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Abstract
The attoclock is an important tool offering the capability to time resolve tunneling ionization.
In this article, we systematically study the influence of nonadiabatic, nondipole and quantum
effects on the attoclock signal. In contrast to previous studies, where a single peak offset angle
is used to represent the attoclock information, we survey the whole momentum distribution of
the attoclock signal. We find that nonadiabaticity affects the overall momentum distribution,
the quantum effect of intercycle interference changes substantially the attoclock offset angle,
and the nondipole effect plays a negligible role in the attoclock signal in the polarization plane.
The present study is essential for a quantitatively correct interpretation of the attoclock
experimental results.

Keywords: attoclock, attoclock signal, attoclock offset angle, nonadiabatic effect, nondipole
effect, quantum effect, intercycle interference

(Some figures may appear in colour only in the online journal)

1. Introduction

The problem of tunneling time has long been a topic of con-
troversy in strong-field physics [1]. With advances in the laser
technology, ultra-short intense laser pulses become routinely
available, facilitating the development of the attoclock tech-
nique [2], which can be employed to measure the tunneling
time [3–7], or, more precisely, the time the electron appears
at the tunnel exit relative to the peak of the laser field. This
technique utilizes a strong elliptically polarized laser pulse,
where the rotating vector potential maps the tunneling time
to the photoelectron deflection angle in the polarization plane.
Up to date, the interpretation of the attoclock results has been

∗ Author to whom any correspondence should be addressed.

limited to the single integrated value of the attoclock off-
set angle, which is typically chosen as the peak or average
angle in the polarization plane [8–12]. Among other prob-
lems, it was argued that the offset angle indeed varies at differ-
ent radial momenta of the attoclock signal [7, 13–17], which
poses the question how useful a single value of the offset
angle is to interpret the attoclock results. In this article, we
evaluate additionally the entire momentum distribution of the
attoclock signal, and systematically study the influence of dif-
ferent factors, including nonadiabatic, nondipole and intercy-
cle quantum interference effects, on the attoclock signal, which
is essential for a quantitatively correct interpretation of the
attoclock experimental results.

For any system with a time-dependent Hamiltonian, the
energy is not conserved. Contrary to a pure tunneling
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process with a particle impinging onto a static potential, the
process of tunneling ionization is induced by a time-varying
intense infrared laser pulse, making tunneling ionization inher-
ently nonadiabatic. The nonadiabatic tunneling effect has been
known to induce energy variations across the tunneling bar-
rier [16], shifts of the central transverse tunneling momentum
[17, 18], interplay with orbital angular momentum [19, 20] and
coupling to the nondipole effects on the subcycle time scale
[21]. Importantly, it was found, based on the same attoclock
signal, that whether there is a tunneling time delay depends on
whether nonadiabaticity is fully and consistently accounted for
[22, 23].

The attoclock results have so far been interpreted under the
assumption of dipole approximation, in which condition the
laser pulse transfers only energy but not momentum. With the
advancements in the detecting technology, the small momen-
tum transfer from the laser field to the departing electron
becomes accessible [24]. Recently, the attoclock technique
has been applied to resolve the linear momentum transfer on
the subcycle level beyond the dipole approximation [21, 25].
Here, the nondipole effect has been time resolved with the
attoclock angle in the polarization plane. However, the reverse
action, namely the influence of the nondipole effect on the atto-
clock signal, including the attoclock offset angle, has not been
quantified.

In a multicycle attoclock laser pulse, the intercycle inter-
ference effect would undoubtedly alter the attoclock signal.
However, to what extent it would affect the interpretation of
the attoclock results remains unclear. In addition, the transition
amplitude could generally be broken down into the exponen-
tial part, the prefactor and the Jacobian factor. How each factor
plays a role also remains unclear so far.

