
Available

CAV
Evaluation

Artifact

Trainify: A CEGAR-Driven Training and Verification
Framework for Safe Deep Reinforcement Learning

Peng Jin1, Jiaxu Tian1, Dapeng Zhi1, Xuejun Wen2, and Min Zhang1,3

1 Shanghai Key Laboratory of Trustworthy Computing, ECNU, Shanghai, China
2 Huawei International, Singapore

3 Shanghai Institute of Intelligent Science and Technology,
Tongji University, Shanghai, China
zhangmin@sei.ecnu.edu.cn

Abstract. Deep Reinforcement Learning (DRL) has demonstrated its strength in
developing intelligent systems. These systems shall be formally guaranteed to be
trustworthy when applied to safety-critical domains, which is typically achieved
by formal verification performed after training. This train-then-verify process
has two limits: (i) trained systems are difficult to formally verify due to their
continuous and infinite state space and inexplicable AI components (i.e., deep
neural networks), and (ii) the ex post facto detection of bugs increases both the
time- and money-wise cost of training and deployment. In this paper, we propose
a novel verification-in-the-loop training framework called Trainify for developing
safe DRL systems driven by counterexample-guided abstraction and refinement.
Specifically, Trainify trains a DRL system on a finite set of coarsely abstracted but
efficiently verifiable state spaces. When verification fails, we refine the abstraction
based on returned counterexamples and train again on the finer abstract states. The
process is iterated until all predefined properties are verified against the trained
system. We demonstrate the effectiveness of our framework on six classic control
systems. The experimental results show that our framework yields more reliable
DRL systems with provable guarantees without sacrificing system performance
such as cumulative reward and robustness than conventional DRL approaches.

Keywords: Deep Reinforcement Learning · Model Checking · CEGAR · ACTL.

1 Introduction
Deep Reinforcement Learning (DRL) has shown its strength in developing intelligent
systems for complex control tasks such as autonomous driving [40,37]. Verifiable safety
and robustness guarantees are crucial to these safety-critical DRL systems before de-
ploying [23,44]. A typical example is autonomous driving, which is arguably still a long
way off due to safety concerns [21,39]. Recently, tremendous efforts have been made
toward adapting existing and devising new formal methods for DRL systems in order to
provide provable safety guarantees [46,51,18,25,45].

Formally verifying DRL systems is still a challenging problem. The challenge arises
from DRL systems’ three features. First, the state space of a DRL system is usually
continuous and infinite [28]. Second, the behavior of a DRL system is non-linear and
determined by high-order system dynamics [17]. Last but not least, the controllers,
typically deep neural networks (DNN), are almost inexplicable because of their black-
box development [20,52]. The three features make it unattainable to verify DRL systems

using conventional formal methods, i.e., modeling them as state transition systems and
verifying temporal properties using dedicated decision procedures [4]. Most existing
approaches have to simplify the problem by abstraction or over-approximation techniques
and restrict to specific properties such as safety or reachability [46].

Another common problem with most existing formal verification approaches to DRL
systems is that they are applied after the training is concluded. These train-then-verify
approaches have two limitations. First, verification results may be inconclusive due
to abstraction or overestimation. The non-linearity of both system dynamics and deep
neural networks makes it difficult to control the overestimation in a reasonable range,
resulting in false positives in verification results [50]. Second, the ex post facto detection
of bugs increases both the time- and money-wise cost of training and deployment. No
evidence shows that the iterative training and verification help improve system reliability,
as tuning the parameters in neural networks may cause an unpredictable impact on the
properties because of the inexplicability [24].

To address the challenges in training and verifying DRL systems, in this paper we
propose a novel verification-in-the-loop framework for training safe and reliable DRL
systems with verifiable guarantees. Provided that a set of properties are predefined for a
target DRL system to develop, our framework trains the system and verifies it against the
properties in every iteration. To overcome the verification challenges in DRL systems,
for the first time, we propose a novel approach in our framework to train the systems on
a finite set of abstract states, based on the observation that approximate abstractions can
still preserve near-optimal behavior [1]. These states are the abstractions of the actual
states. Training on the finite abstract states allows us to model the AI-embedded systems
as finite-state transition systems. We can leverage classic model checking techniques to
verify their more complicated temporal properties than safety and reachability.

As system performance may be affected by the abstraction granularity, we employ
the idea of the counterexample-guided abstraction and refinement (CEGAR) [8] in model
checking along the training process. We start with a coarsely abstracted but efficiently
verifiable state space and train and verify DRL systems on the abstract state space. Once
verification fails, we refine the abstract state space based on the returned counterexamples
and retrain the system on the finer-grained refined state space. The process is repeated
until all the properties are verified successfully. We, therefore, call the training and
verification framework CEGAR-driven, by which we can reach an appropriate abstraction
granularity that guarantees both system performance and verification scalability.

Our verification-in-the-loop training framework has four advantages compared with
conventional DRL training and verification approaches. Firstly, our approach produces
correct-by-construction DRL systems that are verifiably safe with respect to user-defined
safety requirements. Secondly, more complicated properties such as safety and liveness
can be verified thanks to the dedicated training approach on abstracted state space.
Another advantage of the training approach is that it is orthogonal to state-of-the-art DRL
algorithms such as Deep Q-Network (DQN) [34] and Deep Deterministic Policy Gradient
(DDPG) [32]. Thirdly, our approach provides a flexible mechanism for fine-tuning an
appropriate abstraction granularity to balance system performance and verification
scalability. Lastly, training on abstract states renders DRL systems to be more robust
against adversarial and environmental perturbations because small perturbation to an
actual state may not alter the decision of the neural network on the same abstract state.

