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ABSTRACT
Reachability analysis plays a central role in system design and ver-

ification. The reachability problem, denoted ^J Φ, asks whether
the system will meet the property Φ after some time in a given

time interval J . Recently, it has been considered on a novel kind

of real-time systems — quantum continuous-time Markov chains

(QCTMCs), and embedded into the model-checking algorithm. In

this paper, we further study the repeated reachability problem in

QCTMCs, denoted □I ^J Φ, which concerns whether the system

starting from each absolute time in I will meet the property Φ after

some coming relative time in J . First of all, we reduce it to the

real root isolation of a class of real-valued functions (exponential

polynomials), whose solvability is conditional to Schanuel’s conjec-

ture being true. To speed up the procedure, we employ the strategy

of sampling. The original problem is shown to be equivalent to

the existence of a finite collection of satisfying samples. We then

present a sample-driven procedure, which can effectively refine

the sample space after each time of sampling, no matter whether

the sample itself is satisfying or conflicting. The improvement on

efficiency is validated by randomly generated instances. Hence the

proposed method would be promising to attack the repeated reach-

ability problems together with checking other 𝜔-regular properties

in a wide scope of real-time systems.

CCS CONCEPTS
• Theory of computation→ Verification by model checking;
Quantum complexity theory; • Computing methodologies→
Symbolic calculus algorithms; • Computer systems organiza-
tion→ Real-time system specification.
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1 INTRODUCTION
As one of the most important stochastic processes in classical world,

the model of Markov chain has been extensively studied since the

early 20th century. To embrace an increased degree of realism to de-

scribe random events in practice, continuous-time random variables

are incorporated into this model which is called the continuous-

time Markov chain (CTMC). Meanwhile, the rapid advancement

of quantum computing over the past decades has led to the flour-

ishing of models in quantum world, e. g., quantum automaton [25],

quantum discrete-time Markov chain (QDTMC) [17] and quan-

tum discrete-time Markov decision process (QDTMDP) [43]. For

widely-applied CTMC, researchers have shown great interest in

its quantum analogues — quantum continuous-time Markov chain

(QCTMC), when it collides with quantum mechanics.

The motion planning problem can be interpreted on Markov

models to accomplish complex tasks within rigorous temporal con-

straints. Oneway of expressing such tasks is to use various temporal

logics, such as computation tree logic (CTL) [3] and linear temporal

logic (LTL) [28]. In the approach to checking LTL formulas, the

execution of the system is thought of a sequence of states or events.

This representation abstracts from the precise timing of observa-

tions, retaining only the order on states or events. Metric temporal

logic (MTL) [32] and signal temporal logic (STL) [29] are able to

express the specification of systems in quantitative timing. MTL is a

temporal logic specified on a discrete-time specification, while STL

is a variant of MTL tailored to specify the properties of continuous-

time signals. In this paper, we consider real-time systems; therefore

STL is preferable. The core of STL lies in reachability-like properties.

On the other hand, quantum mechanics allows people to un-

derstand an astonishing range of phenomena in the world, such
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as superposition, mixture and entanglement. These phenomena

have been utilized to design many kinds of quantum systems and

protocols [2, 9], and becoming more and more crucial in motion

planning. It is necessary to investigate the dynamics of such novel

quantum systems. In this paper, we will study the repeated reacha-

bility problem in finite horizon on QCTMCs, denoted the temporal

formula □I ^J Φ, which concerns whether the system at each

absolute time in I will meet the property Φ after some coming

relative time in J . Our contributions are three-fold:

(1) We show the decidable result by a reduction to the real root

isolation of a class of real-valued functions (exponential poly-

nomials), following the state-of-the-art number-theoretic

tool — Schanuel’s conjecture [4].

(2) To speed up the procedure, we employ the strategy of sam-

pling. The original problem is shown to be equivalent to the

existence of a finite collection of satisfying samples.

(3) We then present a sample-driven procedure, which can effec-

tively refine the sample space after each time of sampling, no

matter whether the sample itself is satisfying or conflicting.

The improvement on efficiency is validated by randomly generated

instances. Hence the proposed method would be promising in at-

tacking the repeated reachability problems together with checking

other 𝜔-regular properties in a wide scope of real-time systems.

1.1 Related Work on Reachability Problems
Reachability analysis, embedded in the model-checking algorithms,

is essential to verify both classical systems and quantum ones. We

discuss them respectively as follows.

Verification on classical MCs. Early in 1985, Moshe Y. Vardi ini-

tiated the verification of probabilistic concurrent finite-state pro-

grams (a. k. a. discrete-time Markov chains, DTMCs) [36], in which

the reachability and the repeated reachability problems are ex-

pressed respectively by LTL formulas ^ Φ and □^ Φ for some static

observable Φ. The general problem of probabilistic model checking

with respect to the 𝜔-regular specification was considered in [11].

LTL focuses on the properties of linear processes; to specify the

properties on branching processes, people resort to CTL [13]. Hans-

son and Jonsson introduced probabilistic CTL (PCTL) by adding

the probability-quantifier [22] on DTMCs. Almost sure repeated

reachability is PCTL-definable and computable.

Verification on classical CTMCs. The seminal work on verifying

CTMCs is put forward by Aziz et al.’s and Baier et al.’s [5, 7]. They
introduced continuous stochastic logic (CSL) interpreted on CTMCs,

which is the extension of discrete-time stochastic systems. In [5],

probabilities are required to be rational numbers, and the decid-

ability of model checking for CSL is accomplished using number-

theoretic results. An approximate model checking algorithm for a

reduced version of CSL was provided in [7], which restricted path

formulas from multiphase until formulas Φ1U
I1Φ2 · · ·U I𝑘Φ𝑘+1 for

some integer 𝑘 ≥ 1 to binary until ones Φ1U
IΦ2, a kind of con-

strained reachability. Under this logic, they applied efficient numer-

ical techniques — uniformization [34] — for transient analysis [6].

The approximate algorithms have been extended for multiphase

until formulas using stratification [44]. Xu et al. considered the

multiphase until formulas over the CTMC with rewards [41]; posi-

tive progress was established by number-theoretic and algebraic

methods. Recently, the gap between the exact and the approximate

methods was bridged in [18]. The inner temporal operator ^ Φ of

□^ Φ are qualitative, and not interpreted well by branching pro-

cesses, e. g. CSL. An alternative is considering linear processes as

in [21] and the current paper.

Verification on quantum MCs. In 2013, Feng et al. initiated the

verification of QDTMCs [17], in which Markov chains are equipped

with the quantum operations as transitions. Under the model, peo-

ple considered the reachability probability [42], the repeated reach-

ability probability [16], and the model-checking of a quantum anal-

ogy of CTL [17] with extension [38]. An exact method was de-

veloped in [39] to solve the constrained reachability problem for

QDTMCs. However, the dynamics between QDTMCs and QCTMCs

are entirely different; the former is mathematically characterized

by recurrent relations while the latter is characterized by differ-

ential equations. Recently, Xu et al. investigated the novel model

of QCTMCs, on which the decidability of the STL formula was

established in [40] by a reduction to real root isolation of exponen-

tial polynomials. STL concerns the reachability of linear processes,

and CSL concerns the reachability of branching processes, whose

decidability was settled in [30]. As far as we know, the repeated

reachability has not been considered on QCTMCs.

Finally those seminal work on verifying various Markov models

are summarized in Table 1, in which the time complexity is specified

in the size of the input model. When we deal with continuous-

time Markov models, it is essential to sufficiently approach the

Euler constant e for establishing the decidability, which is left as a

common oracle of the existing methods, as well as ours.

Table 1: Seminal work on verifying various Markov models

Markov models reachability repeated reachability

DTMC polynomial time [36] polynomial time [36]

CTMC decidable [5] not available

QDTMC polynomial time [42] polynomial time [16]

QCTMC decidable [40] the present paper

Organization. The rest of this paper is organized as follows. Sec-

tion 2 reviews basic notions and notations from quantum comput-

ing, together with the model of QCTMC and the repeated reach-

ability problem. We state the methodologies on that problem in

Section 3, and give the detailed construction respectively in Sec-

tions 4 & 5. Section 6 delivers the experimentation. The paper is

concluded in Section 7. Due to page limit, proofs are moved to the

appendix.

2 PRELIMINARIES
2.1 Basic Notions and Notations
LetH be a finite-dimensional Hilbert space that is a complete vector

space over complex numbers C equipped with an inner product

operation throughout this paper, and 𝑑 its dimension. We recall
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the standard Dirac notations from quantum computing. Interested

readers can refer to [31] for more details.

• |𝜓 ⟩ denotes a unit column vector in H labelled with𝜓 ;

• ⟨𝜓 | := |𝜓 ⟩† is the Hermitian adjoint (conjugate transpose

entrywise) of |𝜓 ⟩;
• ⟨𝜓1 |𝜓2⟩ := ⟨𝜓1 | |𝜓2⟩ is the inner product of |𝜓1⟩ and |𝜓2⟩;
• |𝜓1⟩⟨𝜓2 | := |𝜓1⟩ ⊗ ⟨𝜓2 | is the outer product where ⊗ denotes

tensor product;

• |𝜓,𝜓 ′⟩ is short for the tensor product |𝜓 ⟩ |𝜓 ′⟩ = |𝜓 ⟩ ⊗ |𝜓 ′⟩.