In this article, we systematically study the influence of
nonadiabatic, nondipole, quantum interference effects and
different factors in the tunneling rate on the attoclock sig-
nal. In order to consistently study the influence of differ-
ent factors, we establish the results from the solution of
time-dependent Shrödinger equation (TDSE) as the standard
accurate attoclock momentum distribution, and results consid-
ering different factors can compare to the standard distribution.
The results considering different factors are obtained using
trajectory-based simulations, including the classical-trajectory
Monte Carlo (CTMC) method, the quantum-trajectory Monte
Carlo (QTMC) method [26] and the semiclassical two-step
(SCTS) model [27]. Under this framework, the quantum effect
can be studied by comparing results obtained with CTMC to
QTMC/SCTS, the nonadiabatic effect can be studied by com-
paring results starting from different initial tunneling condi-
tions where nonadiabaticity can be switched on and off, and
the nondipole effect can be studied by altering the Newto-
nian equation of motion to evolve the trajectories. To make
the comparison, we take advantage of the entire information
of the attoclock signal based on the whole final momentum
distribution. To this end, we apply three techniques, including
calculating the overlap [22], the Shannon entropy difference
(SED) [28, 29] and the Kullback–Leibler divergence (KLD)
[30], with respect to the TDSE solution.

This paper is organized as follows. In section 2, we present
the theoretical methods used, including the methods to com-
pute the attoclock momentum distribution (TDSE, CTMC,
QTMC and SCTS), different initial conditions with or without
nonadiabaticity, and methods for comparing the entire distri-
bution (overlap, SED and KLD). In section 3, we study the
influence of different factors on the attoclock signal. The arti-
cle ends with a summary given in section 4. Atomic units are
used throughout the article unless stated otherwise.

2. Theoretical methods

In this section, we briefly describe the main theoretical meth-
ods used in the present study, including the simulation meth-
ods, various initial conditions, and comparison methods.

2.1. Simulation methods

In order to study the influence of intercycle interference effect
on the attoclock signal, we carry out trajectory-based simula-
tions including CTMC, QTMC and SCTS, and compare to the
results of TDSE simulations, which is regarded as the accurate
result in this study.

2.1.1. Time-dependent Schrödinger equation. In an intense
laser field, the electronic wave functionΨ (r, t) evolves accord-
ing to TDSE as

i
∂

∂t
Ψ(r, t) =

{
1
2

[p + A(t)]2 + V(r)

}
Ψ(r, t), (1)

where p is the momentum operator, A(t) is the laser vector
potential in the form of

A(t) =
A0√

1 + ε2
cos4

( ωt
2N

)(
cos(ωt)
ε sin(ωt)

)
, (2)

with A0 the amplitude of the vector potential, ε the ellipticity,
ω the central angular frequency, N the total number of laser
periods, and

V(r) = −1 + exp(−r2/2)√
r2 + a

(3)

is the single-active-electron atomic potential with the soft-core
parameter a = 0.836 tuned to match the ionization potential of
the helium atom. The TDSE simulation is carried out on a two-
dimensional grid with a grid step of Δx = 0.2 and 8192 grid
points in each direction, and a time step of Δt = 0.02. The
ground-state wave function is obtained by the imaginary time
propagation method and the propagation of the wave function
in the laser field is carried out using the split-operator Fourier
method. An absorber of the form 1/[1 + exp{(r − r0)/d}],
where r0 = 804.2 and d = 4, is placed around the center of the
simulation box to damp the outgoing wave packet in order to
avoid reflections from the grid border. The attoclock momen-
tum distribution is obtained by accumulatively projecting the
absorbed wave function onto the Volkov state at each time step
[31, 32].
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2.1.2. CTMC method. The CTMC method is a great imple-
mentation of the continuum propagation part of the clas-
sic two-step and three-step model. It disregards all quantum
effects but takes full account of the Coulomb potential during
the continuum motion of the electron. It applies whenever the
quantum effect plays a minor role but the Coulomb interaction
is important, such as in the simulation of nonsequential double
ionization. In the current setting, it acts as a good counterpart
for studying the influence of interference effects after tunnel-
ing by completely neglecting quantum information. Here, the
electron is guided by the combined interaction of the laser field
and the Coulomb potential, and the trajectory can be solved by
the Newtonian equation of motion:

r̈ = −F(t) −∇V(r), (4)

where F(t) = −Ȧ(t) is the laser electric field. Using the atto-
clock pulse, the electrons no longer return to the nucleus.
After the laser pulse ends, the Kepler formula [33] is used
to obtain the asymptotic momentum and the trajectories with
similar ending momenta are binned in a small momentum box
to produce the final momentum distribution.

