J 02M

(j)
n;n+1

+

�
@2

@t2
+ I2 + I 02

�
N (j)
n;n; (21)

�
@2

@t2
+ I2 + I 02

�
v(j)n;n

=I2w
(j)
n;n + I 02w

(j)
n;n�1 +M (j)

n;n; (22)

where the operator L̂ is de�ned by

L̂u(j)n;n =

�
@2

@t2
+ I2 + I 02

��
@2

@t2
+ J2 + J 02

�
u(j)n;n

� (I2J2 + I 02J
0

2)u
(j)
n;n

� I2J
0

2

�
u
(j)
n;n+1 + u

(j)
n;n�1

�
; (23)

where u
(j)
n;n(j = 0; 1; 2; � � �) are a set of arbitrary func-

tions. From Eq.(21) we can solve w
(j)
n;n and obtain

a series of solvability conditions (envelope equations)

whereas Eq.(22) is used to solve v
(j)
n;n.

C. Envelope equations for cascading processes

We now solve Eqs.(22) and (23) order by order.

For j = 0 it is easy to get

w(0)
n;n =A1(�; �n)exp(i�

�

n )

+A2(�; �n)exp(i�
+
n ) + c:c:; (24)

v(0)n;n =
I2 + I 02e

�iqa

�!2
� + I2 + I 02

A1(�; �n)exp(i�
�

n )

+
I2 + I 02e

�iqa

�!2
+ + I2 + I 02

A2(�; �n)exp(i�
+
n ) + c:c:;

(25)

with ��n = qna � !�(q)t. !�(q) have been given in

Eq.(4). A1 and A2 are two envelope (or amplitude)

functions of the acoustic and the optical excitations

yet to be determined, respectively. They are the func-

tions of the slow variables �n and � . c. c. denotes

the corresponding complex conjugate. For simplicity

we specify two modes, i.e. the acoustic upper cut-o�

mode (q1 = �=a, !1 = !�(�=a) = (4I2J
0
2=3)

1=4 ) and

the optical upper cut-o� mode (q2 = 0, !2 = !+(0) =

2!1 = 2(4I2J
0
2=3)

1=4 ). Thus we have

w(0)
n;n =A1(�; �n)(�1)nexp(�i!1t)

+A2(�; �n)exp(�i!2t) + c:c:; (26)

v(0)n;n =
I2 � I 02

�!2
1 + I2 + I 02

A1(�; �n)(�1)nexp(�i!1t)

+
I2 + I 02

�!2
2 + I2 + I 02

A2(�; �n)exp(�i!2t) + c:c::

(27)

From the discussion in subsection II. A, the modes cho-

sen in such a way satisfy the phase-matching condi-

tions (5) and (6) for the SHG. Thus, in Eqs.(27) and
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(28) A1 (A2) represents the amplitude of the funda-

mental (second harmonic) wave, respectively.

In the next order (j=1), a solvability condition of

Eqs.(21) and (22) requires the parameter � = 0, thus

�n = na. The second-order solution reads

w(1)
n;n =B0 + [B1(�1)nexp(�i!1t)

+B2exp(�i!2t) + c:c:];

v(1)n;n =B0 +

�
(I2 � I 02)B1 + I 02a@A1=@�n

�!2
1 + I2 + I 02

(28)

� (�1)nexp(�i!1t)

+
(I2 + I 02)B2 � I 02a@A2=@�n

�!2
2 + I2 + I 02

� exp(�i!2t) + c:c:

�
; (29)

where Bj (j=0, 1, 2) are undetermined functions of �n

and � .

In the order j=2, we have the third-order approx-

imate equation

L̂w(2)
n;n =J2M

(2)
n;n + J 02M

(2)
n;n+1

+

�
@2

@t2
+ I2 + I 02

�
N (2)
n;n: (30)

Eq.(22) is not necessary since from (30) we can obtain

closed equations for A1 and A2. Using Eqs.(26){(29)

we can getM
(2)
n;n, M

(2)
n;n+1 and N

(2)
n;n. By a detailed cal-

culation we obtain the solvability condition of Eq.(30)

i
@A1

@�
+

1

2
�1

@2A1

@�2n
+�1A

�

1A2 = 0; (31)

i
@A1

@�
+

1

2
�2

@2A2

@�2n
+�2A

2
1 = 0; (32)

where the coeÆcients are expressed as

�1 = � I 02J
0
2a

2

!1[�
�1
1 + �1(I2 � I 02)(J2 � J 02)]