Quantum state. Let 𝛾 be a linear operator on H. It is Hermitian
if 𝛾 = 𝛾†; it is positive if ⟨𝜓 | 𝛾 |𝜓 ⟩ ≥ 0 holds for any vector |𝜓 ⟩ ∈ H.
A projector P is a positive operator of the form

∑𝑚
𝑖=1 |𝜓𝑖 ⟩⟨𝜓𝑖 | with

𝑚 ≤ 𝑑 , where |𝜓𝑖 ⟩ (𝑖 = 1, 2, . . . ,𝑚) are orthonormal. It implies that

all eigenvalues of P are in {0, 1}. The trace of a linear operator 𝛾
is defined as tr(𝛾) := ∑𝑑

𝑖=1 ⟨𝜓𝑖 | 𝛾 |𝜓𝑖 ⟩ for any orthonormal basis

{|𝜓𝑖 ⟩ : 𝑖 = 1, 2, . . . , 𝑑} of H. A density operator 𝜌 is a positive

operator with unit trace. Let D be the set of density operators.

For a density operator 𝜌 , we have the spectral decomposition 𝜌 =∑𝑚
𝑖=1 𝜆𝑖 |𝜆𝑖 ⟩⟨𝜆𝑖 | where 𝜆𝑖 (𝑖 = 1, 2, . . . ,𝑚) are positive eigenvalues.

We call such eigenvectors |𝜆𝑖 ⟩ eigenstates of 𝜌 explained below. The

density operators are usually used to describe quantum states. We

assume the quantum system is in that decomposition, meaning

that it is in state |𝜆𝑖 ⟩, which is an event occurring with probability

𝜆𝑖 . When𝑚 = 1, we know that the system is surely in state |𝜆1⟩
(with probability one), which is a so-called pure state; otherwise the
state is mixed. Both the vector notation |𝜆𝑖 ⟩ and the outer product

notation |𝜆𝑖 ⟩⟨𝜆𝑖 | could be used to denote pure states; it is preferable
to use the matrix notation 𝜌 to denote mixed states.

We will review the quantum operation on quantum states, em-

bedded in the following model description of quantum CTMC.

2.2 Quantum CTMC
Definition 2.1. A quantum continuous-time Markov chain (quan-

tum CTMC or QCTMC for short) 𝔔 is given by a pair (H,L), in
which

• H is the Hilbert space,

• L is the transition generator function given by a Hermitian

operator H and a finite set of linear operators L𝑗 on H.
Usually, a density operator 𝜌 (0) ∈ D is appointed as the initial

state of𝔔.

In the model, the transition generator function L gives rise to

a universal way to describe the continuous-time dynamics of the

QCTMC, following the Lindblad’s master equation [20, 27]

𝜌 ′(𝑡) = L(𝜌 (𝑡)) = −𝚤H𝜌 (𝑡) + 𝚤𝜌 (𝑡)H +
𝑚∑︁
𝑗=1

(
L𝑗𝜌 (𝑡)L†𝑗 −

1

2
L†
𝑗
L𝑗𝜌 (𝑡) − 1

2
𝜌 (𝑡)L†

𝑗
L𝑗
)
.

(1)

The above equation is general enough to describe the dynamics of

open systems. If we are concerned with a closed system (an ideal

system that does not suffer from any unwanted interaction from

outside environment), state transitions can be characterized by the

Schrödinger equation:

d |𝜓 (𝑡)⟩
d 𝑡

= −𝚤H |𝜓 (𝑡)⟩ . (2a)

where |𝜓 (𝑡)⟩ is the state of the system at time 𝑡 , andH is a Hermitian

operator called Hamiltonian. We can reformulate it with matrix

notation as

𝜌 ′(𝑡) = −𝚤H𝜌 (𝑡) + 𝚤𝜌 (𝑡)H, (2b)

where 𝜌 = |𝜓 ⟩⟨𝜓 |. An open system interacts with environment.

Composed with the environment, the large system is closed; by

tracing out the environment of the large system, it is characterized

by Eq. (1) where L𝑗 are a few linear operators. Since not all numbers

are computable as pointed out by Turing [35], for the consideration

of computability, the entries ofH and L𝑗 are supposed to be algebraic
numbers that are roots of the polynomials with rational coefficients.

For instance, the number
1

3
− 𝚤
√
2 is nonreal algebraic, since it is a

root of Q-polynomial 𝑥2 − 2

3
𝑥 + 19

9
, and

√︁
1 +
√
3 is algebraic too

since it is a root of 𝑥4 − 2𝑥2 − 2.

Example 2.2. We consider a sample QCTMC 𝔔1 = (H,L), in
which H is a Hilbert space over two qubits, i. e. a 4-dimensional

vector space, and the transition function L is given by

• the Hermitian operator H = 𝑋 ⊗ 𝑋 , and

• the set of linear operators {L1, L2} with L1 = 𝑋 ⊗ 𝐻 and

L2 = 𝐻 ⊗ 𝑋 .

Here, 𝐻 is the Hadamard operator |+⟩⟨0| + |−⟩⟨1| with |±⟩ = ( |0⟩ ±
|1⟩)/
√
2, and 𝑋 is the Pauli-X operator |1⟩⟨0| + |0⟩⟨1|. Once the

initial state 𝜌 (0) is fixed, the dynamics of𝔔1 is entirely determined

by Lindblad’s master equation

𝜌 ′(𝑡) = −𝚤H𝜌 (𝑡)+𝚤𝜌 (𝑡)H+
2∑︁
𝑗=1

(
L𝑗𝜌 (𝑡)L†𝑗−

1

2
L†
𝑗
L𝑗𝜌 (𝑡)− 1

2
𝜌 (𝑡)L†

𝑗
L𝑗
)
.

To know what the actual state 𝜌 (𝑡) of a QCTMC𝔔 is, one has

to use the quantum (projective) measurement, that is a collection
of projectors P𝑖 with index 𝑖 taken from a finite set 𝐼 , satisfying∑
𝑖∈𝐼 P𝑖 = I. After measurement, the resulting state will be collapsed

to 𝜌𝑖 = P𝑖𝜌P𝑖/𝑝𝑖 where 𝑝𝑖 = tr(P𝑖𝜌). That is, quantum measure-

ment destroys the state 𝜌 (𝑡), which is an important postulate of

quantum mechanics [31, Section 2.2]. To avoid such an unwanted

change in 𝜌 (𝑡), we will adopt the strategy of static analysis, which

uses some temporal logic to specify the properties of𝔔 at a starting

state 𝜌 (𝑡0) as the following.

2.3 Repeated Reachability
Now we describe the repeated reachability problem. It is a decision

problem, asking the truth of the signal temporal logic (STL) [12, 29]

formula

Ψ := □I ^J Φ, (3)

in which Φ interpreted as a signal is of the form 𝑝 (x) ∈ I where 𝑝
is a Q-polynomial in x = (𝑥1, . . . , 𝑥𝑛) with 𝑥𝑖 = tr(P𝑖 ( · )) for some

projector P𝑖 and I is a rational value interval, and I,J are time

intervals. Following the standard semantics, we have:

• the repeated reachability (3) can be expressed as the nested

reachability ¬^I (¬^J Φ),
• 𝜌 (𝑡)meets the reachability^JΦ if there exists a real number

𝑡∗ ∈ J such that 𝜌 (𝑡 + 𝑡∗) |= Φ, and
• 𝜌 (𝑡) meets the signal Φ if 𝑝 (x(𝑡)) ∈ I.

When I and J are finite, the repeated reachability (3) is in finite

horizon, which will be studied in the current paper.
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3 METHODOLOGIES
In this paper, we will study the repeated reachability problem in

finite horizon, □I ^J Φ, over the model of QCTMC𝔔. The outline

of our methodologies is described in this section, and more details

will be provided in the coming sections.

First of all, we rewrite the repeated reachability as

□I ^J Φ ≡ ¬^I (¬^J Φ),

which is an STL formula and thus can be solved by the recent

work [40]. We give some hints on the solvability, together with a

review of the known approach.

(1) The instantaneous description (ID) of𝔔 can be obtained in

polynomial time as a density operator function 𝜌 (𝑡) w. r. t.
absolute time variable 𝑡 . (Here, we introduce the fresh notion

of IDs for dynamical states of𝔔, which can be distinguished

from the static states of the Hilbert space H.)
(2) The signals Φ that represent signals in the real-time system

are polynomial constraints in the outcome probabilities by

projecting 𝜌 (𝑡).
(3) We extract the exponential-polynomial (named observing ex-

pression)𝜙 (𝑡) from the signalΦ, so that 𝜌 (0)meets□I ^J Φ
if and only if 𝜙 (𝑡) meets some sign-conditions, e. g., 𝜙 > 0

or 𝜙 ≥ 0 holds in some appropriate time intervals just men-

tioned below.