2.1.3. QTMC method. The QTMC method utilizes the same
underlying classical trajectories as in CTMC, but tags each
trajectory with a phase accumulated during its continuum
excursion [26]:

Φ = −
∫ ∞

t0

{
v(t)2

2
+ V[r(t)] + Ip

}
dt, (5)

where t0 is the tunneling exit time, or the time of launch.
Trajectories with similar ending momenta are binned with
coherent summation of the probability amplitude.

2.1.4. SCTS model. SCTS improves the phase for the trajec-
tory in QTMC [27], with

Φ = −v0 · r −
∫ ∞

t0

{
v(t)2

2
+ V[r(t)] − r · ∇V[r(t)] + Ip

}
dt.

(6)
There are two differences between equations (5) and (6).

Firstly, in QTMC, equation (5) is derived under quasi-static
conditions, the initial longitudinal velocity is zero so the
term −v0 · r vanishes. Secondly, SCTS has one more term
than QTMC in the integrand originating from the equation of
motion.

2.2. Different initial conditions and ionization rates

The trajectory-based methods launch classical electron tra-
jectories starting with a certain set of initial conditions. The
initial conditions can be chosen to include, partially include,
or exclude nonadiabatic tunneling effects, thus enabling a
study of the influence of nonadiabaticity in the attoclock sig-
nal. Following we present various ways to sample the initial
conditions.

2.2.1. Strong-field approximation. The strong-field approxi-
mation (SFA) [34–36] is a commonly used theoretical method
when studying the interaction of lasers with atoms and

molecules. Its key idea is to use the Volkov state, which is the
eigenstate of an electron solely in the laser field, to describe
the final continuum state of electrons, and use discrete eigen-
states that are not disturbed by the laser to describe the initial
bound state. As a result, the transition amplitude between an
atomic bound state and the continuum state with photoelectron
asymptotic momentum p is given by

Mp = −i
∫ +∞

−∞
〈Ψp|r · F(t)|Ψ0〉dt, (7)

where Ψ0(r, t) = ψ0(r)eiIpt is the initial bound state
wave function unperturbed by the laser field with Ip

standing for the ionization potential and Ψp(r, t) = exp{
i[p + A(t)] · r − i

2

∫ t[p + A(t′)]2dt′
}

is the Volkov state (in
the length gauge).

The SFA gives the transition amplitude to a certain momen-
tum p. With a further saddle-point approximation [37, 38], it
can be used as an accurate way to prepare initial conditions
to launch classical electron trajectories. Specifically, saddle-
point times ts are identified according to the saddle-point
equation

1
2

[p + A(ts)]2 + Ip = 0, (8)

that contribute most to the integral (7), where ts = tr + iti must
be a complex number to satisfy the saddle-point equation, with
tr the tunneling exit time and ti relating to the ionization proba-
bility. Generally, for a certain set of laser and target parameters,
the larger the ti, the smaller the ionization probability. After
taking care of the initial bound state as well, the modified SFA
[39–41] gives (ignoring field-independent constants)

MSFA =
∑

ts

exp(−iSs)
{[p + A(ts)] · F(ts)}α/2

, (9)

where α = 1 + Z/
√

2Ip with Z the asymptotic ionic charge
and

Ss =

∫ tr

ts

{
1
2

[p + A(t)]2 + Ip

}
dt. (10)

Note that the momentum at the tunnel exit k relates to the
asymptotic momentum p by k = p+ A(tr), we can rewrite
equation (9) as

MSFA =
∑

ts

exp(−iSs)
{[k − A(tr) + A(ts)] · F(ts)}α/2

, (11)

expressed as a function of the tunneling exit time tr and the ini-
tial tunneling momentum k, which can now be sampled over
to launch trajectories with a (complex) weight correspond-
ing to the transition amplitude. In addition, the tunneling exit
position can be defined from

rSFA = Re
∫ tr

ts

[p + A(t)]dt = Im
∫ ti

0
A(tr + it)dt. (12)

Note that nonadiabatic tunneling effects are fully included by
using initial conditions prepared by SFA.
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2.2.2. SFA with adiabatic expansion. In the case of a tun-
neling ionization process, we may expand the vector potential
A(ts) in terms of small ti (or small Keldysh parameter γ cor-
responding to a tunneling scenario) up to the second order
[23, 42]