; (33)

�2 = � I2J
0
2a

2

!2[���1
2 � �2(I2 + I 02)(J2 + J 02)]

; (34)

||||||||||||||||||||||||||||
j

�1 =
[1� �2(I2 + I 02)]�3 � ��1

1 �M � �1�2(I
2
2 � (I 02)

2)(J2 � J 02)�m

!1[�
�1
1 + �1(I2 � I 02)(J2 � J 02)]

; (35)

j||||||||||||||||||||||||||||

�2 =
�4 � ��1

2 �M � �21(I2 � I 02)
2(J2 + J 02)�M

2!2[�
�1
2 + �2(I2 + I 02)(J2 + J 02)]

;

(36)

with

�j =
1

�!2
j + I2 + I 02

(j = 1; 2); (37)

�3 =(I3 � I 03)(J2 � J 02)� ��1
1 (J3 � J 03)

+ (I2 � I 02) [(J3 + J 03)� �1(I3 + I 03)(J2 � J 02)] ;

(38)

�4 =[1� �1(I2 � I 02)]
2[�J3��1

2 + I3(J2 + J 02)]

+ [1 + �1(I2 � I 02)]
2[J 03�

�1
2 � I 03(J2 + J 02)]: (39)

Introducing the transformation uj = �Aj (j =

1; 2) and noting that �n = �1=2xn (xn � na) and

� = �t, Eqs.(31) and (32) can be rewritten into the

form

i
@u1
@t

+
1

2
�1

@2u1
@x2n

+�1 u
�

1u2 = 0; (40)

i
@u2
@t

+
1

2
�2

@2u2
@x2n

+�2 u
2
1 = 0: (41)

We should point out that Eqs.(5) and (6) are perfect

phase-matching conditions for the SHG. If we allow a

small mismatch for frequency, Æ!, conditions (5) and

(6) become

!2 = 2!1 + Æ!; q2 = 2q1 +Q: (42)

In this case Eqs.(40) and (41) change into

i

�
@u1
@t

+ v1
@u1
@xn

�
+

1

2
�1

@2u1
@x2n

+�1 u
�

1u2exp(�iÆ!t) = 0; (43)

i

�
@u2
@t

+ v2
@u2
@xn

�
+

1

2
�2

@2u2
@x2n

+�2 u
2
1exp(iÆ!t) = 0; (44)

where vj (j = 1; 2) are the group velocities of the

fundamental and the second harmonic waves near at

q = �=a and q = 0, respectively.

Equations (43) and (44) are the coupled-mode

equations for the fundamental and the second har-

monic waves. Such equations have been obtained by

Karamzin and Sukhorukov in the context of nonlinear

optics.[35] One of important features of the KS equa-

tions is the inclusion of dispersion, which is absent in

usual SHG envelope equations.[41]

III. LATTICE SIMULTON SOLUTIONS
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In this section, we solve the KS equations (43)

and (44) derived in our lattice model and thus present

some lattice simulton solutions for the system (2)

and (3). In general, the property of the solutions

of Eqs.(43) and (44) depends strongly on the coef-

�cients appearing in the equations, in particular on

their signs. At �rst we notice that in our system, �1

and �2, which are respectively the group-velocity dis-

persion of the fundamental and the second harmonic

waves, are both negative. But the signs of the nonlin-

ear coeÆcients, �1 and �2, may be generally of both

signs. Thus the situation here is di�erent from the KS

equations derived for the cascading process in nonlin-

ear optics, where the nonlinear coeÆcients have the

same sign, while the group-velocity dispersions may

have di�erent signs.[42]