(4) The post-monitoring period is determined as

B0 := [inf I + inf J , supI + supJ],

during which the sign information of 𝜙 (𝑡) suffices to decide

𝜌 (0) |= □I ^J Φ.
(5) After finding out all real roots 𝜆 of 𝜙 (𝑡) in B0, we can obtain

all solution time intervals 𝛿𝑖 during which 𝜌 (𝑡) |= Φ holds,

whose endpoints are taken from the real roots 𝜆 of 𝜙 (𝑡). For
each solution interval 𝛿𝑖 , we have 𝜌 (𝑡) |= ^J Φ holds for

𝑡 ∈ I𝑖 = {𝑡1 − 𝑡2 : 𝑡1 ∈ 𝛿𝑖 ∧ 𝑡2 ∈ J}.
(6) Hence we have reduced deciding 𝜌 (0) |= □I ^J Φ to the

real root isolation of 𝜙 (𝑡) in B0, a finite time interval. Par-

ticularly, the repeated reachability problem in finite hori-

zon amounts to determining whether the union of all afore-

calculated solution intervals I𝑖 covers I.
Then, we present new results for seeking more efficiency. A

necessary and sufficient condition to 𝜌 (0) |= □I ^J Φ can be

derived as the existence of a finite collection T of absolute times

𝑡∗ ∈ B0, satisfying that Φ holds at each 𝑡∗ and the associated switch
times w. r. t. the outer temporal operator □I ( · ) of □I ^J Φ covers

I, i. e.,
I ⊆

⋃
𝑡∗∈T
[𝑡∗ − supJ , 𝑡∗ − inf J] . (4)

Here, the time interval J is assumed to be closed for convenience.

Otherwise, we need to amend the intervals [𝑡∗ − supJ , 𝑡∗ − inf J]
appearing in the RHS of the inclusion (4) with appropriate endpoint

conditions. We employ a sample-driven procedure by validating Φ
with a few numerical samples 𝑡∗ ∈ B0. After each time of sampling,

two straightforward criteria could be applied:

• a satisfying sample 𝜌 (𝑡∗) |= Φ produces the segment [𝑡∗ −
supJ , 𝑡∗ − inf J] (partially) covering I;

• a conflicting sample 𝜌 (𝑡∗) ̸|= Φ entails that Φ holds nowhere

of a truth-invariant neighborhood 𝛿 of 𝑡∗. Thus we can safely
exclude 𝛿 from the sample space B, which is initialized as

the post-monitoring period B0.

Repeat the sampling process until I has been completely covered

or the resulting B is empty. The termination is guaranteed when

Schanuel’s conjecture [4] holds. Checking 𝜌 (𝑡∗) |= Φ for concrete 𝑡∗

is much cheap than solving 𝜌 (𝑡) |= Φ w. r. t. variable 𝑡 . It is likely to

yield an efficient decision procedure. The improvement in intuition

would be validated by randomly generated instances.

4 SOLVABILITY BY REAL ROOT ISOLATION
In this section, we utilize the known results [40, Algorithm 1 &

Theorem 19] for solving the repeated reachability problem. We first

define two useful functions:

• L2V(𝛾) := ∑𝑑
𝑖=1

∑𝑑
𝑗=1 ⟨𝑖 | 𝛾 | 𝑗⟩ |𝑖, 𝑗⟩ rearranges entries of the

linear operator 𝛾 on the Hilbert space H with dimension 𝑑

as a 𝑑2-dimensional column vector;

• V2L(v) := ∑𝑑
𝑖=1

∑𝑑
𝑗=1 ⟨𝑖, 𝑗 | v |𝑖⟩⟨ 𝑗 | rearranges entries of the

𝑑2-dimensional column vector v as a linear operator on H.

Here, L2V and V2L are pronounced “linear operator to vector” and

“vector to linear operator”, respectively. They are mutually inverse

functions, so that if a linear operator (resp. its vectorization) is

determined, its vectorization (resp. the original linear operator)

is determined. Hence, we can freely choose one of the two repre-

sentations for convenience. It is not hard to validate that for any

linear operators A, B and C, the matrix product D = ABC has the

transformation

L2V(D) = (A ⊗ CT)L2V(B),
where T denotes transpose. Let A denote the conjugate of A.

Based on the above notations and transformation, the ID 𝜌 (𝑡)
characterized by the Lindblad’s master equation (1) can be rear-

ranged as the ordinary differential equation

L2V(𝜌 ′) =M · L2V(𝜌), (5)

where

M = −𝚤H ⊗ I + 𝚤I ⊗ HT +
𝑚∑︁
𝑗=1

(
L𝑗 ⊗ L𝑗 − 1

2
L†
𝑗
L𝑗 ⊗ I − 1

2
I ⊗ LT𝑗 L𝑗

)
is called the governingmatrix for the Lindblad operatorL. Its closed-
form solution is given by

𝜌 (𝑡) = exp(L, 𝑡) (𝜌 (0)) = V2L

(
exp(M · 𝑡) · L2V(𝜌 (0))

)
(6)

in standard literature, e. g. [24, Subsection 2.5.1], and can be com-

puted in polynomial time to get the explicit value.

To get information from a quantum system, we would like to

use a collection of projectors P1, P2, . . . , P𝑛 to define the real-valued

functions 𝑥𝑖 (𝑡) = tr(P𝑖 · 𝜌 (𝑡)). Namely, we have:

Lemma 4.1. Let 𝜌 (𝑡) be the solution of the Lindblad’s master equa-
tion (1), and P a projector. Then 𝑥 (𝑡) = tr(P · 𝜌 (𝑡)) is a real-valued
exponential polynomial with the form

𝛽1 (𝑡) exp(𝛼1𝑡) + 𝛽2 (𝑡) exp(𝛼2𝑡) + · · · + 𝛽𝑚 (𝑡) exp(𝛼𝑚𝑡), (7)

where 𝛼1, . . . , 𝛼𝑚 are distinct A-numbers and 𝛽1 (𝑡), . . . , 𝛽𝑚 (𝑡) are
A-polynomials.
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Recall [14, Corollary 4.1.5] that roots of the polynomials with

algebraic coefficients (A-polynomials) are still algebraic numbers

(A-numbers). So the lemma follows from the facts:

(1) The entries of H and L𝑗 are A-numbers, so are the entries of

the governing matrixM, implying that the eigenvalues of

M are A-numbers.

(2) The entries of 𝜌 (𝑡) in closed form are exponential polyno-

mials with the form (7), as well as the entries of P · 𝜌 (𝑡) and
𝑥 (𝑡) = tr(P · 𝜌 (𝑡)).

(3) The Hermitian structure of 𝜌 (𝑡) ensures 𝑥 (𝑡) is real-valued.
The exponential polynomials fall into the scope of real analytic

function that is infinitely differentiable and is converged by its Tay-

lor series. We notice that if a real analytic function is not identically

zero, it has finitely many zeros during a finite interval. This nice

property will be utilized in this paper.

Example 4.2. Here we continue to consider the QCTMC𝔔1 de-

scribed in Example 2.2. Let the initial ID 𝜌 (0) be |00⟩⟨00|. After
solving the ordinary differential equation L2V(𝜌 ′) =M · L2V(𝜌)
where the governing matrixM is given by

−𝚤H ⊗ I + 𝚤I ⊗ HT +
2∑︁
𝑗=1

(
L𝑗 ⊗ L𝑗 − 1

2
L†
𝑗
L𝑗 ⊗ I − 1

2
I ⊗ LT𝑗 L𝑗

)
,

we obtain the closed-form solution

𝜌 (𝑡) = [ 3
8
+ 1

4
𝐴(𝑡) + 1

4
𝐴(𝑡) + 1

8
exp(−4𝑡)] |00⟩⟨00| +

[ 1
8
− 1

4
𝐴(𝑡) + 1

4
𝐴(𝑡) − 1

8
exp(−4𝑡)] |00⟩⟨11| +

[ 1
8
+ 1

4
𝐴(𝑡) − 1

4
𝐴(𝑡) − 1

8
exp(−4𝑡)] |11⟩⟨00| +

[ 3
8
− 1

4
𝐴(𝑡) − 1

4
𝐴(𝑡) + 1

8
exp(−4𝑡)] |11⟩⟨11| +

[ 1
8
− 1

8
exp(−4𝑡)] ( |01⟩⟨01| + |01⟩⟨10| + |10⟩⟨01| + |10⟩⟨10|),

where 𝐴(𝑡) = exp(−(2 + 2𝚤)𝑡) and 𝐴(𝑡) is its conjugate. To get the

probabilities of the two qubits staying respectively in the basis states

|00⟩ , |01⟩ , |10⟩ , |11⟩, we choose the projectors P𝑖, 𝑗 = |𝑖, 𝑗⟩⟨𝑖, 𝑗 | with
𝑖, 𝑗 ∈ {0, 1}, trace out 𝜌 (𝑡), and get

𝑥1 = tr(P0,0 · 𝜌 (𝑡)) = 3

8
+ 1

4
𝐴(𝑡) + 1

4
𝐴(𝑡) + 1

8
exp(−4𝑡),

𝑥2 = tr(P0,1 · 𝜌 (𝑡)) = 1

8
− 1

8
exp(−4𝑡),

𝑥3 = tr(P1,0 · 𝜌 (𝑡)) = 1

8
− 1

8
exp(−4𝑡),

𝑥4 = tr(P1,1 · 𝜌 (𝑡)) = 3

8
− 1

4
𝐴(𝑡) − 1

4
𝐴(𝑡) + 1

8
exp(−4𝑡),

which will be used to make up the signals to be checked. It is not

hard to see that all entries in 𝜌 (𝑡) are exponential-polynomials

with the form (7). The same holds for 𝑥1 through 𝑥4, which are

additionally real-valued as 𝑥𝑖 = 𝑥𝑖 .

