## Structures of N<sub>2</sub>Ar, O<sub>2</sub>Ar, and O<sub>2</sub>Xe dimers studied by Coulomb explosion imaging

J. Wu,<sup>1,2</sup> M. Kunitski,<sup>1</sup> L. Ph. H. Schmidt,<sup>1</sup> T. Jahnke,<sup>1</sup> and R. Dörner<sup>1,a)</sup> <sup>1</sup>Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, D-60438 Frankfurt, Germany <sup>2</sup>State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China

(Received 28 July 2012; accepted 22 August 2012; published online 12 September 2012)

We use intense femtosecond laser pulses to multiply ionize and directly image the structures of N<sub>2</sub>Ar, O<sub>2</sub>Ar, and O<sub>2</sub>Xe dimers by coincidently measuring the momenta of the fragment ions. All these dimers are found to have an equilibrium T-shaped structure in which the bond of the diatomic molecule is perpendicular to the dimer axis. The equilibrium distance between the rare-gas atom and the center-of-mass of the diatomic molecule is estimated to be  $R_{N2-Ar} \sim 3.86$  Å,  $R_{O2-Ar} \sim 3.65$  Å, and  $R_{O2-Xe} \sim 4.07$  Å, respectively. For the T-shaped N<sub>2</sub>Ar dimer, both sequential and direct triple-ionization-induced three-body breakups are observed. In contrast to N<sub>2</sub>Ar dimer, other structures are found to coexist with the dominating T-shaped one for O<sub>2</sub>Ar and O<sub>2</sub>Xe. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4750980]

Molecules and atoms can bind with each other via the van der Waals force to form dimers. Such mixed species between a rare-gas atom and a diatomic molecule are highly interesting as they contain two bonds of very different characters: a very long and weak van der Waals bond between the rare-gas atom and the molecule and a covalent bond of a diatomic molecule. The most simple of these systems N<sub>2</sub>Ar,<sup>1-6</sup>  $O_2Ar$ ,<sup>7-9</sup> and  $O_2Xe^{10-12}$  have been observed for about 40 yr. The previous experimental measurements<sup>1,2,7,8,10-12</sup> and theoretical calculations<sup>3–5</sup> indicate that the T-shaped geometry represents the ground state structure of these dimers. However, to the best of our knowledge, no direct observation of this T-shaped structure has been reported so far. Here, we directly image the structure of the dimer by Coulomb exploding it with intense femtosecond laser pulse. This is accomplished by means of a coincident measurement of the momenta of the fragment ions from the triple-ionization-induced threebody breakup. All these molecule-atom dimers are visualized to have a T-shaped structure. In contrast to N<sub>2</sub>Ar, additional structures are found to coexist with the dominating T-shaped one in  $O_2$ Ar and  $O_2$ Xe.

The Coulomb explosion imaging<sup>13</sup> is a powerful tool to visualize the structures of polyatomic molecules<sup>14–20</sup> and van der Waals-force bound complexes.<sup>21</sup> After sudden stripping off several electrons by fast traversal through a thin foil,<sup>13</sup> or by multiple ionization with ion impact<sup>14</sup> or high-energy photon<sup>15</sup> or intense ultrashort laser pulse,<sup>16–21</sup> the multiply charged molecular ion typically fragments along the Coulomb potential curve. The relative momenta of the mutually repelling fragment ions hence reveal the initial structure of the molecule prior to the fast breakup. The latest of these experiments with this technique even resolve the nodes of the vibrational structure.<sup>22</sup>

