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1. Introduction

Since the successful experimental realization of Bose–Einstein condensation in

weakly interacting atomic gases,1 much progress has been made on the study

of linear (i.e. small-amplitude) collective excitations (or called Bogoliubov quasi-

particles) created in Bose–Einstein condensates (BECs). At the same time, the

research on nonlinear (i.e. large-amplitude) collective excitations in BECs have

also received intensive attention.2–18 For a large-amplitude excitation, the non-

linear effect resulting from the interaction among the excitations cannot be ne-

glected and many interesting nonlinear phenomena can appear. Up to now, the

investigation on the nonlinear collective excitations in BECs can be classified into

two types. One of them is the excitations with the size the same as that of the
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condensate. The eigen-frequencies of such excitations are discrete, i.e. they are os-

cillating (i.e. standing wave) modes. The nonlinear frequency shift, mode coupling,

and harmonic generation have been explored both theoretically and experimentally

by Oxford group4–8 and some other authors.9–12 The other type of excitations ex-

plored are the ones with the size much smaller than that of the condensate. In this

case, the eigen-frequencies of the excitations are continuous (or quasi-continuous).

The most typical nonlinear excitations explored in BECs are solitary excitations,

including dark2 and bright3 solitons. Recently, Ozeri et al.13 investigated a three-

wave mixing of energy down-conversion in a homogeneous Bose-condensed gas and

observed the oscillations of excitation numbers between different momentum modes

(i.e. plane-waves) involved in the mixing.19

In this work, we investigate a three-wave resonant interaction (TWRI) of col-

lective excitations and related three-wave solitons in a disk-shaped BEC. In a

disk-shaped condensate, the confinement is much stronger in one spatial direction

comparing with other two directions so the motion of atoms is almost two dimen-

sional. The three-wave resonance condition for the excitations in such condensate

(which is necessary for an effective TWRI) can easily be fulfilled (see the next sec-

tion). We consider an energy up-conversion of the excitations through the TWRI

at zero temperature.20 In this situation, the time-dependent Gross–Pitaevskii (GP)

equation, which controls the linear and nonlinear evolution of the condensate, is a

natural starting point.1,8 By suitably choosing the wavevectors and frequencies of

the excitations, the three-wave resonant conditions for the TWRI can be fulfilled.

We derive the nonlinearly coupled envelope (or amplitude) equations describing the

TWRI among three modulated plane-wave modes by using a method of multiple-

scales. Three-wave soliton excitations in the TWRI process are shown to be possible

in the condensate and their stability is checked by a numerical simulation.

2. Order Parameter Equation and TWRI Conditions

The dynamics of a weakly interacting Bose gas at zero temperature is governed by

the time-dependent Gross–Pitaevskii (GP) equation1,21

i~
∂Ψ

∂t
=

[

− ~
2

2m
∇2 + Vext(r) + g|Ψ|2

]

Ψ , (1)

where Ψ is an order parameter,
∫

dr|Ψ|2 = N is the atomic number in the con-

densate, g = 4π~
2as/m is the interaction constant with as the s-wave scattering

length (as > 0 for a repulsive interaction). We consider a disk-shaped harmonic

trap of the form Vext(r) = m
2 [ω2

⊥(x2 + y2) + ω2
zz2] with ω⊥ � ωz, where ω⊥ and

ωz are the frequencies of the trap in the transverse (x and y) directions and the

z-direction, respectively. Expressing the order parameter in terms of its modulus

and phase, Ψ =
√

n exp(iφ), we get a set of coupled equations for n and φ. By

introducing (x, y, z) = az(x
′, y′, z′), t = ω−1

z t′, n = n0n
′ with az = [~/(mωz)]

1/2

and n0 = N/a3
z, we obtain the following dimensionless equations of motion after
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dropping the primes:

∂n

∂t
+ ∇ · (n∇φ) = 0 , (2)

∂φ

∂t
+

1

2
z2 + V‖(x, y) + Qn +

1

2

[

(∇φ)2 − 1√
n
∇2

√
n

]

= 0 , (3)

with Q = 4πNas/az and
∫

drn = 1. V‖(x, y) = (ω⊥/ωz)
2(x2 + y2)/2 is the dimen-

sionless trapping potential in the x and y directions.