To solve Eqs.(43) and (44), we make the transfor-

mation

u1(xn; t) = U1(�)exp[i(k1xn � 
1t)]; (45)

u2(xn; t) = U2(�)exp[i(k2xn � 
2t)]; (46)

with � = kxn � 
t. Substituting (45) and (46) into

(43) and (44), we obtain

d2U1

d�2
+ �1U1U2 � �1U1 = 0; (47)

d2U2

d�2
+ �2U

2
1 � �2U2 = 0; (48)

where �1 = 2�1=(�1k
2); �2 = 2�2=(�2k

2); �1 =

�2(
1 � v1k � 1
2�1k

2
1)=(�1k

2); �2 = �2(
2 � v2k �
1
2�2k

2
2)=(�2k

2), 
 = v1k+�1kk1, with k2 = 2k1;
2 =

2
1 + Æ! and k1 = (v2 � v1)=(�1 � 2�2). One of the

coupled soliton-soliton (i.e. simultaneous solitons for

two wave components) solutions of Eqs.(47) and (48)

reads

U1 =
6p
�1�2

�
2

3
� sech2�

�
; (49)

U2 = � 6

�1

�
2

3
� sech2�

�
; (50)

where a condition �1 = �2 = �4 is required. The

parameter k is given by

||||||||||||||||||||||||||||
j

k =
v2 � 2v1 � f(v2 � 2v1)

2 � 8(2�1 � �2)[(�1 � 2�2)k
2
1 + Æ!]g1=2

4(2�1 � �2)
: (51)

The lattice con�guration in this case takes the form

wn(t) =(�1)n 12p
�1�2

�
2

3
� sech2(kna� 
t)

�
cos[k1na� (!1 + 
1)t]

� 12

�1

�
2

3
� sech2(kna� 
t)

�
cos[k2na� (!2 + 
2)t]; (52)

vn(t) =(�1)n 12p
�1�2

I2 � I 02
�!2

1 + I2 + I 02

�
2

3
� sech2(kna� 
t)

�
cos[k1na� (!1 + 
1)t]

� 12

�1

I2 + I 02
�!2

2 + I2 + I 02

�
2

3
� sech2(kna� 
t)

�
cos[k2na� (!2 + 
2)t]: (53)

j||||||||||||||||||||||||||||
If q1 (q2) is exactly equal to �=a (zero) but with

Æ! 6= 0, one has v1 = v2 = 0. In this case

k1 = k2 = 0, 
1 = 2�1k
2;
2 = 2�2k

2;
 = 0 and

k = fÆ!=[2(�2 � 2�1)]g1=2. Eqs.(52) and (53) present

a nonpropagating simulton excitation, in which the

vibrating frequency of the acoustic- (optical-) mode

component being within the acoustic(optical) phonon

band. In our model, �2 � 2�1 > 0 thus Æ! should be

taken positive in this case. In addition, from (52) and

(53) we see that the envelopes for both the acoustic

and optical components are kinks (or dark solitons).

Furthermore, if K 0
2 = K2, the displacement of light

particles, vn(t), only has an optical-mode component.

The other simulton solution of Eqs.(47) and (48)

reads

U1 = � 6p
�1�2

sech2�; (54)

U2 = � 6

�1

�
4

3
� sech2�

�
; (55)

where we have �1 = ��2 = �4. The parameter k now

reads

k =
v2 � 2v1 � f(v2 � 2v1)

2 � 8(�2 � 2�1)[(�1 � 2�2)k
2
1 + Æ!]g1=2

4(�2 � 2�1)
: (56)
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The lattice con�guration is now given by

wn(t) =(�1)n+1 12p
�1�2

sech2(kna� 
t) cos[k1na� (!1 + 
1)t]

� 12

�1

�
4

3
� sech2(kna� 
t)

�
cos[k2na� (!2 + 
2)t]; (57)

vn(t) =(�1)n+1 12p
�1�2

I2 � I 02
�!2

1 + I2 + I 02
sech2(kna� 
t) cos[k1na� (!1 + 
1)t]

� 12

�1

I2 + I 02
�!2

2 + I2 + I 02

�
4

3
� sech2(kna� 
t)

�
cos[k2na� (!2 + 
2)t]: (58)

Thus, in this case, the acoustic-mode component is a

staggered envelope soliton but the optical-mode com-

ponent is still an envelope kink. If v1 = v2 = 0 we

have k1 = k2 = 0;
1 = 2�1k
2;
2 = �2�2k

2;
 = 0

and k = f�Æ!=[2(�2�2�1)]g1=2. In this situation, the
simulton (57) and (58) is also a nonpropagating exci-

tation with the vibrating frequency of the acoustic-

(optical-) mode component within(above) the acous-

tic(optical) phonon band. In order to make k real, we

should take Æ! < 0 in this case.