If we want to get information in the basis states |+0⟩ , |+1⟩ ,
|−0⟩ , |−1⟩, the corresponding projectors are P𝑘,𝑗 = |𝑘, 𝑗⟩⟨𝑘, 𝑗 | with
𝑘 ∈ {+,−} and 𝑗 ∈ {0, 1}. Tracing out 𝜌 (𝑡), we would get

𝑥5 = tr(P+,0 · 𝜌 (𝑡)) = 1

4
+ 1

8
𝐴(𝑡) + 1

8
𝐴(𝑡),

𝑥6 = tr(P+,1 · 𝜌 (𝑡)) = 1

4
− 1

8
𝐴(𝑡) − 1

8
𝐴(𝑡),

𝑥7 = tr(P−,0 · 𝜌 (𝑡)) = 1

4
+ 1

8
𝐴(𝑡) + 1

8
𝐴(𝑡),

𝑥8 = tr(P−,1 · 𝜌 (𝑡)) = 1

4
− 1

8
𝐴(𝑡) − 1

8
𝐴(𝑡) .

They are also real-valued exponential-polynomials. □

Those exponential polynomials 𝑥1 (𝑡), 𝑥2 (𝑡), . . . , 𝑥𝑛 (𝑡) are basic
ingredients to make up the signals Φ in STL. Then, given a sig-

nal Φ ≡ 𝑝 (x) ∈ I (assuming I is bounded), we need to know the

algebraic structure of the observing expression

𝜙 (𝑡) = (𝑝 (x(𝑡)) − inf I) (𝑝 (x(𝑡)) − sup I), (8)

with which we will design an algorithm for solving the constraint

Φ ≡ 𝑝 (x) ∈ I. The structure of 𝜙 (𝑡) depends on those of 𝑥𝑖 (𝑡) =
tr(P𝑖 · 𝜌 (𝑡)). The latter 𝑥𝑖 (𝑡) are exponential polynomials with

the form (7), as well as 𝑝 (x) and 𝜙 (𝑡), since they are polynomials

in variables x. If I is unbounded from below (resp. above), the left

(resp. right) factor is removed from Eq. (8) for further consideration.

Now we have reduced the truth of 𝜌 (𝑡) |= Φ with Φ ≡ 𝑝 (x) ∈ I
to determining the real roots of 𝜙 (𝑡), which can be completed by

the real root isolation algorithm [40, Algorithm 1]

{B1, . . . ,B𝑚} ⇐ Isolate(𝜙,B),
in which the input 𝜙 (𝑡) is a real-valued exponential polynomial

defined on a rational interval B = [𝑙, 𝑢], and the output B1, . . . ,B𝑚
are finitely many disjoint intervals such that each contains one real

root of 𝜙 in B, together contain all.

Example 4.3. Continuing to consider Example 4.2, we study the

decision problem — whether the signal Φ ≡ 𝑥2 − 𝑥2
1
> 0 with

𝑥1 = tr(P0,0 · 𝜌 (𝑡)) and 𝑥2 = tr(P0,1 · 𝜌 (𝑡)) holds for some time in

B = [0, 3]. The observing expression is

𝜙 (𝑡) = 𝑥2 (𝑡) − 𝑥21 (𝑡)

= 1

8
− 1

8
exp(−4𝑡) −

(
3

8
+ 1

4
𝐴(𝑡) + 1

4
𝐴(𝑡) + 1

8
exp(−4𝑡)

)
2

= − 1

64
− 3

16
exp(−(2 + 2𝚤)𝑡) − 3

16
exp(−(2 − 2𝚤)𝑡)

− 11

32
exp(−4𝑡) − 1

16
exp(−(4 + 4𝚤)𝑡) − 1

16
exp(−(4 − 4𝚤)𝑡)

− 1

16
exp(−(6 + 2𝚤)𝑡) − 1

16
exp(−(6 − 2𝚤)𝑡) − 1

64
exp(−8𝑡) .

The polynomial representation of 𝜙 (𝑡) is bivariate in exp(−𝑡) and
exp(𝚤𝑡), as the numbers 1 and 𝚤 in exponents are Q-linearly inde-

pendent. Since 𝜙 (𝑡) is irreducible, it has neither rational root nor
repeated root. After invoking [40, Algorithm 1] on 𝜙 (𝑡) with B, we
obtain two isolation intervals [ 789

800
, 1581
1600
] (containing real root 𝜆1 ≈

0.987368, see Figure 1) and [ 39
25
, 2499
1600
] (containing 𝜆2 ≈ 1.56093),

which could be easily refined up to any precision. We can see that

(𝜆1, 𝜆2) ∩ B is a nonempty interval, on which 𝜙 (𝑡) is positive and
Φ holds. Hence the aforementioned decision problem is decided to

be true. □

Remark 4.1. As a key step in the above isolation algorithm, we
need to compute Q-linearly independent basis 𝜇1, . . . , 𝜇𝑘 of the A-
exponents 𝛼1, . . . , 𝛼𝑚 , so that the original exponential polynomial
𝜙 (𝑡) could be converted to a multivariate polynomial that shares the
same zeros. The efficient Lenstra–Lenstra–Lovasz (LLL) algorithm [26]
could be applied here to get the basis 𝜇1, . . . , 𝜇𝑘 of the Abelian group
generated by 𝛼1, . . . , 𝛼𝑚 .

Remark 4.2. In fact, Schanuel’s conjecture [4] is a powerful tool
to treat roots of the general exponential polynomial in a lot of recent
literature [15]. For some special subclasses of exponential polynomials,
there are solid theorems to treat them: one is Lindenman’s theorem
that has been employed in [1] for the exponential polynomials in
the ring Q[𝑡, exp(𝑡)], the other is the Gelfond–Schneider theorem
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Figure 1: Real roots of the observing expression 𝜙 (𝑡)

employed in [23, Subsection 4.1] for the exponential polynomials in
Q[exp(𝜇1𝑡), exp(𝜇2𝑡)] where 𝜇1 and 𝜇2 are twoQ-linear independent
real algebraic numbers. However, they fail to isolate real roots of ele-
ments in Q[𝑡, exp(𝜇1𝑡), . . . , exp(𝜇𝑘𝑡)] for arbitrarily many Q-linear
independent algebraic numbers 𝜇1, . . . , 𝜇𝑘 , as considered in Eq. (7).

For an STL formula Ψ, independent from the starting time 𝑡0, the

truth of 𝜌 (𝑡0) |= Ψ is affected by the IDs 𝜌 (𝑡) during a time period.

We call it the post-monitoring period, calculated as

[inf I + inf J , supI + supJ] (9)

for the repeated reachability □I ^J Φ, which will be the input

time interval B of the above isolation algorithm Isolate(𝜙,B). It
improves the existing method in [40], by which the post-monitoring

period would be simply set to be [0, supI + supJ].
Once all real roots 𝜆 of 𝜙 (𝑡) in B are obtained, we can determine

all solutions during which 𝜌 (𝑡) |= Φ holds. They are delivered as

finitely many intervals 𝛿𝑖 with endpoints taken from those real

roots 𝜆 of 𝜙 (𝑡). For each solution interval 𝛿𝑖 , we have 𝜌 (𝑡) |= ^J Φ
holds for 𝑡 ∈ I𝑖 = {𝑡1 − 𝑡2 : 𝑡1 ∈ 𝛿𝑖 ∧ 𝑡2 ∈ J}, a coverage. Further,
if the coverage union

⋃
𝑖 I𝑖 over all solution intervals 𝛿𝑖 completely

covers I, the repeated reachability problem in finite horizon, i. e.

𝜌 (0) |= □I ^J Φ, can be decided to be true; otherwise it is false.

Example 4.4. Consider the repeated reachability property Ψ ≡
□I ^J Φ on the QCTMC 𝔔1 shown in Example 2.2, where I =

[0, 3
2
] and J = [0, 1] are time intervals, and Φ ≡ 𝑥2 − 𝑥2

1
> 0 is

a signal. The post-monitoring period B is [inf I + inf J , supI +
supJ] = [0, 5

2
] obtained by Eq. (9). Thereby it suffices to study

the behavior of 𝔔1 during B. From Example 4.3 we have known

that 𝜌 (𝑡) |= Φ holds for 𝑡 ∈ (𝜆1, 𝜆2), where 𝜆1 ≈ 0.987368 and

𝜆2 ≈ 1.56093 are two real roots of 𝑥2 − 𝑥2
1
. It implies that the ID

𝜌 (𝑡) meets ^J Φ when 𝑡 ∈ (𝜆1 − supJ , 𝜆2 − inf J). Hence the
repeated reachability property Ψ is decided to be true at the initial

ID, i. e. 𝜌 (0) |= Ψ, as (𝜆1 − supJ , 𝜆2 − inf J) covers I. □

Finally we summarize the above as:

Theorem 4.5 (Decidability). The repeated reachability problem
in finite horizon is decidable on quantum continuous-time Markov
chains, when Schanuel’s conjecture holds.

In fact, Theorem 4.5 follows from [40, Theorem 19].We recall and

refine the essentials of the construction particular for the repeated

reachability in this section, which will be used to make up a more

efficient solving procedure in the next section. Although this result

is conditional, some unconditional results can be obtained for the

subclasses mentioned in Remark 4.2.

Remark 4.3. We have to point out that the boundedness of the
time intervals I and J is a real restriction, without which we need
to develop the real root isolation of 𝜙 (𝑡) during an unbounded time
interval. That goes beyond the rich scope of order-minimal theory [37]
that admits the solvability for any real analytic function restricted in
a bounded region, and thus bring technical hardness. However, it is
not in the case when we deal with the repeated reachability in finite
horizon □I ^J Φ where the time intervals I and J are bounded.