We consider the dynamics of the excitations generated in the condensate with

a thin disk-shaped trap. The thin disk-shaped trap here means that the conditions

az � l0 and ~ω⊥ � n0g � ~ωz can be fulfilled, where l0 = (4πn0as)
−1/2 is the

healing length. In this situation, we can make the quasi-2D approximation22 √
n =

P (x, y, t)G0(z), φ = −µt+ϕ(x, y, t), where G0(z) = exp(−z2/2) is the ground-state

wavefunction of the 1D harmonic oscillator with the harmonic potential z2/2 in the

z-direction, µ is the chemical potential of the condensate and ϕ is a phase function

due to the existence of the excitation, which is assumed to be a function of x and

y because as mentioned above the generated excitation can propagate only in the

x and y directions. Thus Eqs. (2) and (3) are reduced to

∂P

∂t
+

∂P

∂x

∂ϕ

∂x
+

∂P

∂y

∂ϕ

∂y
+

P

2

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2

)

= 0 , (4)

−1

2

(

∂2P

∂x2
+

∂2P

∂y2

)

−
(

µ − 1

2

)

P

+

[

∂ϕ

∂t
+ V‖(x, y) +

1

2

(

∂ϕ

∂x

)2

+
1

2

(

∂ϕ

∂y

)2
]

P + Q′P 3 = 0 , (5)

where Q′ = I0Q is an effective interaction constant with I0 =
∫∞

−∞
dzG4

0(z)/
∫∞

−∞
dzG2

0(z) = 1/
√

2. The reduction to Eqs. (4) and (5) from Eq. (1) can be taken

as a projection process. In principle, one can take into account the contribution of

the higher-order eigen-modes of the harmonic oscillator in the z-direction, as done

in Ref. 23 for a cigar-shaped trap. However, since we have assumed n0g � ~ωz

here, the contribution from these higher-order eigen-modes is small and can thus

be safely neglected. On the other hand, for the thin disk-shaped trap (ω⊥/ωz � 1),

the trapping potential in the (x, y) plane is a slowly-varying function of x and y

and hence the size of the condensate in the radial direction is much larger than the

size of the excitations (with the order of the healing length) considered below. In

the propagation of the excitations for short times, the boundary of the condensate

does not come into play and we can therefore take the condensate as uniform in the

(x, y) plane (i.e. neglecting the affect from V||(x, y)). The effect of the condensate

boundary will be considered elsewhere.

The linear dispersion relation of an excitation is obtained by assuming in Eqs. (4)

and (5) that P = u0+a(x, y, t) (u0 > 0). Here (a, ϕ) = (a0, ϕ0) exp[i(k · r−ωt)]+c.c.
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with k = (kx, ky) and r = (x, y) (u0, a0 and ϕ0 are constants). The result reads

ω(k) =
1

2
k(4c2 + k2)1/2 , (6)

where k2 = k2
x+k2

y and c =
√

Q′u0 is the sound speed of the system. Equation (6) is

a Bogoliubov-type linear excitation spectrum of quasi-particles in two dimensions.

Such excitation spectrum has been measured in BECs recently.24

Recently, two-dimensional solitons created in the BEC with the disk-shaped trap

have been considered.22 Here, we are interested in a resonant interaction among

three collective modes, i.e. a TWRI of the collective excitations created in the

condensate. To obtain an efficient TWRI, the phase-matching conditions

ω1 + ω2 = ω3 , (7)

k1 + k2 = k3 , (8)

(ωj ≡ ω(kj) ) are required. From Eq. (6) it is easy to show that these conditions

can be satisfied if we choose

k1 = (k1 cosϑ, k1 sin ϑ) , (9)

k3 = (k3, 0) , (10)

k2 = k3 − k1 = (k3 − k1 cosϑ,−k1 sin ϑ) , (11)

where k1 and k2 are positive and the angle ϑ satisfies the relation13

cosϑ =
1

2k3k1

{

k2
3 + k2

1 + 2c2 − 2

[

c4 +

(

k3

√

c2 +
1

4
k2
3 − k1

√

c2 +
1

4
k2
1

)2] 1

2

}

.