We performed our measurements in a reaction microscope of cold target recoil ion momentum spectroscopy (COLTRIMS).<sup>23,24</sup> The dimers were generated by coexpanding the mixture of molecules  $(N_2 \text{ or } O_2)$  and atoms (Ar or Xe) through a 30  $\mu$ m nozzle with a driving pressure of 3.5 bars. The gas ratios in the mixture were N<sub>2</sub>:Ar  $\sim$  1:1,  $O_2$ :Ar ~ 1:7, and  $O_2$ :Xe ~ 1:1 for the generation of  $N_2$ Ar, O<sub>2</sub>Ar, and O<sub>2</sub>Xe dimers, respectively. In the supersonic expansion the gas cools. In our jet also pure Ar<sub>2</sub> is formed. The Coulomb explosion image of Ar<sub>2</sub> from our nozzle expansion is compared to the wave function of the vibrational ground state of  $Ar_2$ , see Fig. 2(a) in Ref. 21, and there is no visible contribution of vibrationally excited states of the Ar<sub>2</sub> in our jet. The vibrational spacing in the ground state of Ar<sub>2</sub> is 3.2 meV. We therefore expect that also our mixed dimers are internally significantly colder than 3.2 meV. The femtosecond laser pulse with 35 fs duration centered at 790 nm produced from a Ti:Sapphire laser system was focused by a concave mirror (f = 7.5 cm) onto the gas jet inside the chamber. The laser intensities were measured to be  $I_0 \sim 1.2$ imes 10<sup>15</sup> W/cm<sup>2</sup> for N<sub>2</sub>Ar, and  $I_0 \sim 6.0 imes$  10<sup>14</sup> W/cm<sup>2</sup> for O<sub>2</sub>Ar and O<sub>2</sub>Xe, respectively, where the laser intensity sensitive branching ratios of H<sup>+</sup> spectrum from the dissociation channel of  $H_2^{+25}$  were used for the calibration. The ions created by photo-ionization were accelerated with a weak ( $\sim$ 14.7 V/cm) static electric field and detected by a time and position sensitive micro-channel plate detector<sup>26</sup> at the end of the spectrometer. The 3D momenta and kinetic-energy release (KER) of the fragment ions were calculated during the offline data analysis.

We distinguish the three-body breakup of the dimer from the random coincidences between ions originating from different atom or molecules ionized independently but by the same laser pulse by requiring the sum-momentum of the detected three particles,  $p_{sum} = |p_1 + p_2 + p_3|$ , to be less than 15 a.u. to account for the momentum conservation, and simultaneously the KER of Ar<sup>+</sup> (or Xe<sup>+</sup>) being greater than 0.3 eV to make sure that Ar<sup>+</sup> (or Xe<sup>+</sup>) is not from the single ionization of the atomic monomer, and the total KER of the

<sup>&</sup>lt;sup>a)</sup>Electronic mail: doerner@atom.uni-frankfurt.de.



FIG. 1. (a) Density plot of  $\text{KER}_{Ar+}$  vs  $\text{KER}_{(N+,N+,Ar+)}$  of the tripleionization-induced three-body breakup channel N<sub>2</sub>Ar(1,1,1). (b)  $\text{KER}_{Ar+}$ and  $\text{KER}_{(N+,N+)}$  for events in regions A and B as labeled in (a). (c) KER of the double ionization channel N<sub>2</sub>Ar(1,1) and  $\text{KER}_{Ar+}$  from the triple ionization channel N<sub>2</sub>Ar(2,1).

three particles is larger than 11 eV so that all the particles are from the three-body breakup. This reliably sorts out the background from the exploding double ionization of the diatomic molecule and single ionization of the atomic monomer in the same pulse.

Figure 1(a) shows the KER of Ar<sup>+</sup>, i.e., KER<sub>Ar+</sub> =  $0.5|p_{Ar+}|^2/m_{Ar}$ , versus the total KER, i.e., KER<sub>(N+,N+,Ar+)</sub> = KER<sub>N+</sub> + KER<sub>N+</sub> + KER<sub>Ar+</sub>, of the three-body breakup N<sub>2</sub>Ar<sup>3+</sup>  $\rightarrow$  N<sup>+</sup> + N<sup>+</sup> + Ar<sup>+</sup>. We refer to this channel as N<sub>2</sub>Ar(1,1,1) below. Note that the KER of Ar<sup>+</sup> is less than 20% of the total [see Fig. 1(a)]. This directly reflects that the N<sub>2</sub>-Ar van der Vaals bond is much longer than the N–N covalent bond. The corresponding Newton diagram of N<sub>2</sub>Ar(1,1,1) channel is shown in Fig. 2(a). The momentum vector of Ar<sup>+</sup> is represented by a red arrow fixed at unity pointing to the right, and the momentum vectors of two coincident N<sup>+</sup> from the same dimer are normalized to the length of Ar<sup>+</sup> and mapped to the left side. It reveals a T-shaped structure of N<sub>2</sub>Ar as illustrated by the inset of Fig. 2(a) in agreement with the spectroscopy measurements<sup>1,2</sup> and theoretical calculations.<sup>3-5</sup>