A(tr + iti) = A(tr) − itiF(tr) +
1
2

t2
i Ḟ(tr) + O(t3

i ), (13)

where Ḟ(tr) = dF(tr)
dtr

. With such expansion, we obtain the tun-
neling rate, which we term as SFA with adiabatic expansion
(SFAAE), as

WSFAAE(k⊥, F) =
exp

[
− 2(k2

⊥+2Ip)3/2

3
√

F2−k⊥·Ḟ

]
[(k2

⊥ + 2Ip)(F2 − k⊥ · Ḟ)]α/2
, (14)

where k⊥ is the transverse momentum in the polarization
plane, which, after such expansion, is perpendicular to the
instantaneous electric field direction. The corresponding loca-
tion of the tunnel exit is

rSFAAE(k⊥, F) ≈ −F
2

k2
⊥ + 2Ip

F2 − k⊥ · Ḟ
. (15)

The SFAAE method takes the first three terms of the Taylor
expansion of the vector potential A(ts) and thus takes partial
account for nonadiabaticity, which has been shown to very
closely reproduce the SFA results [23]. This will also become
clear later in this article. SFAAE has the advantage that the
ionization rate can be written in an expression similar to the
familiar Ammosov–Delone–Krainov (ADK) theory [43–45]
(shown below) without the necessity to solve the saddle-point
equation, which speeds up the calculation substantially.

2.2.3. ADK theory. The ionization rate in the ADK theory
[43–45] can be written as

WADK(k⊥, F) =
exp

[
− 2(k2

⊥+2Ip)3/2

3F

]
[(k2

⊥ + 2Ip)F2]α/2
. (16)

It is expressed in a form different from what is often used
in the literature in two ways: (i) the prefactor is different
that considers k⊥ and an exponent of α. We have inten-
tionally used this form so that it aligns better with previ-
ous SFA and SFAAE methods for the sake of comparison.
We note that using a typical ADK prefactor does not change
our conclusion below. (ii) The exponent in the numerator is
expressed differently. To retrieve the normal ADK expression,
we could expand it in terms of k⊥: exp[−2(k2

⊥ + 2Ip)3/2/3F] ≈
exp[−2(2Ip)3/2/3F] exp(−

√
2Ipk2

⊥/F).
The location of the tunnel exit is

rADK(k⊥, F) ≈ −F
2

k2
⊥ + 2Ip

F2
. (17)

It is also different from the normally used Ip/F by taking k⊥
into account. In this way, there is precisely no energy varia-
tion across the tunneling barrier, corresponding to an adiabatic
tunneling scenario [23]: EADK = k2

⊥/2 + rADK · F = −Ip.

From the comparison to the SFAAE (14), the ADK
equations presented here is clearly a limit of SFAAE with
Ḟ → 0, which thus is the adiabatic limit of the SFAAE (or SFA)
theory.

2.3. Comparison methods

With different simulation methods and initial conditions, we
may obtain the attoclock momentum distribution from various
combinations, which can be compared to the accurate TDSE
solution. Below we present different methods to compare the
whole momentum distributions.

2.3.1. The overlap. The electron momentum spectra obtained
by the simulations under similar initial conditions are gener-
ally quite close to each other. In order to compare two momen-
tum distributions, we may calculate the overlap between them
[22]

Overlap =

∫
dp|Ψ̃(p, t)|

√
ρ(p, t)∫

dp|Ψ̃(p, t)|2
, (18)

where ρ(p, t) represents the momentum distribution obtained
with various methods and Ψ̃(p, t) is the final momentum-space
wave function from the TDSE simulation such that |Ψ̃(p, t)|2
is the corresponding momentum distribution regarded as the
standard accurate solution. Clearly, overlap ∈ [0, 1]. The more
similar the distribution is to the TDSE solution, the larger the
value of overlap is.

2.3.2. The SED. Shannon borrowed the concept of entropy in
thermodynamics, and defined the average amount of informa-
tion in a message after excluding redundancy as ‘information
entropy’ (thereafter called the Shannon entropy) [28, 29]

S = −
∫

dp ρ(p, t) log[ρ(p, t)], (19)

which uses a single value to represent the amount of infor-
mation contained in the momentum distribution ρ(p, t). This
value can be compared to that calculated using the momentum
distribution from the TDSE solution |Ψ̃(p, t)|2. We name the
difference in them the SED ΔS. The more similar the distribu-
tion is to the TDSE solution, the smaller the value of SED ΔS
is.