(12)

It is easy to show that, for any nonvanishing k1 and k3, one has 0 < cosϑ ≤
1 and hence −π/2 < ϑ ≤ π/2. Another necessary condition for the TWRI is

that the nonlinearity describing the interaction between the collective modes must

be quadratic, similar to a χ(2) nonlinearity in a nonlinear optical medium. From

Eqs. (4) and (5), we see that the equations describing the excitations (P − u0, ϕ)

are of not only quadratic but also cubic nonlinearities. Consequently, in the disk-

shaped condensate, a TWRI for the collective excitations is indeed possible if the

angle ϑ is chosen according to Eq. (12).

3. Envelope Equations for the TWRI

We know that an optical TWRI occurs in active media with no inversion symmetry.

For trapped atoms this symmetry is not broken and hence the TWRI in the BEC is

possible only when the ground state (condensate) is not depleted by the excitations.

This imposes a constraint that the amplitude of the excitations cannot be too large.
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Here, we develop a weak nonlinear theory25 for the TWRI in the BEC by making

the asymptotic expansion

P − u0 = εa(1) + ε2a(2) + ε3a(3) + · · · , (13)

ϕ = εϕ(1) + ε2ϕ(2) + ε3ϕ(3) + · · · , (14)

where ε is a small parameter characterizing the relative amplitude of the excitation,

and a(j), ϕ(j) (j = 1, 2, 3, . . .) are the functions of the multiple-scale variables x,

y, t, εx, εy, and εt. Note that the expansion here is different from that used in

Refs. 22, 23 and 26 because at present we are considering envelope-type excitations

in the condensate. Substituting the above expansion into Eqs. (4) and (5) we get

∂a(j)

∂t
+

1

2
u0

(

∂2

∂x2
+

∂2

∂y2

)

ϕ(j) = α(j) , (15)

−1

2

(

∂2

∂x2
+

∂2

∂y2

)

a(j) + 2c2a(j) + u0
∂

∂t
ϕ(j) = β(j) , (16)

j = 1, 2, 3, . . . . The explicit expressions of α(j) and β(j) are omitted here.

At leading order (j = 1), the solution reads

ϕ(1) = A0 + [A exp(iθ) + c.c] , (17)

a(1) =
i

2

u0k
2

ω
A exp(iθ) + c.c. , (18)

where A0 (real) and A (complex) are yet to be determined envelope functions of the

slow variables εx, εy and εt, introduced necessarily to eliminate the secular terms

appearing in the higher-order approximations. θ = k · r − ωt with ω(k) being just

the linear dispersion relation given by Eq. (6), and c.c. represents a corresponding

complex conjugate term.

In the process of the TWRI, three wave modes are involved and hence the

leading-order solution should be taken as

ϕ(1) = A0 +

3
∑

j=1

[Aj exp(iθj) + c.c.] , (19)

a(1) =
3
∑

j=1

Bj exp(iθj) + c.c. , (20)

where Bj = [iu0k
2
j /(2ωj)]Aj , θj = kj · r − ωjt, and Aj is the envelope of jth wave

mode. kj and ωj (j = 1, 2, 3) are chosen according to the TWRI phase-matching

conditions (7) and (8).

At the next order (j = 2) the solvability conditions of Eqs. (15) and (16) give rise

to the closed equations governing the evolution of the envelopes Bj . After making

the transformation bj = εBj (j = 1, 2, 3), these equations read

∂b1

∂t
+ v1 · ∇rb1 = γ1b

∗
2b

∗
3 , (21)



September 14, 2005 12:9 WSPC/140-IJMPB 03232

3568 C. Sun et al.

∂b2

∂t
+ v2 · ∇rb2 = γ2b

∗
1b

∗
3 , (22)

∂b3

∂t
+ v3 · ∇rb3 = γ3b

∗
1b

∗
2 , (23)

when returning to the original variables, where ∇r = (∂/∂x, ∂/∂y), and vj = ∇kj
ωj

is the group velocity of the jth wave mode. The explicit expressions of the nonlinear

coupling coefficients γj , which carry the signs of the wave energy, are omitted here.

