
Abstraction-Based Training and Verification
of Safe Deep Reinforcement Learning Systems

(Extended Abstract)

Min Zhang

Shanghai Key Laboratory of Trustworthy Computing, East China Normal
University, Shanghai, China

zhangmin@sei.ecnu.edu.cn

Abstract. Deep Reinforcement Learning (DRL) systems shall be formally
verified when they operate in safety-critical domains. However, their verification
is a very challenging problem for two main reasons, i.e., the continuity and
infinity of system state space and the inclusion of inexplicable decision-making
deep neural networks (DNNs). We propose to first abstract the continuous and
infinite state space into a finite set of abstract states and then train the system on
these abstract states. This abstract training approach brings manifold benefits.
First, we can build a verifiable formal model based on the same abstraction and
verify whether it satisfies the expected safety and functional requirements using
off-the-shelf model checkers. The verification results are then used to guide the
abstraction refinement repeatedly for further training until all the requirements
are satisfied. Second, we can perform a tight and scalable reachability analysis
of the trained systems by treating the planted neural networks as black boxes,
thus avoiding over-approximating them. Third, we can flexibly fine-tune the
granularity in which the system states are abstracted for a better balance between
robustness and performance.
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Background

Deep Reinforcement Learning (DRL) is an artificial intelligence technique for devel-
oping autonomous systems where deep neural networks (DNNs) are planted for
decision-making. It has been developing quickly to solve those hard-specifiable sys-
tems such as robot control autonomous driving [9]. As some of those domains are
safety-critical, their functionality, safety, and robustness shall be formally verified
before deployment [4]. However, the verification problem is very challenging due to
two main reasons. One is that the system state space is usually continuous and infinite,
and the other is that the system is driven by an in-explicable and non-linear deep neural
network. The two facts make it difficult to build an efficiently verifiable formal model.
Existing verification approaches have to abstract the system state space and
over-approximate the network after a system is trained. Such ex post facto verification
has several limitations. One is that the abstraction and over-approximation introduce



too much overestimation and consequently result in false positives in verification
results. Another is that the verification results are hardly utilized to improve the system
reliability as further training after verification may cause an unpredictable impact on
system properties due to the inexplicability of neural networks [5].

Abstraction-Based Training and Verification

Verification-in-the-Loop Training [8]. As inspired by the importance of abstraction
to the formal verification of infinite-state systems [7], we propose to abstract the infinite
state space S of a DRL system into a finite set S of abstract states by defining the
abstraction function A : S ! S and train it on S. At each training step t, we map the
system state st 2 S to its corresponding abstract state s ¼ AðstÞ and feed s into the
planted neural network p to compute an action a ¼ pðsÞ. A reward is then computed by
a predefined reward function based on a and st, and the parameters in the neural
network are updated correspondingly. The system proceeds to the successor state
stþ 1 ¼ f ðst; aÞ, where f is the system dynamics.

Under the same abstraction, we can build a state transition system
MS ¼ hS; I ; T i, where I ¼ fsjs 2 S ^ 9s0 2 S0:s ¼ Aðs0Þg and ðs; s0Þ 2 T if s0 2
f̂ ðs; pðsÞÞ for all s; s0 2 S. Here, S0 is the set of initial states of the system, and
f̂ ðs; pðsÞÞ ¼ fs0j9s 2 CðsÞ:s0 ¼ Aðf ðs; pðsÞÞÞg denotes the set of successor abstract
states from s, where C is the corresponding concretization function of A. MS is a
simulation of the trained DRL system, i.e., for any transition from st to stþ 1 ¼ f ðst; aÞ
and abstract state s, if s ¼ AðstÞ, then there exists s0 2 S such that s0 2 f̂ ðs; pðsÞÞ and
s0 ¼ Aðstþ 1Þ. Since S is finite, we can leverage off-the-shelf model checkers to model
check MS against the pre-specified properties defined in some temporal logic such as
ACTL. When counterexamples are found, they could be spurious due to the abstrac-
tion. We then refine the abstract state S guided by the counterexamples and continue to
train the system on the refined abstract state space. We repeat this
verification-in-the-loop training process until all the properties are verified, and we
finally obtain a verified safe DRL system.
Tight and Scalable Reachability Analysis [11]. Reachability analysis is an effective
way to verify the safety properties of DRL systems [3, 6]. Given a DRL system with
state space S, let RS be the set of all the reachable states. We have S0 2 S and s0 2 RS