2.3.3. The KLD. The KLD (also called the relative entropy)
[30] is a measure of the ‘distance’ between two probability
distributions that is often used in computer vision

KLD = −
∫

dp |Ψ̃(p, t)|2 log

[
|Ψ̃(p, t)|2
ρ(p, t)

]
. (20)

In analogue to SED, the more similar the distribution is to the
TDSE solution, the smaller the value of KLD is.

3. Influence of different factors on the attoclock
signal

In order to systematically study the influence of different fac-
tors on the attoclock signal, we identify the TDSE momentum
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Figure 1. (a) The photoelectron momentum distribution (in
logarithmic scale) of the helium atom with single active electron by
solving TDSE, ionized by a two-cycle (N = 2) circularly polarized
laser pulse at a wavelength of 800 nm and a peak intensity of
4.0 × 1014 W cm−2. (b) Same as (a) but with a six-cycle (N = 6)
elliptically polarized laser pulse with ellipticity ε = 0.75.

distribution as the ‘exact solution’, which different methods
may compare to. We employ the theoretical methods presented
in the previous section to compare their respective results with
TDSE to explore the influence of the nonadiabatic effect, quan-
tum effect, tunneling ionization rate and nondipole effect on
the attoclock signal. In this paper, we use 800 nm circularly
polarized laser pulses with N = 2 or elliptically (ε = 0.75)
polarized laser pulses with N = 6 and a peak intensity of
4.0 × 1014 W cm−2.

Figure 1(a) shows the photoelectron momentum distribu-
tion obtained by solving the TDSE under a short circularly
polarized laser pulse with N = 2. For a long circularly polar-
ized laser field, the momentum distribution would be a donut-
shaped ring. For the present case of a short two-cycle laser
pulse, the tunneling probability maximizes at the laser peak,
around which the ionization probability drops substantially,
resulting in an arc-shaped structure. For such a short pulse,
the intercycle interference is missing. Take the −x-axis as
the reference, the offset angle corresponding to the peak of
the angular momentum distribution of the attoclock signal is
5.768◦. Figure 1(b) is the photoelectron momentum distribu-
tion obtained by solving the TDSE under an elliptically polar-
ized laser pulses with ε = 0.75 and N = 6. Here, intercycle
interference leads to the appearance of interference fringes. In
an elliptically polarized multicycle laser pulse, the photoelec-
tron momentum distribution is distributed along the minor axis
of the polarization ellipse. For a short pulse of N = 6, the field
envelope causes an asymmetry in the momentum distribution
along the +y and −y directions. Take the +y-axis as the ref-
erence, the offset angles corresponding to the double peaks of
the angular distribution of the attoclock signal are 15.215◦ and
178.908◦ respectively.

3.1. Influence of nonadiabatic effects

In order to explore the influence of nonadiabatic effects on the
attoclock signal, we apply the initial conditions prepared by the
SFA, SFAAE and ADK theories to perform trajectory-based
numerical simulations using CTMC, QTMC and SCTS, where
the Coulomb potential is taken full account for, as shown in
figure 2. The laser parameters are the same as in figure 1(a).

Figure 2. The attoclock signal (in logarithmic scale) obtained with
different simulation methods and initial conditions. The simulation
methods used in the first to the third rows are CTMC, QTMC and
SCTS, and the initial conditions in the first to the third columns are
given by the SFA, SFAAE and ADK theories, respectively. The
same laser parameters are used as in figure 1(a).

Different rows in figure 2 corresponds to simulations per-
formed with CTMC, QTMC and SCTS, respectively. For a
two-cycle laser pulse, essentially only one cycle leads to dis-
cernible ionization, and intercycle interference is effectively
missing, leading to the great similarity between the attoclock
results for different rows.