5 EFFICIENCY DRIVEN BY SAMPLES
In the previous section we have shown the decidability of the re-

peated reachability in finite horizon. Now we are to design a more

efficient sample-driven solving procedure. Before describing its

rationale, we need a technical gadget.

Lemma 5.1. Let 𝜌 (𝑡) be the ID function of a QCTMC𝔔 w. r. t. time
variable 𝑡 , and Φ a signal. Then 𝜌 (𝑡∗) |= Φ is decidable at any rational
sample 𝑡∗.

We turn to describe the rationale of the sample-driven solving

procedure. If an ID 𝜌 (𝑡∗) of𝔔meets the signalΦ, whose decidability
has just been indicated in Lemma 5.1, the initial ID 𝜌 (0) meets the

STL formula□I
′
^J Φ for the intervalI ′ = [𝑡∗−supJ , 𝑡∗−inf J].

So, the repeated reachability 𝜌 (0) |= □I ^J Φ can be inferred from

the existence of a finite collection T of absolute times 𝑡∗, satisfying
𝜌 (𝑡∗) |= Φ, over which the union

⋃
𝑡∗ [𝑡∗ − supJ , 𝑡∗ − inf J]

covers I. Moreover, the distance between two successive samples

𝑡∗
𝑖
and 𝑡∗

𝑖+1 in T should be not greater than the length |J | of J , as

otherwise [𝑡∗
𝑖
−supJ , 𝑡∗

𝑖
−inf J] and [𝑡∗

𝑖+1−supJ , 𝑡
∗
𝑖+1−inf J] are

disjoint and cannot cover the connected interval I. The existence
of such a collection T is not only a sufficient condition but also a

necessary one, which is revealed by:

Lemma 5.2. There is a finite collection T of absolute times 𝑡∗,
satisfying 𝜌 (𝑡∗) |= Φ, over which the union⋃

𝑡∗∈T
[𝑡∗ − supJ , 𝑡∗ − inf J]

covers I, provided that 𝜌 (0) |= □I ^J Φ holds.

As analyzed above, we have known that a satisfying sample

𝜌 (𝑡∗) |= Φ gives rise to the segment [𝑡∗−supJ , 𝑡∗−inf J] partially
covering I. However, what can we learn from a conflicting sample

𝜌 (𝑡∗) ̸|= Φ? It is a neighborhood 𝛿 of 𝑡∗, in which the observing

expression 𝜙 (𝑡) is sign-invariant. It entails that if 𝜌 (𝑡∗) |= Φ does

not hold, 𝜌 (𝑡) does not meet Φ anywhere of 𝛿 , and thus we can

safely exclude this 𝛿 from the sample space B.
In detail, after a trial sample 𝑡∗, no matter whether it is satisfying

or conflicting, we can calculate a sign-invariant neighborhood 𝛿
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with the following manner. If 𝜙 (𝑡∗) = 0, it is an equation-type
constraint. Sowe set 𝛿 to be the singleton set {𝑡∗}. Otherwise, it is an
inequality-type constraint. Let𝜓1, . . . ,𝜓𝑘 be all distinct irreducible

factors of 𝜙 , and𝜓 ′
1
, . . . ,𝜓 ′

𝑘
their respective derivatives.

• Firstly, we compute the radius 𝜖 𝑗 = |𝜓 𝑗 (𝑡∗) |/sup𝑡 ∈B |𝜓 ′𝑗 (𝑡) |.
Here, the numerator |𝜓 𝑗 (𝑡∗) | is the height of 𝜓 𝑗 (𝑡∗) from
zero while the denominator sup𝑡 ∈B |𝜓 ′𝑗 (𝑡) | is the maximal

change rate of𝜓 𝑗 (𝑡) during the sample space B, so that𝜓 𝑗 (𝑡)
is sign-invariant in (𝑡∗ − 𝜖 𝑗 , 𝑡∗ + 𝜖 𝑗 ).
• Next, we compute the radius 𝜃 𝑗 = |𝜓 ′𝑗 (𝑡

∗) |/sup𝑡 ∈B |𝜓 ′′𝑗 (𝑡) |,
so that𝜓 𝑗 (𝑡) is monotonous in (𝑡∗ − 𝜃 𝑗 , 𝑡∗ + 𝜃 𝑗 ). Whenever

𝜃 𝑗 > 𝜖 𝑗 , we could get a sign-invariant open interval 𝛿 𝑗
extending (𝑡∗ − 𝜖 𝑗 , 𝑡∗ + 𝜖 𝑗 ). It is achieved by setting the left

endpoint

inf 𝛿 𝑗 =


𝑡∗ − 𝜖 𝑗 if 𝜃 𝑗 ≤ 𝜖 𝑗 ,

𝑡∗ − 𝜃 𝑗 if 𝜃 𝑗 > 𝜖 𝑗 ∧𝜓 𝑗 (𝑡∗)𝜓 𝑗 (𝑡∗ − 𝜃 𝑗 ) > 0,

𝑠∗ if 𝜃 𝑗 > 𝜖 𝑗 ∧𝜓 𝑗 (𝑡∗)𝜓 𝑗 (𝑡∗ − 𝜃 𝑗 ) ≤ 0,

(10)

where 𝑠∗ is the unique zero of 𝜙 (𝑡) in (𝑡∗ − 𝜃 𝑗 , 𝑡∗), which
can be efficiently approached by monotonicity. The right

endpoint sup𝛿 𝑗 is set symmetrically.

• Finally, we obtain the neighborhood 𝛿 =
⋂𝑘

𝑗=1 𝛿 𝑗 to be ex-

cluded. All factors𝜓 𝑗 (𝑡) are sign-invariant in 𝛿 𝑗 , so is their

product 𝜙 (𝑡) in 𝛿 . It implies that 𝜌 (𝑡) is truth-invariant in 𝛿 .

Example 5.3. Again, we consider the repeated reachability prop-

erty Ψ ≡ □I ^J Φ as in Example 4.4. Here we will show how to

compute the sign-invariant neighborhood 𝛿 of some concrete sam-

ples 𝑡∗. Suppose that we are given the sample 𝑡∗
1
= 6

5
, at which the

observing expression 𝜙 ( 6
5
) ≈ 0.0066092 is positive (see Figure 1)

and thus the ID 𝜌 ( 6
5
) meets Φ. Since 𝜙 (𝑡) itself is irreducible, we

use the single exponential polynomial to compute the radius of the

sign-invariant neighborhood. First, it is not hard to compute the

two bounds |𝜙 ′(𝑡) | < 7

2
and |𝜙 ′′(𝑡) | < 21

2
whenever 𝑡 ∈ B = [0, 5

2
].

We then get

𝜖1 =
��𝜙 ( 6

5

) �� / 7
2
≳ 9441

5000000

and

𝜃1 =
��𝜙 ′ ( 6

5

) �� / 21
2
≳ 14689

50000000
.

As 𝜃1 < 𝜖1, we calculate the sign-invariant neighborhood 𝛿1 as

(𝑡∗
1
− 𝜖1, 𝑡∗

1
+ 𝜖1) = ( 5990559

5000000
, 6009441
5000000

) ≈ (1.198112, 1.20189), which
is excluded for further consideration.

We consider another sample 𝑡∗
2
= 99

100
, at which the ID 𝜌 ( 99

100
)

also meets the formula Φ as 𝜙 ( 99
100
) ≈ 0.000017626 > 0. Similarly,

we get

𝜖2 =
��𝜙 ( 99

100

) �� / 7
2
≳ 1259

25000000

and

𝜃2 =
��𝜙 ′ ( 99

100

) �� / 21
2
≳ 1581

250000
.

As 𝜃2 > 𝜖2, the sign-invariant neighborhood is 𝛿2 = (𝑠∗
1
, 𝑡∗
2
+ 𝜃2),

since 𝜙 (𝑡∗
2
)𝜙 (𝑡∗

2
− 𝜃2) is negative while 𝜙 (𝑡∗

2
)𝜓 (𝑡∗

2
+ 𝜃2) is positive.

Here 𝑠∗
1
= 𝜆1 ≈ 0.987368 is the unique real root of 𝜙 (𝑡) during

(𝑡∗
2
−𝜃2, 𝑡∗

2
), which can be easily approached up to any precision. □

For a satisfying sample 𝜌 (𝑡∗) |= Φ, we could further speed up

the solving procedure by expanding the coverage [𝑡∗ − supJ , 𝑡∗ −
inf J] to the theoretically perfect (inf 𝛿 − supJ , sup𝛿 − inf J),

since 𝜙 (𝑡) is sign-invariant in the neighborhood 𝛿 . But we fall to

sample at the endpoints of 𝛿 , as the interval 𝛿 is open. For the sake

of effectiveness, we need to provide only finitely many samples

T from 𝛿 to cover (inf 𝛿 − supJ , sup𝛿 − inf J) as essentially as

possibly. Here the term ‘essentially’ means that the missed coverage

should not be too much, saying Lebesgue measure not greater than

|J | := supJ−inf J . Assuming |𝛿 | > |J | (and otherwise trivially),
it can be achieved by three steps.