Equations (21)–(23) are (2+1)-dimensional TWRI equations with bj describ-

ing the envelope of the jth wave mode. Such a set of nonlinear coupled envelope

equations appear also in nonlinear optics, fluid physics and other fields.27,28

4. Three-Wave Soliton Solutions

Now we discuss the three-wave soliton solutions of Eqs. (21)–(23). For simplicity,

we set X = x − ut, and Y = y − vt with u and v being constants. Then the

Eqs. (21)–(23) are transformed into the following (1+1)-dimensional form:

∂bj

∂X
+ cj

∂bj

∂Y
= γ̄jb

∗
kb∗i , (24)

where i, j, k are cyclic and equal to 1, 2 and 3, cj = (vj − v)/(uj − u) and γ̄j =

γj/(uj − u) with (uj , vj) ≡ vj .

(i) The first type of solution: Using a transformation the coupling coefficients γ̄j

in Eq. (24) can be scaled to unity magnitude (i.e. |γ̄j | = 1). Then based on the

method of inverse scattering transform29 we obtain the following soliton solutions

of Eq. (24) under the condition that c2 > c3 > c1 and the sign of γ̄3 is different

from the signs of γ̄1 and γ̄2 (i.e. (γ̄1, γ̄2, γ̄3) = (−,−, +) or (γ̄1, γ̄2, γ̄3) = (+, +,−)):

b1 =
4η1(β12β13)

1

2

D

( −1

γ̄2γ̄3

)
1

2

exp[−i(φ1 − 2ξ1z1)]

×
[

exp(2η2z2) +
ζ∗1 − ζ∗2
ζ∗1 − ζ2

exp(−2η2z2)

]

, (25)

b3 =
−16iη1η2β12

D(ζ1 − ζ∗2 )(β13β32)
1

2

(

1

γ̄1γ̄2

)
1

2

exp[−i(φ1 + φ2 − 2ξ1z1 − 2ξ2z2)] , (26)

b2 =
4η2(β12β32)

1
2

D

( −1

γ̄1γ̄3

)
1

2

exp[−i(φ2 − 2ξ2z2)]

×
[

exp(−2η1z1) +
ζ1 − ζ2

ζ∗1 − ζ2
exp(2η1z1)

]

, (27)
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with

D = exp(2z1η1 + 2z2η2) + exp (2z2η2 − 2z1η1)

+

∣

∣

∣

∣

∣

ζ1 − ζ2

ζ∗1 − ζ2

∣

∣

∣

∣

∣

exp(2z1η1 − 2z2η2) + exp(−2z1η1 − 2z2η2) , (28)

where z1 = Y − c1X − Y10, z2 = Y − c2X − Y20, ζ1 = 2(ξ1 + iη1)/β32, ζ2 =

2(ξ2 + iη2)/β13, βij = cj − ci. ξj , ηj , φj and Yj0 (j = 1, 2) are integral constants.

In the leading-order approximation the modulus of the order parameter is

given by

|Ψ| = P = (u0 + εa(1)) exp(−z2)

= exp(−z2){u0 + [b1 exp(iθ1) + b2 exp(iθ2) + b3 exp(iθ3) + c.c]}. (29)

Note that in the solution (25)–(27), η1 and η2 are two important parameters con-

trolling the magnitude of soliton amplitude. Shown in Fig. 1 is the modulus |Ψ|
when the parameters in the solution are chosen as u0 = 1, k1 = 5, k3 = 6, u = 8,

v = −1, ξ1 = 5, ξ2 = 1, η1 = 0.2, η2 = 0.3, φ1 = 1, φ2 = 1, Y10 = 1, and Y20 = 1 at

time t = 1. For an illustration, we have taken the value of |Ψ| on the z = 0 plane.