Different columns in figure 2 corresponds to initial condi-
tions prepared by SFA, SFAAE and ADK theories, respec-
tively. In the ADK theory, the adiabatic approximation is
adopted. The transverse momentum of the electron at the tun-
nel exit is a Gaussian distribution centered at zero, and the
longitudinal momentum is set to be zero, which results in a
narrower and smaller arc in the photoelectron momentum dis-
tribution than other scenarios. In contrast, the SFA theory does
not employ the adiabatic approximation. The initial conditions
obtained by solving the saddle-point equation fully include
the nonadiabatic tunneling effect, so it is more similar to the
attoclock signal obtained by solving the TDSE. SFAAE takes
the first three terms of the Taylor expansion of the laser vec-
tor potential, which includes the majority of the nonadiabatic
effects. It can also more or less match the attoclock signal
obtained by solving the TDSE.

In order to quantitatively analyze the difference between
the attoclock signal of different methods and initial conditions,
the methods of overlap, SED, and KLD are used to compare
different attoclock signals with that obtained by TDSE, as
shown in table 1. It can be found that the overlaps of SFA
and SFAAE to TDSE are not only greater than ADK, but also
much closer to 1, and their SED and KLD are also smaller than
ADK. This shows that the attoclock signal obtained by SFA
and SFAAE are in good overall agreement with that obtained
by solving TDSE. In addition, the data of SFA and SFAAE
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Table 1. The similarity matrix between the attoclock signals
obtained with different simulation methods (CTMC, QTMC and
SCTS) and initial conditions (prepared by SFA, SFAAE or ADK
theories) to that of TDSE. Comparison methods include the
overlap, SED and KLD, as well as the attoclock offset angle
deviation Δθ with respect to TDSE. The same laser parameters are
used as in figure 1(a).

SED KLD Overlap Δθ (◦)

CTMC
SFA 0.155 0.016 0.997 −0.080
SFAAE 0.302 0.043 0.993 −0.808
ADK 0.632 1.487 0.786 −0.715

QTMC
SFA 0.156 0.017 0.997 0.208
SFAAE 0.319 0.051 0.992 −0.237
ADK 0.635 1.800 0.744 −0.121

SCTS
SFA 0.156 0.017 0.997 0.203
SFAAE 0.319 0.051 0.992 −0.235
ADK 0.635 1.800 0.744 −0.119

Figure 3. The attoclock signal (in logarithmic scale) obtained with
different simulation methods and initial conditions. The simulation
methods used in the first to the third rows are CTMC, QTMC and
SCTS, and the initial conditions in the first to the third columns are
given by the SFA, SFAAE and ADK theories, respectively. The
same laser parameters are used as in figure 1(b).

are very close to each other, indicating a high degree of sim-
ilarity between results obtained using the two methods. Both
methods have their own advantages and disadvantages. SFA
has a wider range of applicabilities, but it needs the solution of
the saddle-point equation. SFAAE is only suitable for the tun-
neling scenario, but there is no need to solve the saddle-point
equation. It comes with a form of ionization rate close to that of
ADK, which greatly reduces the computation time compared
to SFA but retains almost fully the nonadiabatic effects.

In addition to the overall signal distribution, the peak off-
set angles of the attoclock signals, as commonly done, are
obtained by different methods and compared to that by solving
TDSE, as also shown in table 1. The difference in the attoclock
offset angle to the TDSE result is defined as Δθ, the offset

Table 2. The similarity matrix between the attoclock signals
obtained with different simulation methods (CTMC, QTMC and
SCTS) and initial conditions (prepared by SFA, SFAAE or ADK
theories) to that of TDSE. Comparison methods include the overlap,
SED and KLD, as well as the attoclock offset angle deviations Δθ1
and Δθ2 with respect to TDSE. The same laser parameters are used
as in figure 1(b).

SED KLD Overlap Δθ1 (◦) Δθ2 (◦)

CTMC
SFA 0.078 0.043 0.992 −2.094 1.769
SFAAE 0.188 0.059 0.991 −0.416 −2.660
ADK 0.455 0.631 0.906 0.072 −2.277

QTMC
SFA 0.170 0.035 0.994 −0.270 0.038
SFAAE 0.246 0.045 0.993 −0.402 −1.647
ADK 0.472 0.817 0.881 0.393 −1.419

SCTS
SFA 0.170 0.043 0.993 −0.278 0.030
SFAAE 0.246 0.045 0.992 −0.402 −1.649
ADK 0.472 0.817 0.881 0.392 −1.421

Table 3. Influence of the prefactor and the Jacobian factor in the
transition amplitude studied using SCTS–SFA compared to TDSE.
The same laser parameters are used as in figure 1(a).