(1) The leftmost sample 𝑙 is chosen to be any element in the

interval (inf 𝛿, inf 𝛿 + |J |/2].
(2) The rightmost sample 𝑢 is chosen to be any element in the

interval [sup𝛿 − |J |/2, sup𝛿).
(3) The intermediate samples between 𝑙 and𝑢 are any arithmetic

progression with common difference not greater than |J |.
In the above treatment, for two successive samples 𝑡∗

𝑖
and 𝑡∗

𝑖+1, we
omit the intermediate samples 𝑡 ∈ (𝑡∗

𝑖
, 𝑡∗
𝑖+1) to produce a coverage,

which has already been produced by 𝑡∗
𝑖
and 𝑡∗

𝑖+1, i. e.,(
[𝑡∗𝑖 − supJ , 𝑡

∗
𝑖 − inf J] ∪ [𝑡

∗
𝑖+1 − supJ , 𝑡

∗
𝑖+1 − inf J]

)
=

⋃
𝑡 ∈[𝑡∗

𝑖
,𝑡∗
𝑖+1 ]
[𝑡 − supJ , 𝑡 − inf J], (11)

since the distance between 𝑡𝑖 and 𝑡𝑖+1 is bounded by |J |. It is also
illustrated by Figure 2. There, in the first line, we can see that

the distance between two successive samples 𝑡∗
𝑖
and 𝑡∗

𝑖+1 is not

greater than |J |. The two samples 𝑡∗
𝑖
and 𝑡∗

𝑖+1 respectively produce

a coverage with length |J | in the second line. The second line also

shows that their coverages must be connected.

inf 𝛿 𝑙 𝑡∗
𝑖

𝑡∗
𝑖+1 sup𝛿𝑢

absolute time

≤ |J |

≤ |J |

𝑡∗
𝑖
− supJ 𝑡∗

𝑖
− inf J

𝑡∗
𝑖+1 − supJ 𝑡∗

𝑖+1 − inf J coverage

= |J |

= |J |

Figure 2: Coverage by two successive samples 𝑡∗
𝑖
and 𝑡∗

𝑖+1

Moreover, we omit the leftmost segment (inf 𝛿, 𝑙) (and the right-

most segment (𝑢, sup𝛿)) to produce a coverage. It will not cause

any trouble for the following reason. The trouble occurs only when

the current neighborhood 𝛿 cannot produce a coverage containing

(inf 𝛿 − supJ , 𝑙 − supJ), implying that inf 𝛿 − supJ should be

covered since the target I is compact (bounded and closed). So

there must be a neighborhood 𝛿
left

left to 𝛿 that produces the cov-

erage containing inf 𝛿 − supJ . It entails that 𝛿
left

contains inf 𝛿 .

Using the same treatment, we can see that the distance between the

rightmost sample 𝑢
left

of 𝛿
left

and the leftmost sample 𝑙 of 𝛿 is not

greater than (sup𝛿
left
− 𝑢

left
) + (𝑙 − inf 𝛿) ≤ |J |/2 + |J |/2 = |J |,

and thus produces the coverage as (inf 𝛿, 𝑙), i. e.,(
[𝑢

left
− supJ , 𝑢

left
− inf J] ∪ [𝑙 − supJ , 𝑙 − inf J]

)
⊃

⋃
𝑡 ∈(inf 𝛿,𝑙)

[𝑡 − supJ , 𝑡 − inf J] . (12)
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It is illustrated by Figure 3. There, the leftmost segment (inf 𝛿, 𝑙)
of 𝛿 has length not greater than |J |/2; the rightmost segment

(𝑢
left

, sup𝛿
left
) of 𝛿

left
also has length not greater than |J |/2. The

two segments are overlapping, so the distance between 𝑢
left

and 𝑙

is not greater than |J |.

inf 𝛿
left

𝑙
left

sup𝛿
left

𝑢
left

inf 𝛿 𝑙 𝑢 sup𝛿 absolute time

≤ |J |/2

≤ |J |/2

Figure 3: Positions of the neighborhood 𝛿 and the left 𝛿left

Example 5.4. Continuing to consider Example 5.3, we now are to

decide whether the initial ID 𝜌 (0) meets the repeated reachability

property □I ^J Φ. It is solved by the sample-driven solving pro-

cedure shown in Table 2. Let us explain it below. For the sample

𝑡∗
3

= 1 at which the signal Φ holds, i. e., 𝑡∗
3
is a satisfying sam-

ple, its sign-invariant neighborhood 𝛿3 is ( 4970403
5000000

, 5029597
5000000

), the
essential samples from 𝛿3 is {1}, which contributes the coverage

I3 = [1 − supJ , 1 − inf J] = [0, 1] to the target I. For another
sample 𝑡∗

4
= 3

2
at which Φ is met too, its sign-invariant neighbor-

hood 𝛿4 is ( 748689
500000

, 751311
500000

), the essential samples from 𝛿4 is { 3
2
},

which contributes the coverage I4 = [ 1
2
, 3
2
] to I. Totally we get

the finite collection of satisfying samples T = {1, 3
2
}, so that the

time interval I = [0, 3
2
] is covered by I ′ = I3 ∪ I4 = [0, 3

2
].

Hence the repeated reachability □I ^J Φ holds at the initial ID,

i. e. 𝜌 (0) |= □I ^J Φ. □

Table 2: Sample-driven procedure for deciding □I ^J Φ

samples 𝑡∗ radius neighborhood 𝛿 ess. samples T coverage I ′

𝑡∗
3
= 1

𝜃3 =
591949

100000000

𝛿3 = (𝑡∗
3
− 𝜃3, 𝑡∗

3
+ 𝜃3) {1} [0, 1]

satisfying ≈ (0.994081, 1.00591)
𝑡∗
4
= 3

2 𝜃4 =
1311031

500000000

𝛿4 = (𝑡∗
4
− 𝜃4, 𝑡∗

4
+ 𝜃4) { 3

2
} [ 1

2
, 3
2
]

satisfying ≈ (1.497378, 1.50262)

We summarize the solving procedure as Algorithm 1.

Example 5.5. Reconsidering Example 5.4, we now are to decide

whether the initial ID 𝜌 (0) meets the repeated reachability Ψ ≡
□K ^J Φ, where K = [1, 2] is a fresh time interval. The post-

monitoring period B is [inf K + inf J , supK + supJ] = [1, 3] by
Eq. (9). Using Algorithm 1, we get a finite union of sign-invariant

neighborhoods

⋃
16

𝑖=5 𝛿𝑖 ≈ (0.852464, 3.26579), which can cover

the whole sample space B but contribute the coverage I ′ = [0, 3
2
]

partially covering the targetK . More details can be found in Table 3.

Hence, the repeated reachability □K ^J Φ does not hold at the

initial ID 𝜌 (0), i. e. 𝜌 (0) ̸|= □K ^J Φ.

6 EXPERIMENTATION
The prototypes of both the presented sample-driven solving proce-

dure (Algorithm 1) and the isolation-based one in the previous

work [40, Algorithm 1] have been implemented in Python 3.8,

Algorithm 1 A Sample-Driven Solving Procedure

{𝑡∗
1
, . . . , 𝑡∗𝑚} ⇐ Solve(𝜌,□I ^J Φ)

Input: 𝜌 (𝑡) is the dynamics of a QCTMC𝔔 and □I ^J Φ is the

repeated reachability in finite horizon to be checked;

Output: 𝑡∗
1
, . . . , 𝑡∗𝑚 are finitely many absolute times, satisfying

𝑚∧
𝑖=1

𝜌 (𝑡∗𝑖 ) |= Φ and I ⊆
𝑚⋃
𝑖=1

[𝑡∗𝑖 − supJ , 𝑡
∗
𝑖 − inf J],

whenever 𝜌 (0) |= □I ^J Φ.
1: let 𝜙 (𝑡) be the observing expression of Φ as defined in Eq. (8);

2: B← [inf I+ inf J , supI+supJ] that is the post-monitoring

period of □I ^J Φ;
3: I ′ ← ∅ and T← ∅;
4: while B ≠ ∅ and I \ I ′ ≠ ∅ do
5: let 𝑡∗ be an element of B;
6: compute a sign-invariant neighborhood 𝛿 of 𝑡∗ by Eq. (10);

7: if 𝜌 (𝑡∗) |= Φ then
8: if |𝛿 | ≤ |J | then I ′ ← I ′ ∪ [𝑡∗ − supJ , 𝑡∗ − inf J]

and T← T ∪ {𝑡∗};
9: else
10: let 𝑙 be an element in (inf 𝛿, inf 𝛿 + |J |/2]; ⊲ set

the leftmost sample

11: let 𝑢 be an element in [sup𝛿 − |J |/2, sup𝛿); ⊲ set

the rightmost sample

12: let 𝑙 = 𝑡∗
1

< 𝑡∗
2

< · · · < 𝑡∗
𝑘

= 𝑢 be the shortest

arithmetic progression with common difference ≤ |J |; ⊲ set

the intermediate samples

13: I ′ ← I ′ ∪ [𝑡∗
1
− supJ , 𝑡∗

𝑘
− inf J] and T ← T ∪

{𝑡∗
1
, 𝑡∗
2
, . . . , 𝑡∗

𝑘
};

14: B← B \ 𝛿 ;
15: if I \ I ′ = ∅ then return T;
16: else return ∅ as reporting 𝜌 (0) ̸|= □I ^J Φ.

running on an Apple M1 core with 16 GB memory. We have ex-

perimented on randomly generated instances from the two-qubit

Hilbert space. Specifically speaking, symbolically computing the

exponentials of high-dimensional matrices is well known to be of

expensive computational cost, although it is theoretically in polyno-

mial time; moreover, manipulating the resulting objects (including

arithmetic operations on entries) also costs a polynomial time, not a

constant time, which is out of what we concern in the paper. So we

fix the sample dynamics of the QCTMC𝔔1 shown in Example 2.2

to demonstrate the performance of two procedures. Whereas, the

randomness comes from two aspects:

(1) the observing expressions are randomly generated of various

degrees and heights (that is the maximum of absolute values

of a Z-polynomial’s coefficients, which is usually used to

reflect the size of that polynomial; e. g., the height of the

polynomial 6𝑥2−2𝑥1−9𝑥4−3 ismax{|6|, |−2|, |−9|, |−3|} = 9),

(2) the time intervals I and J are also randomly generated.