As labeled with A and B in Fig. 1(a), there are two regions of the KER distribution, indicating either two different ionization dynamics or structures of the N<sub>2</sub>Ar dimer. To get into the details, we plot the corresponding Newton diagrams in Figs. 2(b) and 2(c). For region A, the concentrated distribution of  $N^+$  [Fig. 2(b)] indicates that it is from direct three-body breakup of triply ionized T-shaped N<sub>2</sub>Ar dimer. For region B, the N<sup>+</sup> is mostly distributed on the ring [Fig. 2(c)]. There are two possible reasons to form this ringlike structure: (a) the  $N_2^{2+}$  can rotate before fragmenting, so that the breakup axis of the  $N_2^{2+}$  get randomized and does not correspond to the internal N<sub>2</sub> axis, as observed in the fragmentation of  $CO_2^{15}$  or (b) it could indicate a non-T-shaped initial structure. Our measured KER correlations shown in Fig. 1(a) allow excluding scenario (b). Classical dynamics simulations show that any structure differing from the T-shaped one will increase both  $KER_{Ar+}$  and  $KER_{(N+,N+,Ar+)}$ 



FIG. 2. Newton plots of the triple-ionization-induced three-body breakup channel  $N_2Ar(1,1,1)$  for (a) all events, (b) events in region A, and (c) events in region B as labeled in Fig. 1(a). In (a)-(c) the momenta are normalized to the momentum of the  $Ar^+$ . (d) The same as (c) but without momentum vector normalization and the recoil of the  $Ar^+$  is subtracted from the momenta. The inset of (a) illustrates the T-shaped structure of the  $N_2Ar$  dimer.

as compared to the direct breakup of a T-shaped N<sub>2</sub>Ar<sup>3+</sup>. Such non-T-shaped structures if they result in the observed larger total KER would be located to the upper right of structure A in Fig. 1(a), while our observed structure B is located to the up left of structure A. This indicates a sequential breakup for events in region B. After single ionization on Ar site and double ionization on N<sub>2</sub> site, the dimer ion starts to dissociate along the potential curve of N<sub>2</sub><sup>2+</sup> + Ar<sup>+</sup>; The N<sub>2</sub><sup>2+</sup> rotates when it is departing from Ar<sup>+</sup> and lately breaks into N<sup>+</sup> + N<sup>+</sup>, which yields a board distribution of N<sup>+</sup> on the ring as shown in Fig. 2(c) [or Fig. 2(d) without momentum vector normalization].

This sequential three-body breakup scenario is corroborated by the distributions of the KER<sub>Ar+</sub> and the KER of N<sup>+</sup> + N<sup>+</sup> pair, KER<sub>(N+,N+)</sub> =  $|p_{rel(N+,N+)}|^2/m_N$ , where  $p_{rel(N+,N+)}$ is the relative momentum between two mutually repelling N<sup>+</sup>. The KER<sub>Ar+</sub> from the sequential three-body breakup [region B, Fig. 1(b)] is very similar to that from the two-body breakup  $N_2Ar^{3+} \rightarrow N_2^{2+} + Ar^+$  channel [Fig. 1(c)], referred as  $N_2Ar(2,1)$ , since it is the intermediate state. Meanwhile, due to the population of the bound sates of  $N_2^{2+}$  following the double ionization of the  $N_2$  site, the  $KER_{(N+,N+)}$  from the sequential three-body breakup shows several fine structures [Fig. 1(b)]. They correspond to vibrational modes of the intermediate metastable  $N_2^{2+27}$  which dissociates with delay by coupling to a repulsive curve. For direct three-body breakup in region A, as shown in Fig. 1(b), both  $KER_{Ar+}$  and  $KER_{(N+,N+)}$ distributions are different as compared to the sequential one in region B. Therefore, N<sub>2</sub>Ar features a T-shaped structure,<sup>1–5</sup> where the bond axis of  $N_2$  is perpendicular to the dimer axis as illustrated by the inset of Fig. 2(a). It undergoes direct or sequential three-body breakup following triple ionization by our intense laser pulse.