We see that the solution represents an interaction between two envelope solitons,

which are excited from the condensate background u0 = 1. Both the wave-mode

with the wavevector k1 (called k1-soliton) and the wave-mode with the wavevec-

tor k2 (called k2-soliton) are plane-wave solitons, which are localized only in their

propagating directions. When the k1-soliton and the k2-soliton (which have differ-

ent velocities) collide, the third one (i.e. k3-soliton) appears. The k3-soliton then
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Fig. 1. The modulus |Ψ| of the order parameter in the case of the three-wave soliton excitation
given by the solution (25)–(27), when the parameters are chosen as u0 = 1, k1 = 5, k3 = 6, u = 8,
v = −1, ξ1 = 5, ξ2 = 1, η1 = 0.2, η2 = 0.3, φ1 = 1, φ2 = 1, Y10 = 1, and Y20 = 1 at time t = 1.
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decays, giving back to k1- and k2-solitons, which maintain their initial shape and

duration after the collision. The interaction results in a phase (or position) shift to

their initial propagating directions and a phonon radiation which is too small to be

seen in the figure.

(ii) The second type of solution: Under the same conditions, i.e. the sign of γ̄3 is

different from the signs of γ̄1 and γ̄2, and c2 > c3 > c1, Eq. (24) admits another

type of three-wave soliton solution:29

b1 = −2iνβ32(β13β12)
1

2 (−γ̄3γ̄2)
− 1

2 ∆−1 exp[iωβ32(Y − c1X − φ1)

− νβ32(Y − c1X − η1)] , (30)

b3 = 2iνβ12(β13β32)
1

2 (γ̄1γ̄2)
− 1

2 ∆−1 exp[−iωβ12(Y − c3X − φ3)

− νβ12(Y − c3X − η3)] , (31)

b2 = (2iνβ32β12)
−1(−γ̄1γ̄3)

− 1

2 b∗1b3∆ , (32)

where

∆ = 1 + exp[−2νβ12(Y − c3X − η3)] + exp[2νβ32(Y − c1X − η1)] , (33)

where ω, ν, η1, η3, φ1 and φ3 are arbitrary constants.

Figure 2 shows the configuration of modula |Ψ| at time t = 1 for the case of

the three-wave soliton excitation given by the solution (30)–(32). The parameters

chosen in the figure are u0 = 1, k1 = 5, k3 = 6, u = 7.8, v = −0.2, ν = 0.5, ω = 10,
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Fig. 2. The modulus of the order parameter Ψ in the case of the three-wave soliton excitation
represented by the solution (30)–(32). The parameters are chosen as u0 = 1, k1 = 5, k3 = 6,
u = 7.8, v = −0.2, ν = 0.5, ω = 10, η1 = 0, η2 = 0, φ1 = 0 and φ2 = 0 at time t = 1.
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η1 = 0, η2 = 0, and φ1 = 0. We see that this is a typical three-wave mixing process

in which two solitons interact and disappear, and then a new soliton is created.

5. Numerical Simulations

In this section, we give numerical evidence for the existence and stability of the

solutions presented in the preceding section. We apply a time-splitting Fourier

spectral method to numerically solve Eq. (1), which was used recently by Bao

et al.30 to solve the Schrödinger and GP equations. We adapt the combination of

both time-splitting discretization and Fourier spectral method to the GP equation

and infer the computational domain and mesh size based on the analytical results

obtained in previous sections. The merit of this method is that it is unconditionally

stable, time reversible, time-transverse invariant and conserves the total particle

number. Compared with other methods (e.g. Crank–Nicolson finite difference and

spectral methods), the time-splitting Fourier spectral method is more powerful for

solving the GP-like equation.

As pointed out in Sec. 2, because for a disk-shaped trap the atoms are strongly

confined in the z-direction, one can project the (3+1)-dimensional GP equation (1)

into a (2+1)-dimensional one. The reasonableness of such a kind of reduction from

high dimensions to low dimensions has been proved rigorously in Ref. 30 and is

shown to be very effective in our numerical simulation. We include in the numerical

simulation the slowly-varying trapping potential V‖(x, y) in the x and y directions,

which has been neglected in the analytical approach in the last two sections. The

ground state wavefunction u0 of the condensate in this situation is a slowly-varying

function of x and y, which for a large condensate (i.e. the condensate with a large

enough particle number), can be expressed by the Thomas–Fermi wavefunction:22

u0 =

{

1

I0Q

[

ω⊥

ωz

(

I0Q

π3/2

)1/2

− 1

2

(

ω⊥

ωz

)2

r2

]}1/2

, (34)

with r2 = x2 + y2, r ≤ l. Here l is the radius of the condensate, decided by the

solvability condition of u0. On the boundary x2 + y2 = l2, the order parameter

can be approximately taken as zero.22 Accordingly, at the boundary one can take

Ψ = ∂Ψ/∂x = ∂Ψ/∂y = 0.