The effectiveness, efficiency and scalability of the two procedures

are validated by the time and space consumption on randomly gen-

erated signals Φ, in which observing expressions 𝑝 (x) are measured
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Table 3: Sample-driven procedure for deciding □K ^J Φ

samples 𝑡∗ radius neighborhood 𝛿 ess. samples T coverage I ′

𝑡∗
5
= 3

𝜖5 =
332241

1250000

𝛿5 = (𝑡∗
5
− 𝜖5, 𝑡∗

5
+ 𝜖5) ∅

conflicting ≈ (2.73421, 3.26579)
𝑡∗
6
= 5

2 𝜖6 =
328869

1250000

𝛿6 = (𝑡∗
6
− 𝜖6, 𝑡∗

6
+ 𝜖6) ∅

conflicting ≈ (2.23691, 2.76309)
𝑡∗
7
= 11

5 𝜖7 =
286513

1250000

𝛿7 = (𝑡∗
7
− 𝜖7, 𝑡∗

7
+ 𝜖7) ∅

conflicting ≈ (1.97079, 2.42921)
𝑡∗
8
= 19

10 𝜖8 =
738173

5000000

𝛿8 = (𝑡∗
8
− 𝜖8, 𝑡∗

8
+ 𝜖8) ∅

conflicting ≈ (1.75237, 2.04763)
𝑡∗
9
= 17

10 𝜃9 =
33937

500000

𝛿9 = (𝑡∗
9
− 𝜃9, 𝑡∗

9
+ 𝜃9) ∅

conflicting ≈ (1.63213, 1.76787)
𝑡∗
10

= 8

5 𝜃10 =
21821

312500

𝛿10 = (𝑠∗
2
, 𝑡∗
10
+ 𝜃10) ∅

conflicting ≈ (1.56093, 1.66982)
𝑡∗
11

= 𝑠∗
2

0

𝛿11 = {𝑠∗
2
} ∅

conflicting ≈ {1.56093}
𝑡∗
12

= 3

2 𝜃12 =
25763

390625

𝛿12 = (𝑡∗
12
− 𝜃12, 𝑠∗

2
) { 3

2
} [ 1

2
, 3
2
]

satisfying ≈ (1.43405, 1.56093)
𝑡∗
13

= 7

5 𝜖13 =
342521

5000000

𝛿13 = (𝑡∗
13
− 𝜖13, 𝑡∗

13
+ 𝜖13) { 7

5
} [ 2

5
, 7
5
]

satisfying ≈ (1.33150, 1.46850)
𝑡∗
14

= 13

10 𝜖14 =
4879431

50000000

𝛿14 = (𝑡∗
14
− 𝜖14, 𝑡∗

14
+ 𝜖14) { 13

10
} [ 3

10
, 13
10
]

satisfying ≈ (1.20242, 1.39758)
𝑡∗
15

= 6

5 𝜖15 =
132921

1250000

𝛿15 = (𝑡∗
15
− 𝜖15, 𝑡∗

15
+ 𝜖15) { 6

5
} [ 1

5
, 6
5
]

satisfying ≈ (1.09367, 1.30633)
𝑡∗
16

= 1

𝜃16 =
3722353

25000000

𝛿16 = (𝑠∗
16
, 𝑡∗
16
+ 𝜃16) {1} [0, 1]

satisfying ≈ (0.852464, 1.14889)

Here, 𝑠∗
2
= 𝜆2 ≈ 1.56093 (see Figure 1), which is the unique real

root of 𝜙 (𝑡) during the interval (𝑡∗
10
− 𝜃10, 𝑡∗

10
).

in terms of i) the degree of an integer polynomial 𝑝 (x) chosen from

1 to 4, and ii) the height of 𝑝 (x) selected at four scales: [1, 10],
[11, 100], [101, 500] and [501, 1000]. The experimental results are

summarized in the upper half of Table 4. We also generalize the

inner single signal Φ by multiple ones composed in conjunctive

normal form (CNF), saying Φ ≡ (Φ1 ∨ Φ2 ∨ Φ3) ∧ (Φ4 ∨ Φ5 ∨ Φ6)
investigated in the experiments, where

Φ1 ≡ 6𝑥2 − 2𝑥1 − 9𝑥4 − 3 > 0 Φ4 ≡ 4𝑥1 + 3𝑥2 − 8𝑥3 + 4 > 0

Φ2 ≡ 4𝑥1 + 3𝑥2 − 8𝑥3 + 4 > 0 Φ5 ≡ 2𝑥3 + 6 < 0

Φ3 ≡ 4𝑥2 + 9 ≤ 0 Φ6 ≡ 2𝑥1 + 6 < 0.

Supposing that 𝛿𝑖 is a neighborhood onwhichΦ𝑖 is met everywhere,

(𝛿1 ∪ 𝛿2 ∪ 𝛿3) ∩ (𝛿4 ∪ 𝛿5 ∪ 𝛿6) is a truth-invariant neighborhood of
Φ; supposing that 𝛿𝑖 is a neighborhood on which Φ𝑖 is met nowhere,

(𝛿1 ∩ 𝛿2 ∩ 𝛿3) ∪ (𝛿4 ∩ 𝛿5 ∩ 𝛿6) is a truth-invariant neighborhood of
Φ. Finally the results are summarized in the lower half of Table 4,

while the source code and complete experimental data will be found

at https://github.com/Holly-Jiang/RR.

Effectiveness and efficiency of the two procedures. For each row in

Table 4, we get the average time and space consumption of deciding

five randomly generated instances of a specified degree and height.

In the case of observing expressions with a fixed degree, there

exists only a small fluctuation of time and space consumption, as

the height increases. With the observing expressions changing from

the single signal to the CNF of multiple signals, the average time and

space consumption increases. Overall, as demonstrated in Table 4

and Figure 4, the results on deciding the repeated reachability in

the randomly generated instances are achieved at an acceptable

level of consumption when applying two procedures.

Table 4: Performance of two solving procedures

degree height

single signals

isolation-based sample-driven

time (s) space (MB) time space

1

[1, 10] 9.55 121 2.51 113
[11, 100] 7.12 117 1.80 108
[101, 500] 9.21 120 1.95 109
[501, 1000] 6.02 117 1.81 108

2

[1, 10] 5.43 115 1.83 107
[11, 100] 7.77 117 1.92 109
[101, 500] 15.19 119 4.30 110
[501, 1000] 8.48 117 1.96 109

3

[1, 10] 27.12 127 7.61 117
[11, 100] 46.73 125 4.75 115
[101, 500] 43.79 131 2.17 110
[501, 1000] 11.12 121 2.32 110

4

[1, 10] 24.81 128 2.31 110
[11, 100] 31.36 127 2.17 110
[101, 500] 40.45 129 2.54 112
[501, 1000] 21.72 126 11.07 120

degree height

multiple signals

isolation-based sample-driven

time (s) space (MB) time space

1

[1, 10] 31.98 465 16.72 459
[11, 100] 21.69 460 9.19 422
[101, 500] 27.90 469 10.77 425
[501, 1000] 23.96 370 7.65 333

2

[1, 10] 33.85 432 12.45 416
[11, 100] 20.47 268 10.89 255
[101, 500] 27.45 392 16.87 377
[501, 1000] 42.96 412 21.31 402

3

[1, 10] 104.47 411 46.33 389
[11, 100] 48.71 300 18.09 293
[101, 500] 80.18 411 24.14 391
[501, 1000] 128.51 495 46.97 468

4

[1, 10] 239.84 616 103.07 525
[11, 100] 76.67 408 16.51 392
[101, 500] 102.20 302 32.78 271
[501, 1000] 105.14 290 65.81 253

Superiority of sample-driven solving procedure over isolation-based
one. In Figure 4, we have a more intuitive representation of the

consumption of time and space for each instance, with results of the

sample-driven solving procedure in red and results of the isolation-

based one in blue. Here, the markers reflect the space consumption

while the line charts reflect the time consumption. The solid square

markers indicate that the observing expressions satisfy the repeated

reachability corresponding to the random intervals, while the hol-

low ones refute. The dotted vertical line indicates the difference in

space consumption between the two solving procedures for that

instance. We can see:

• When dealing with the single-signal expressions, the respec-

tive difference in space consumption of the two procedures

https://github.com/Holly-Jiang/RR.git
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Figure 4: Time and space consumption of the individual instances in Table 4

is not obvious as the degree and height vary. The space con-

sumption of both procedures greatly increases when solving

the constraints containing a CNF of multiple signals.

• For the same instance, the sample-driven solving procedure

shows more efficient advantages than the isolation-based

one. When dealing with more complicated constraints con-

taining a CNF of multiple signals, the incremental time con-

sumed by the sample-driven solving procedure is much less

than that by the isolation-based one.