For van der Waals-bound dimers composed of heavy nuclei, the ultrashort laser pulse driven Coulomb explosion is known to nicely map the equilibrium distance in the ground state nuclear wavefunction to the KER distribution of the fragment ions.<sup>21,28</sup> Also for the mixed systems studied here, the Ar and N<sub>2</sub> in N<sub>2</sub>Ar dimer are frozen during the ultrafast ionization process, which subsequently explode due to the strong Coulomb repulsion between the multiply charged ions. The equilibrium distance between Ar and the centerof-mass of N<sub>2</sub> at the instant of multiple ionization can be classically approximated to  $R_{N2}$ —Ar  $\sim q_1q_2/KER_{(N2q1+,Arq2+)}$ , where  $\text{KER}_{(N2q1+,Arq2+)}$  is the KER of the exploding channel  $N_2\text{Ar}^{(q1+q2)+} \rightarrow N_2^{q1+} + \text{Ar}^{q2+}$ . For  $\text{KER}_{(N2+,Ar+)}$  $\sim$  3.7 eV of the two-sites double ionization channel N<sub>2</sub>Ar(1,1) measured in our experiment as shown in Fig. 1(c), we calculate  $R_{N2-Ar} \sim 3.86$  Å for N<sub>2</sub>Ar. This imaging of the bond length does not work for the internal N2 bond for two reasons. Firstly, due to the enhanced multiple ionization<sup>29,30</sup> of the light diatomic molecule at a critical internuclear distance, our 35-fs laser pulse is not short enough and secondly, the N<sup>+</sup>-N<sup>+</sup> potential strongly depends on the electronic state and is not necessary being 1/R. For the direct threebody breakup channel  $N_2Ar(1,1,1)$  in region A, as shown in Fig. 1(b),  $KER_{(N+,N+)}$  shows a broad distribution with a maximum around ~11 eV. For a 1/R potential, this would correspond to a double ionization of N2 inside N2Ar at RN-N  $\sim$  1.32 Å.

Similar to N<sub>2</sub>Ar, as shown in Fig. 3(a), O<sub>2</sub>Ar also shows a T-shaped structure,<sup>7,8</sup> where the bond of O<sub>2</sub> is perpendicular to the dimer axis as illustrated by the inset. Figure 4(a) shows the KER distribution of Ar<sup>+</sup> as a function of the total KER, i.e., KER<sub>(O+,O+,Ar+)</sub> = KER<sub>O+</sub> + KER<sub>O+</sub> + KER<sub>Ar+</sub>, of the three-body breakup channel O<sub>2</sub>Ar<sup>3+</sup>  $\rightarrow$  O<sup>+</sup> + O<sup>+</sup> + Ar<sup>+</sup> which is referred as O<sub>2</sub>Ar(1,1,1). It shows two regions C and D. The main distribution of region C represents the direct three-body breakup of the T-shaped O<sub>2</sub>Ar as visu-



FIG. 3. Newton plots of the triple-ionization-induced three-body breakup channel  $O_2Ar(1,1,1)$  for (a) all events, (b) events in region C, and (c) events in region D as labeled in Fig. 4(a). In (a)-(c) the momenta are normalized to the momentum of the Ar<sup>+</sup>. (d) The same as (c) but without momentum vector normalization and the recoil of the Ar<sup>+</sup> is subtracted from the momenta. The inset of (a) illustrates the T-shaped structure of the  $O_2Ar$  dimer.