SED KLD Overlap Δθ (◦)

Exp 0.157 0.217 0.964 0.285
Exp + pre 0.177 0.318 0.948 0.342
Exp + jac 0.136 0.015 0.998 0.129
Full 0.156 0.017 0.997 0.203

angle deviation. Generally, the deviation Δθ is smallest when
the initial condition is prepared by SFA, indicating the impor-
tance of nonadiabaticity in the interpretation of the attoclock
results.

3.2. Influence of quantum interference effects

In order to explore the influence of intercycle quantum inter-
ference effects on the attoclock signal, we employ a longer
elliptically polarized laser pulse with N = 6 and ε = 0.75.
Shown in figure 3 are attoclock signals obtained by different
simulation methods (by row: CTMC, QTMC and SCTS) with
initial conditions prepared by different theories (by column:
SFA, SFAAE and ADK). Comparing the results obtained by
QTMC/SCTS to that by CTMC, it is clear that QTMC and
SCTS give rise to interference fringes similar to the TDSE
results, because they have included the phase during the con-
tinuum excursion of the electron trajectories. In addition to the
quantum effects illustrated by different rows, comparison of
different columns again stresses the importance of inclusion of
nonadiabaticity to obtain attoclock signals similar to TDSE, as
has been clear from above.

A quantitative study by comparison of the overall momen-
tum distributions obtained by different methods to that of
TDSE, as shown in table 2, indicates that inclusion of quan-
tum interference effects does not generally lead to an overall
improvement of the attoclock signal other than the appearance
of interference fringes. An additional comparison of the atto-
clock offset angle, however, shows that the intercycle inter-
ference leads to substantial changes in the attoclock angular

6



J. Phys. B: At. Mol. Opt. Phys. 54 (2021) 144001 Y Ma et al

Figure 4. The attoclock photoelectron angular distribution with and without dipole approximation in the polarization plane with
(a) two-cycle circularly polarized laser pulse as in figures 1(a) and (b) six-cycle elliptically polarized laser pulse as in figure 1(b).

distribution. Therefore, quantum interference is essential to
obtain a correct attoclock offset angle. Previously, the atto-
clock signal is often obtained using CTMC simulations, which
thus may lead to inaccurate calibration of the attoclock. More-
over, the comparison between SFA and SFAAE shows that it
is important to include the phase of the transition amplitude in
the weight of the electron trajectories to get an accurate off-
set angle, because the present implementation of SFAAE uses
only the tunneling rate while SFA uses the complex transition
amplitude which gives a much closer offset angle to TDSE.

3.3. Influence of tunneling rate

Through the analysis of the above two subsections, both
QTMC–SFA and SCTS–SFA can give results similar to the
‘exact solution’ of TDSE. Here, we choose SCTS–SFA to
study the effect of different forms of ionization amplitude on
the attoclock signal. As shown in equation (9), the SFA transi-
tion amplitude or tunneling rate can in general be broken down
into an exponential part (exp) and a prefactor (pre). When
using the SFA method to solve the saddle-point equation,
instead of searching for the saddle point directly for the atto-
clock momentum (px , py), we perform a coordinate transfor-
mation (px , py) → (tr, k⊥) [21], where the release time tr is cho-
sen as the real part of the saddle-point time ts and a momentum
component is defined in the polarization plane

k⊥ =
(p + Re A(ts)) · (Im Ay(ts)ex − Im Ax(ts)ey)√

(Im Ax(ts))2 + (Im Ay(ts))2
. (21)

Within such a coordinate, the tunneling rate needs to include
an additional Jacobian factor ( jac).

As shown in table 3, we study the influence of the prefac-
tor (pre) and the Jacobian factor ( jac) by a comparison study
which includes: (1) only the exponential part (exp); (2) the
exponential part with prefactor (exp+ pre); (3) the exponential
part with Jacobian (exp + jac); (4) the full transition ampli-
tude (full, or exp + pre + jac). From the data in table 3, it can

be found that the different forms of the tunneling ionization
amplitude do have a certain impact on the peak offset angle
of the attoclock signal and the overall similarity. The results
show that inclusion of the Jacobian factor is crucial, and the
prefactor also leads to a somehow noticeable change.