Compared to the isolation-based procedure, the sample-driven solv-

ing procedure saves 83% in time consumption and 9% in space

consumption on average for single-signal constraints, and saves up

to 59% in time consumption and 7% in space consumption on aver-

age for constraints composed of multiple signals. Apparently, the

sample-driven solving procedure demonstrates great superiority

over the isolation-based one in terms of time and space consump-

tion in most instances, and is believed to efficient and scalable when

encountering complicated situations.

7 CONCLUSION
In this paper, we have studied the repeated reachability problem

□I ^J Φ over QCTMCs. First, the decidability was reduced to the

real root isolation of exponential polynomials. To speed up the

procedure, we presented a sample-driven procedure, which could

effectively refine the sample space after each time of sampling,

no matter whether the sample itself was satisfying or conflicting.

Randomly generated instances had validated the improvement on

efficiency. For future work, we will explore four aspects:

(1) The proposed method could be applied to verify the repeated

reachability □I ^J Φ and 𝜔-regular properties of the gen-

eral real-time linear system and solvable system [19].

(2) The repeated reachability problems in infinite horizon, de-

noted □I ^ Φ, □^J Φ and □^ Φ, could be considered for

developing the 𝜇-calculus [10] against QCTMCs.

(3) As another major strength of STL [12, 29], the perturba-

tion/sensitivity/robustness w. r. t. parameters in temporal

formulas could be studied.

(4) For scaliability, the Lyapunov-like approach as proposed

in [33] could be used to reduce the size of a QCTMC within

a prescribed error bound.
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A PROOFS
A.1 Proof of Lemma 5.1
We notice that 𝜌 (𝑡) |= Φ holds if and only if the observing expres-

sion 𝜙 (𝑡) meets some sign-condition. Putting the rational number

𝑡 = 𝑡∗ into Eq. (7), we can see that 𝜙 (𝑡∗) is a real number with the

form

𝛽0 + 𝛽1e𝛼1 + · · · + 𝛽𝑚e
𝛼𝑚 , (13)

where 𝛼1, . . . , 𝛼𝑚 are distinct A-numbers and 𝛽0, . . . , 𝛽𝑚 are A-
numbers. By the fact [8, Theorem 1.2] that e is transcendental
(i. e. not algebraic), we can infer that 𝜙 (𝑡∗) = 0 if and only if all

𝛽0, . . . , 𝛽𝑚 are zero. If it is not the case, i. e. 𝜙 (𝑡∗) ≠ 0, the sign

of 𝜙 (𝑡∗) can be determined by sufficiently approaching e, thus

𝜌 (𝑡∗) |= Φ is decided.

A.2 Proof of Lemma 5.2
Let S be the (possibly infinite) collection of those absolute times

𝑡∗ ∈ B0 with 𝜌 (𝑡∗) |= Φ. Under the assumption 𝜌 (0) |= □I ^J Φ,
we know

I ⊆
⋃
𝑡∗∈S
[𝑡∗ − supJ , 𝑡∗ − inf J] .

We proceed to refine S to a finite collection T, satisfying

I ⊆
⋃
𝑡∗∈T
[𝑡∗ − supJ , 𝑡∗ − inf J] .

The observing expression 𝜙 (𝑡) extracted from the signal Φ is a

real analytic function that has finitely many real roots during any

compact interval B, saying B0. So S has the union structure of

finitely many open intervals plus finitely many singleton sets, on

each of which 𝜙 (𝑡) is sign-invariant. It entails that S consists of
finitely many maximal connected intervals S𝑗 , no matter whether

they are closed or open. Correspondingly, there are finitely many

closed intervals I𝑗 , not necessarily disjoint pairwise, such that

I𝑗 ⊆ I ∩ ©«
⋃

𝑡∗∈S𝑗
[𝑡∗ − supJ , 𝑡∗ − inf J]ª®¬

and I =
⋃

𝑗 I𝑗 . Since the closed interval I𝑗 has length |I𝑗 | and
every 𝜌 (𝑡∗) |= Φ gives a coverage with length |J | to I, we can
refine S𝑗 to at most 1 + ⌊|I𝑗 |/|J |⌋ elements T𝑗 of S𝑗 to achieve

the same coverage. Thereby, we get the desired finite collection

T =
⋃

𝑗 T𝑗 to achieve the same coverage as S does.

A.3 Correctness of Algorithm 1
We first notice that the sample space B contains all satisfying sam-

ples to the repeated reachability problem □I ^J Φ. These satis-
fying samples can be split into sign-invariant neighborhoods 𝛿 of

concrete samples 𝑡∗ by the fact the observing expression 𝜙 (𝑡) is
real analytic on the compact interval B. For each neighborhood 𝛿 ,

there are at most 1+ ⌊|𝛿 |/|J |⌋ essential samples that contribute the

necessary and sufficient coverage, as revealed by Eqs. (11) and (12).

On the other hand, there are finitely many neighborhoods 𝛿 com-

puted by Eq. (10) in the procedure, since otherwise there is an

irreducible factor𝜓 𝑗 (𝑡) of 𝜙 (𝑡), such that for any positive constant

𝜖 , |𝜓 𝑗 (𝑡) | ≤ 𝜖 and |𝜓 ′
𝑗
(𝑡) | ≤ 𝜖 simultaneously hold at some sample

𝑡∗ in B. The latter will lead to a contradiction as follows.

(1) Let Λ = {𝑡∗ ∈ B : 𝜓 𝑗 (𝑡∗) = 0} be the set of real roots of

𝜓 𝑗 (𝑡) in B. It is a finite set, since𝜓 𝑗 (𝑡) is analytic on B and

B is compact.

(2) Let 𝜖1 = min{|𝜓 ′
𝑗
(𝑡∗) | : 𝑡∗ ∈ Λ}. It is a positive constant,

since otherwise the irreducible factor𝜓 𝑗 (𝑡) has a repeated
real root, which contradicts Schanuel’s conjecture [4] stating

that an irreducible exponential polynomial has no repeated

root with the only possible exception 0. (The conjecture is

commonly believed to be an unproved theorem by mathe-

matical community, since it has been raised in 1960’s. Once

the conjecture fails at any instance to Algorithm 1, an im-

portant breakthrough in number theory will be achieved by

that instance serving as a counterexample. Up to the present,

no such instance has been reported.)

(3) Let 𝛿 (𝑡, 𝑟 ) denote the neighborhood of 𝑡 with radius 𝑟 . We

choose 𝑟0 to be such a radius, satisfying that |𝜓 ′𝑗 (𝑡) | is not less
than

1

2
𝜖1 on all neighborhoods 𝛿 (𝑡∗, 𝑟0) with 𝑡∗ ∈ Λ. LetΛ𝑜 =⋃

𝑡∗∈Λ 𝛿 (𝑡∗, 𝑟0) be the union of finitely many neighborhoods.

So we have that |𝜓 ′
𝑗
(𝑡) | ≥ 1

2
𝜖1 holds on Λ𝑜 .

(4) Let 𝜖2 = inf{|𝜓 𝑗 (𝑡) | : 𝑡 ∈ B \ Λ𝑜 }. It is positive, since all real
roots 𝑡∗ of𝜓 𝑗 (𝑡) in B are excluded with their neighborhoods

𝛿 (𝑡∗, 𝑟0). That means |𝜓 𝑗 (𝑡) | ≥ 𝜖2 holds on B \ Λ𝑜 .
Combining the last two issues, we obtain that for each sample in

B, either |𝜓 𝑗 (𝑡) | ≥ 1

2
𝜖1 holds or |𝜓 ′𝑗 (𝑡) | ≥ 𝜖2 holds, and that the

procedure invokes Eq. (10) to compute the neighborhoods 𝛿 only

finitely many times. Hence the output T is a finite collection of

samples that produce the same coverage as the whole sample space

B does, entailing that Algorithm 1 is correct.

A.4 Complexity of Algorithm 1
Consider the sample 𝑡∗ chosen in Line 5 of Algorithm 1. If it is

exactly a real root of the observing expression 𝜙 (𝑡), the condition
judgement in Line 7 is very easy, whose cost can be ignored in the

complexity analysis. In the following, we only tackle the case that

𝑡∗ is not a real root of 𝜙 (𝑡).
Let 𝜒 denote the computational cost of the sign-determination

for the number with form (13), which is a query operation in our

analysis relying on sufficiently approaching the Euler constant e.

Then the condition judgement in Line 7 costs O(𝜒).
Let 𝜖 = min( 1

2
𝜖1, 𝜖2) be a positive constant, such that for each

sample 𝑡∗ inB, either |𝜓 𝑗 (𝑡∗) | ≥ 1

2
𝜖1 holds or |𝜓 ′𝑗 (𝑡

∗) | ≥ 𝜖2 holds for

all irreducible factors𝜓 𝑗 (𝑡) of𝜙 (𝑡), as constructed in the correctness
analysis of Algorithm 1. Then performing each time of the loop in

Line 4, we (partially) cover I by a neighborhood 𝛿 of length |J |
or exclude a neighborhood 𝛿 of length 𝜖 from B, entailing that the

loop can be performed at most ⌈|I|/|J |⌉ + ⌈|B|/𝜖⌉ times, where

|B| = |I | + |J |. Totally, Algorithm 1 is in the query complexity

O
((
|I |
|J | +

|I| + |J |
𝜖

)
· 𝜒

)
.

Finally, we mention that the algorithm in [40] uses the high-

level query — root isolation, which calls the aforementioned sign

determination 𝜒 as a subroutine. In this sense, the two algorithms

cannot be compared directly at the same complexity level.
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