FIG. 4. (a) Density plot of  $\text{KER}_{Ar+}$  vs  $\text{KER}_{(O+,O+,Ar+)}$  of the tripleionization-induced three-body breakup channel  $O_2Ar(1,1,1)$ . (b) KER of the double ionization channels  $O_2Ar(1,1)$  and  $O_2Xe(1,1)$ , and  $\text{KER}_{(O+,O+)}$  from  $O_2Ar(1,1,1)$  channel.

alized by the Newton diagram in Fig. 3(b). The location of the counts in region D is very different from region B in the N<sub>2</sub>Ar case [Fig. 1(a)]. The counts in region D is displaced to the upper right of the maximum in region C, i.e., a high KER of the Ar<sup>+</sup> goes along with an increase of the total KER. As we have argued above this indicates that these events are from a direct breakup of a somewhat more linear structure than the T-shape. The Newton diagram in Fig. 3(c) visualizes the details, where O<sup>+</sup> are found preferentially on four spots on a ring. Figure 3(d) shows the same data as Fig. 3(c) but without normalization of the momentum vectors. This excludes that the distribution is an artifact caused by the normalization. We therefore conclude that the four spots structure of the O<sub>2</sub>Ar which is different from the dominating T-shaped one.

This structural difference between the purely T-shaped N<sub>2</sub>Ar, the additional structure of O<sub>2</sub>Ar, likely originates from the different shape of the highest occupied molecular orbital (HOMO) of O<sub>2</sub> compared to N<sub>2</sub>. For N<sub>2</sub>, the HOMO with  $\sigma_g$  symmetry<sup>31</sup> concentrates around the nuclei along the molecular axis. For O<sub>2</sub>, the HOMO with  $\pi_g$  symmetry<sup>31</sup> features butterfly shaped four lobes with a node along the molecular axis. As compared to N<sub>2</sub>Ar with its stable T-shaped geometry, one might expect O<sub>2</sub>Ar to have additional structures where the dimer potential finds its local minimums.

The equilibrium distance between Ar and the center-ofmass of O<sub>2</sub> in O<sub>2</sub>Ar is estimated to be  $R_{O2-Ar} \sim 3.65$  Å based on the measured KER<sub>(O2+,Ar+)</sub> ~ 3.9 eV of the double ionization channel O<sub>2</sub>Ar(1,1) as shown in Fig. 4(b). For the



FIG. 5. (a) Density plot of  $KER_{Xe+}$  vs  $KER_{(O+,O+,Xe+)}$  of  $O_2Xe(1,1,1)$  channel. (b) Newton plot of the triple-ionization-induced three-body breakup channel  $O_2Xe(1,1,1)$ . The momenta are normalized to the momentum of the Xe<sup>+</sup>. The inset illustrates the T-shaped structure of  $O_2Xe$ .

 $O^+ + O^+$  pair in the three-body breakup  $O_2Ar(1,1,1)$  channel, a broad distribution of  $KER_{(O+,O+)}$  is observed around ~12.8 eV [see Fig. 4(b)]. Assuming an (unrealistic) 1/R potential for the  $O^+ - O^+$  this would correspond to  $R_{O-O} \sim 1.11$  Å.

For O<sub>2</sub>Xe, there are seven Xe isotopes that can contribute to form the dimer with O<sub>2</sub> in our jet. All the isotopes are found to have similar structure and ionization dynamics. Figure 5(a) displays the distribution of KER<sub>Xe+</sub> as a function of KER<sub>(O+,O+,Xe+)</sub> for the triple-ionization-induced threebody breakup channel O<sub>2</sub>Xe<sup>3+</sup>  $\rightarrow$  O<sup>+</sup> + O<sup>+</sup> + Xe<sup>+</sup>, referred as O<sub>2</sub>Xe(1,1,1). The corresponding Newton diagram is shown in Fig. 5(b). They are very similar to those of O<sub>2</sub>Ar(1,1,1) as shown in Figs. 3(a) and 4(a), indicating same structures and ionization dynamics. For KER<sub>(O2+,Xe+)</sub>  $\sim$  3.5 eV of the double ionization channel O<sub>2</sub>Xe(1,1) as shown in Fig. 4(b), we estimate the equilibrium distance between Xe and the center-of-mass of O<sub>2</sub> in O<sub>2</sub>Xe is R<sub>O2-Xe</sub>  $\sim$  4.07 Å.