3.4. Influence of nondipole effects

Three-dimensional trajectory simulations using Newtonian
equation of motion under dipole approximation and without
dipole approximation can be used to explore the impact of
nondipole effects in the attoclock signal. In figure 4 we show
the attoclock angular distributions using the SCTS model with
initial conditions prepared by SFA with and without dipole
approximation with (a) a two-cycle circularly polarized laser
pulse and (b) a six-cycle elliptically polarized laser pulse. The
curves with and without dipole approximation almost com-
pletely overlap. Therefore, the nondipole effect will not affect
the attoclock angular distribution as well as the corresponding
offset angle. Table 4 shows a quantitative study using different
simulation methods and initial conditions, and the comparison
data with and without dipole approximation are obtained for a
two-cycle circularly polarized laser pulse. It can be seen that
the SED and KLD between calculations done with and without
dipole approximation are very small, and the overlap is close
to 1, indicating that the nondipole effect plays a negligible role
in altering the attoclock signal in the polarization plane. The
results obtained for a six-cycle elliptically polarized laser pulse
are similar and support the current conclusion.

This is indeed as expected. When there is no Coulomb
potential, there is translation symmetry along the laser prop-
agation direction, and thus the nondipole effect has no influ-
ence on the attoclock signal in the polarization plane. When
the Coulomb potential is present, it would play a role in the
momentum distribution in the polarization plane, which is
however through coupling to the Coulomb potential, and thus
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Table 4. Influence of the nondipole effects studied using different
methods. Here, results with and without dipole approximation are
compared with respect to each other. The same laser parameters are
used as in figure 1(a).

SED KLD Overlap Δθ(◦)

CTMC
SFA −0.007 89 0.000 02 0.999 66 −0.020 75
SFAAE 0.001 32 0.000 00 0.999 86 0.007 92
ADK 0.001 71 0.000 00 0.999 74 0.007 72

QTMC
SFA 0.002 93 0.000 06 0.999 22 −0.018 20
SFAAE 0.000 18 0.000 00 0.999 71 −0.004 34
ADK 0.002 18 0.000 00 0.999 29 −0.014 38

SCTS
SFA 0.003 03 0.000 06 0.999 20 −0.017 74
SFAAE 0.000 17 0.000 00 0.999 71 −0.003 96
ADK 0.002 30 0.000 00 0.999 28 −0.016 16

is a higher order effect [21, 46], which, as shown here for the
attoclock pulse, can be safely neglected.

4. Conclusion

The attoclock is widely used to time resolve the tunneling pro-
cess and the calibration of time zero for attoclock is crucial
for a quantitative interpretation of the signal. In this study, we
systematically survey the influence of nonadiabatic, nondipole
and quantum interference effects on the attoclock signal. In
contrast to previous literature, where a single integrated value
of the peak offset angle is used to represent the attoclock sig-
nal, we additionally take advantage of the full information
provided by the entire attoclock momentum distribution where
the overlap, SED and KLD are used as measures of similarity
between different density distributions. With the present study,
we make the following conclusions:

(a) Inclusion of nonadiabatic effects is essential for an overall
agreement of the attoclock signal.

(b) Inclusion of intercycle quantum interference effects is
crucial for a quantitatively correct attoclock offset angle.

(c) Inclusion of the phase of the transition amplitude in the
weight of the electron trajectory is critical to obtain an
accurate attoclock offset angle.

(d) Inclusion of the prefactor and Jacobian factor is important
for an overall accurate attoclock signal.

(e) Nondipole effects play a negligible role in the attoclock
signal in the polarization plane.

Based on these observations, a QTMC or SCTS simulation
with initial conditions prepared by SFA and a weight contain-
ing the phase of the transition amplitude, which is essentially
the trajectory-based Coulomb-corrected strong-field approxi-
mation (TCSFA) method [47–49], is the best combination up
to now for a trajectory simulation to obtain an accurate atto-
clock signal. We note that most previous studies use CTMC
simulations with ADK initial conditions and discard the ini-
tial phases, which thus may lead to quantitatively deficient
interpretation of the attoclock results.
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