We choose the spatial mesh size h = ∆x = ∆y = 0.5 and the number of grid

points as 230 × 230. The time step is selected as p = ∆t = 10−5. Taking the disk-

shaped BEC of 23Na realized in Ref. 31 as an example, we have the parameters

as = 2.75 nm, ωz/(2π) = 790 Hz, ω⊥/(2π) = 10 Hz, and particle number N =

2.9 × 105. We obtain az = 0.74 µm and thus l = 57 (dimensionless).

Figures (3a)–(3c) show the numerical results of modula |Ψ| for the BEC of 23Na

atoms on the z = 0 plane at time t = 0, t = 0.85 and t = 1.2 ms, respectively. The

solution given by (25)–(27) is taken as the initial condition in the simulation with

these parameters at different times. The three snapshots shown in the figures are the

projection of the soliton amplitude on the ground-state background, which is a large
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Fig. 3. Numerical results for modula |Ψ| of the disk-shaped BEC for 23Na atoms on the z = 0
plane at (a) t = 0 ms, (b) t = 0.85 ms and, (c) t = 1.2 ms, respectively. The solution given by
(25)–(27) is taken as the initial condition.

hemisphere in 3D space. The large circle in each figure denotes the exact shape of

the boundary of the ground-state background, which has been approximated as an

infinite plane in the analytical study in the preceding sections (i.e. the ground state

solution u0 is taken as a constant). The boundary is coarse since in the numerical

discretization we use a non-continuous lattice grid. Two trips inside the large circle

represent a two soliton excitation on the ground-state background. Near the cross

region of the trips there is a Mach stem, which is too small to be seen in the figures,

representing the third soliton produced by resonant interaction. Each soliton is

localized in its propagating direction. The darker regions in the figures denote

that the excitation in those regions has a smaller value of amplitude. Since each

soliton in the excitation is an envelope one, trips in the figures are composed of

many small circles or small trips. Comparing with Fig. 1, we see that the result

of the numerical experiment is basically similar to the analytical predication and

the three-wave soliton excitation in the system is fairly stable and hence feasible

for an experimental observation. We have also made a numerical simulation for
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other types of three-wave soliton excitations presented in the previous section and

obtained similar results.

6. Discussion and Summary

We have investigated the three-wave resonant interaction and related soliton ex-

citations of the Bogoliubov quasi-particle excited in a disk-shaped Bose–Einstein

condensate. By suitably choosing the wavevectors and frequencies of the plane-wave

modes involved, the phase-matching conditions of the three-wave mixing process

with an energy up-conversion can be fulfilled. Based on a method of multiple-scales

we have derived a set of nonlinearly coupled (2+1)-dimensional envelope equations

describing the spatio-temporal evolution of the three-wave resonant interaction.

Three-wave soliton solutions have been presented by using the results from the

method of inverse scattering transform developed in soliton theory. We have also

made a numerical simulation for checking the stability for the three-wave soliton

solutions.

To observe experimentally the TWRI in a Bose–Einstein condensate predicted

above, one should first prepare a disk-shaped condensate similar to that realized

by Görlitz et al.31 With such a condensate, one can apply the two-photon Bragg

transition to excite the condensate and populate different plane-wave modes, like

that proposed in Ref. 24. In this way the condensate is excited with excitations

of momentum k and q which fulfill the Bragg condition. Caused by the atom-

atom interaction, the k momentum excitation is separated into two excitations with

momenta q and k − q and a new momentum mode k − q can populate through the

TWRI process. One can further consider a multi-mode interaction of the excitations

in Bose–Einstein condensates, such as a second-harmonic generation, difference-

frequency mixing, and parametric amplification, etc. The results provided in this

work may be useful for understanding the nonlinear property of large-amplitude

excitations and as a guide for new experimental findings in the study of Bose–

Einstein condensates.
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