A common requirement for the existence of

the simulton solutions (52), (53), (57) and (58) is

sgn(�1�2) > 0, which means sgn(�1�2) > 0 because

�1�2 > 0 in our model. It can be met by choos-

ing di�erent values of system parameters. For ex-

ample, in the following two particular cases we have

sgn(�1�2) > 0:

1. K 0
2 = K2;K

0
3 = K3 = 0. In this case

�1 = ��M=!1;�2 = �J2�M=[2!2(I2 + J2)].

2. K 0
2 = K2; V

0
3 = V3 = 0. In this case

�1 = (J 03 � J3)(1 + I2=J2)=!1, �2 = (I 03 � I3 + J 03 �
J3)=[2!2(I2 + J2)].

IV. DISCUSSION AND SUMMARY

We have analytically shown that the lattice simul-

tons are possible in nonlinear diatomic lattices. Based

on the QDA for the nonlinear excitations in diatomic

lattices developed before,[17;24] we have considered the

resonant coupling between two phonon modes, one

from the acoustic and other one from the optical

branch, respectively. The KS equations are derived

for the envelopes of the fundamental and second har-

monic waves by taking new multiple spatial-temporal

scale variables, which are necessary for narrower non-

linear excitations. Exact coupled soliton (simulton)

solutions are obtained for the KS equations and the

simulton con�gurations for the lattice displacements

are explicitly given.

Similar to the optical simultons in nonlinear opti-

cal media, the physical mechanism for the formation

of the lattice simultons is due to the cascading e�ect

between two lattice wave components. In this process,

the fundamental and the second harmonic waves in-

teract with themselves through repeated wave{wave

interactions. For instance, the energy of the funda-

mental wave is �rst upconverted to the second har-

monic wave and then downconverted again, resulting

in a mutual self-trapping of each wave and thus the

formation of two simultaneous solitons.

Mathematically, in addition to the resonance con-

ditions (5) and (6), the formation of a lattice simul-

ton needs a balance between the cubic nonlinearity (in

the Hamiltonian) and the dispersion, the latter is pro-

vided by the discreteness of the system. Thus, for

deriving the envelope equations in this case, we must

choose multiple-scale variables di�erent from the ones

used in usual SHG. In our derivation for the KS equa-

tions based on the QDA,[17;24] only one small param-

eter, i.e. the amplitude of the excitation, is used. This

method gives a clear, justi�ed and self-consistent hier-

archy of scales and thus the corresponding solvability

conditions, which are just the envelope equations we

need. Thus, it is satisfactory according to the point

of view of singular perturbation theory.

Cubic nonlinearity exists in most of realistic

atomic potentials.[24] Thus it is possible to observe

the lattice simultons reported here. It must be em-

phasized that the multi-value property of the linear

dispersion relation is important for generating the si-

multons in lattices. Thus a diatomic or multi-atomic

lattice is necessary for observing such excitations.

The theory given above can be applied to multi-

atomic and higher-dimensional lattices, and higher-

order nonlinearity can also be included. For instance,

if we consider the Hamiltonian with cubic and quartic

nonlinearities, Eqs.(31) and (32) should be generalized

to
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i
@A1

@�
+

1

2
�1

@2A1

@�2n
+�1A

�

1A2

+ (�11jA1j2 + �12jA2j2)A1 = 0; (59)

i
@A1

@�
+

1

2
�2

@2A2

@�2n
+�2A

2
1

+ (�21jA1j2 + �22jA2j2)A2 = 0; (60)

where �ij(i; j = 1; 2) are self-phase and cross-phase

modulational coeÆcients contributed by the quar-

tic nonlinearity of the system. Eqs.(59) and (60)

can be derived using the multiple-scale variables

�n = �xn; � = �2t under the assumption vn(t) =

O(�); wn(t) = O(�), K3 = O(K 0
3) = O(�), and

V3 = O(V 0
3) = O(�). A small frequency mismatch can

also be included in (59) and (60) and similar equations

like (43) and (44) with additional self- and cross-phase

modulational terms can also be written down. A de-

tailed study including stability analysis of the lattice

simultons should be another work and will be given

elsewhere.
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