In summary, by using intense ultrashort laser pulse to multiply ionize and Coulomb explode the molecule-atom dimers, we directly map their equilibrium geometries to the detected momenta of the fragment ions. All the moleculeatom dimers investigated in this work, i.e., N<sub>2</sub>Ar, O<sub>2</sub>Ar, and O<sub>2</sub>Xe, are observed to have a T-shaped structure<sup>1–5,7,8,10–12</sup> in which the bond of the contained diatomic molecule is perpendicular to the dimer axis. For O<sub>2</sub>Ar and O<sub>2</sub>Xe, different structures are observed to coexist with the dominating T-shaped one. This difference between N<sub>2</sub> contained dimer and the one with O<sub>2</sub> might be related to the difference between HOMOs of  $N_2$  and  $O_2$  molecules. The equilibrium distance between the rare-gas atom and the center-of-mass of the molecule is estimated to be  $R_{N2-Ar} \sim 3.86$  Å,  $R_{O2-Ar} \sim 3.65$  Å, and  $R_{O2-Xe} \sim 4.07$  Å, respectively, for  $N_2Ar$ ,  $O_2Ar$ , and  $O_2Xe$ .

This work was supported by a Koselleck Project of the Deutsche Forschungsgemeinschaft. J.W. acknowledges support by the Alexander von Humboldt Foundation.