for all s0 2 S if there exists some state s 2 RS such that s0 ¼ f ðs;NðsÞÞ, where N is a
neural network trained on S. Generally, it is an undecidable problem to check whether a
state is reachable or not for a DRL system because the reachability problem of most
nonlinear systems is undecidable [2]. Due to the infinity of S and the non-linearity of f,
we have to over-approximate both N and f to overestimate RS. This dual
over-approximation results in too much overestimation and limited scalability to large
neural networks.

By training the system on the abstract state space S, we can over-approximate RS

more tightly and scalably via computing the set of reachable abstract states. Let the
overestimated set be RS , where I 2 RS and s0 2 RS for all s0 2 S if there exists some
s 2 S such that ðs; s0Þ 2 T . Because the neural network p is trained on S, we can avoid
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over-approximating p and treat it as a black box when checking whether ðs; s0Þ 2 T
holds or not. It suffices to compute the corresponding action on s by a ¼ pðsÞ and
determine the successor abstract states in f̂ ðs; aÞ. The concretization of all the reachable
abstract states constitutes an overestimated set of reachable actual states. In this pro-
cess, we only need to over-approximate the dynamics f, which consequently yields a
tight and scalable way to overestimate the set of reachable states for the DRL system.

Probabilistic Robustness Training and Evaluation [12]. Training on abstract states
is also helpful in developing robust DRL systems. A DRL system is considered robust
in a state with respect to some perturbation if it takes the same action on all the
perturbed states. Under abstract training, a perturbed state may be mapped to the same
abstract state and thus have the same action as the original state. The probability of
mapping a perturbed state to the same abstract state as the original state can be esti-
mated, yielding an analytical metric called probabilistic robustness to indicate the
system robustness. The metric only depends on abstraction and thus can be computed
analytically but not experimentally. We have proved that the probability increases
monotonously with the granularity in which system states are abstracted. Consequently,
we can achieve a flexible mechanism to balance the robustness and performance of
trained DRL systems by fine-tuning the abstraction granularity of the system states.

The prototypes for the safe and robust training, verification and reachability anal-
ysis, and technical documents are available at https://github.com/aptx4869tjx/RL_
verification.

Concluding Remarks

We believe that abstraction is a promising solution for connecting formal methods and
deep reinforcement learning for developing provably reliable DRL systems. Following
the work [1], which shows the feasibility of applying abstraction to the training phase,
we demonstrate that abstraction can be utilized simultaneously in both verification and
training. Introducing abstraction into both training and verification brings manifold
benefits, e.g., simplifying the subsequent verification, utilizing the verification results
for further training, computing tight sets of reachable states in a scalable and orthogonal
manner to the size, architecture, and type of activation functions of neural networks,
and balancing the robustness and performance by flexibly fine-tuning the abstraction
granularity. All these benefits are necessary to develop safe and robust DRL systems.

Several problems remain ahead when the abstraction-based training and verification
approach is applied to real-world complex DRL systems. One practical problem is
extending it to high-dimensional systems, whose states require sophisticated abstrac-
tions defined particularly for neural network verification [10] to avoid state explosions
in both training and verification phases. Another interesting direction is applying the
proposed approaches to other variant DRL systems with non-deterministic and
stochastic features, which could be verified using probabilistic and statistical model
checking approaches. It is also interesting to explore the possibility of extending the
training and verification approaches to classification tasks for training verifiable and
robust deep neural networks.
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