- <sup>1</sup>G. Henderson and G. E. Ewing, Mol. Phys. 27, 903 (1974).
- <sup>2</sup>W. Jäiger and M. C. L. Gerry, Chem. Phys. Lett. 196, 274 (1992).
- <sup>3</sup>K. Patel, P. R. Butler, A. M. Ellis, and M. D. Wheeler, J. Chem. Phys. **119**, 909 (2003).
- <sup>4</sup>C. R. Munteanu, J. L. Cacheiro, and B. Fernández, J. Chem. Phys. **121**, 10419 (2004).
- <sup>5</sup>J. Zhu, Y.-P. Lu, X.-R. Chen, and Y. Cheng, Eur. Phys. J. D **33**, 43 (2005).
- <sup>6</sup>F. Wang, F. R. W. McCourt, and R. J. Le Roy, J. Chem. Phys. **113**, 98 (2000).
- <sup>7</sup>G. Henderson and G. E. Ewing, J. Chem. Phys. **59**, 2280 (1973).
- <sup>8</sup>J. Mettes, B. Heymen, P. Verhoeve, J. Reuss, D. C. Lainé, and G. Brocks, Chem. Phys. **92**, 9 (1985).
- <sup>9</sup>F. A. Gianturco and A. Storozhev, J. Chem. Phys. 101, 9624 (1994).
- <sup>10</sup>V. Aquilanti, D. Ascenzi, D. Cappelletti, M. de Castro, and F. Pirani, J. Chem. Phys. **109**, 3898 (1998).
- <sup>11</sup>A. V. Baklanov, G. A. Bogdanchikov, K. V. Vidma, D. A. Chestakov, and D. H. Parker, J. Chem. Phys. **126**, 124316 (2007).
- <sup>12</sup>K. V. Vidma, G. A. Bogdanchikov, A. V. Baklanov, D. A. Chestakov, and D. H. Parker, J. Chem. Phys. **133**, 194306 (2010).
- <sup>13</sup>Z. Vager, R. Naaman, and E. P. Kanter, Science 244, 426 (1989).
- <sup>14</sup>N. Neumann, D. Hant, L. Ph. H. Schmidt, J. Titze, T. Jahnke, A. Czasch, M. S. Schöffler, K. Kreidi, O. Jagutzki, H. Schmidt-Böcking, and R. Dörner, Phys. Rev. Lett. **104**, 103201 (2010).
- <sup>15</sup>Y. Muramatsu, K. Ueda, N. Saito, H. Chiba, M. Lavollée, A. Czasch, T. Weber, O. Jagutzki, H. Schmidt-Böcking, R. Moshammer, U. Becker, K. Kubozuka, and I. Koyano, Phys. Rev. Lett. 88, 133002 (2002).
- <sup>16</sup>F. Légaré, K. F. Lee, I. V. Litvinyuk, P. W. Dooley, S. S. Wesolowski, P. R. Bunker, P. Dombi, F. Krausz, A. D. Bandrauk, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. A **71**, 013415 (2005).
- <sup>17</sup>K. Zhao and W. T. Hill III, Phys. Rev. A **71**, 013412 (2005).
- <sup>18</sup>J. Gagnon, K. F Lee, D. M. Rayner, P. B. Corkum, and V. R. Bhardwaj, J. Phys. B **41**, 215104 (2008).
- <sup>19</sup>A. Hishikawa, H. Hasegawa, and K. Yamanouchi, Chem. Phys. Lett. 388, 1 (2004).
- <sup>20</sup>J. P. Brichta, S. J. Walker, R. Helsten, and J. H. Sanderson, J. Phys. B 40, 117 (2007).
- <sup>21</sup>B. Ulrich, A. Vredenborg, A. Malakzadeh, L. Ph. H. Schmidt, T. Havermeier, M. Meckel, K. Cole, M. Smolarski, Z. Chang, T. Jahnke, and R. Dörner, J. Phys. Chem. A **115**, 6936 (2011).
- <sup>22</sup>L. Ph. H. Schmidt, T. Jahnke, A. Czasch, M. Schöffler, H. Schmidt-Böcking, and R. Dörner, Phys. Rev. Lett. **108**, 073202 (2012).
- <sup>23</sup>J. Ullrich, R. Moshammer, R. Dörner, O. Jagutzki, V. Mergel, H. Schmidt-Böcking, and L. Spielberger, J. Phys. B **30**, 2917 (1997).
- <sup>24</sup>R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-Böcking, Phys. Rep. **330**, 95 (2000).
- <sup>25</sup>A. S. Alnaser, X. M. Tong, T. Osipov, S. Voss, C. M. Maharjan, B. Shan, Z. Chang, and C. L. Cocke, Phys. Rev. A **70**, 023413 (2004).
- <sup>26</sup>O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spielberger, U. Spillmann, R. Dörner, and H. Schmidt-Böcking, Nucl. Instrum. Methods Phys. Res. A 477, 244 (2002).
- <sup>27</sup>N. A. Cherepkov, S. K. Semenov, M. S. Schöffler, J. Titze, N. Petridis, T. Jahnke, K. Cole, L. Ph. H. Schmidt, A. Czasch, D. Akoury, O. Jagutzki, J. B. Williams, C. L. Cocke, T. Osipov, S. Lee, M. H. Prior, A. Belkacem, A. L. Landers, H. Schmidt-Böcking, Th. Weber, and R. Dörner, Phys. Rev. A **80**, 051404(R) (2009).
- <sup>28</sup>J. Wu, A. Vredenborg, B. Ulrich, L. Ph. H. Schmidt, M. Meckel, S. Voss, H. Sann, H. Kim, T. Jahnke, and R. Dörner, Phys. Rev. Lett. **107**, 043003 (2011).
- <sup>29</sup>T. Seideman, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. Lett. **75**, 2819 (1995).
- <sup>30</sup>S. Chelkowski and A. D. Bandrauk, J. Phys. B 28, L723 (1995).
- <sup>31</sup>S. Petretti, Y. V. Vanne, A. Saenz, A. Castro, and P. Decleva, Phys. Rev. Lett. **104**, 223001 (2010).