We implement a prototype tool called Trainify (abbreviated for Train and Verify,
available at https://github.com/aptx4869tjx/RL_verification). We perform extensive ex-
periments on six classic control tasks in public benchmarks to evaluate the effectiveness
of our framework. For each task, we train two DRL systems under the same settings in
our approach and corresponding conventional DRL algorithm, respectively. We compare
the two systems in terms of the properties that they shall satisfy and the performance in
terms of cumulative reward and robustness. Experimental results show that the systems
trained in our approach are more efficient to verify and more reliable than those trained
in conventional methods; moreover, their performance is competitive and higher.

In summary, this paper makes the following three major contributions:

1. A novel verification-in-the-loop training framework for developing verifiable and
reliable DRL systems with correct-by-construction guarantees.

2. A CEGAR-driven approach for fine-tuning abstraction granularity during training to
reach a balance between system performance and verification scalability.

3. A resulting prototype tool called Trainify for training and verifying DRL systems
and a thorough evaluation of the proposed approach on public benchmarks.

Paper Organization. Section 2 briefly introduces deep reinforcement learning. Section 3
presents the model-checking problem of DRL systems. Section 4 presents our training
and verification framework. Section 5 shows six case studies and experimental results.
Section 6 mentions some related work, and Section 7 concludes the paper.

2 Deep Reinforcement Learning (DRL)
DRL is a technique for learning optimal control policies using deep neural networks
according to evaluative feedback [31]. An agent in a DRL system interacts with the
environment and records its state st at each time step t. It feeds st into a deep neural
network to compute an action at and transitions to the next state st+1 according to at

and the system dynamics. The system dynamics describe the non-linear behavior of
the agent over time. The agent receives a scalar reward according to reward functions.
Some algorithms estimate the distance between the action determined by the network
and the expected action in the same state. Then, it updates the parameters in the network
according to the estimated distance to maximize the cumulative reward.

state space: (p, v)
p ∈ [−1.2, 0.6]

v ∈ [−0.07, 0.07]

(−0.9,−0.04)
State st

−0.05

Deep Neural Network

Decision making

Action at

Update

Fig. 1: A DRL example of mountain car system.

A Running Example. Figure 1
shows a classic DRL task of
learning a control policy to drive
a car to the right hilltop. The
car is initially positioned on a
track between two mountains.
The track is one-dimensional,
and thus the car’s position is rep-
resented as a real number. Veloc-
ity is another dimension in the
car’s state and is represented as a real number too. Thus, the car’s state is a pair (p, v) of
position p and velocity v. An action a is a real number representing the force imposed
on the car. The action is computed by a neural network on both p and v.

https://github.com/aptx4869tjx/RL_verification

The sign of a means the direction of the force, i.e., positive for the right and negative
for the left, respectively. Given a state st = (pt, vt) and an action at at time step t, the
system transitions to the next step st+1 = (pt+1, vt+1) following the given dynamics:

pt+1 = pt + vt∆t, (1)
vt+1 = vt + (at − mc × g × cos(3pt))∆t, (2)

where mc denotes the car’s mass, g denotes the gravity, and ∆t is the unit interval between
two consecutive steps. In DRL, time is usually discretized to facilitate implementation.
The car is assumed to move in uniform motion during a unit interval.

Reward Setting. The reward function R maps state st, action at and state st+1 to a real
number, which represents the rewarded value by applying at to st to transition to st+1.
The purpose of R is to guide the agent to achieve the preset goals by making cumulative
reward as great as possible. The definition of R is based on prior knowledge or expert
experience before training.

In the Mountain Car example, the controller receives the reward which is defined
as R(〈pt, vt〉, at, 〈pt+1, vt+1〉) = −1.0 at each time step when pt+1 < 0.45. The reward is a
negative constant because the goal in this example is to force the car to reach the right
hilltop (p = 0.45) as quickly as possible. If the corresponding cumulative reward value
is larger than another when the car reaches the destination, it means that the car takes
fewer steps. A reward function can be a more complex formula than a constant when the
reward strategy is related to states and actions.

p

v

Input layer Hidden layer Output layer

a

W1 W2

−→
b

Fig. 2: A simple neural network.

Training. The essence of DRL training is to up-
date parameters in neural networks so that the
networks can compute optimal actions for input
states. A deep neural network is a directed graph
comprised of an input layer, multiple hidden lay-
ers, and an output layer, as shown in Figure 2.
Each layer contains several nodes called neurons.
They are connected to the neurons on the follow-
ing layer. Each edge has a weight. The values
passed on the edge are multiplied by the weight.
A neuron on hidden layers takes the sum of all
the incoming values, adds a bias, and feeds the result to its activation function σ. The
output of σ is passed to the neurons on the following layer. There are several commonly
used activation functions, e.g., ReLU (σ(x) = max(x, 0)), Sigmoid (σ(x) = 1

1+e−x) and
Tanh (σ(x) = ex−e−x

ex+e−x), etc. In DRL, the inputs to a neural network are system states. The
outputs are (probably continuous) actions that shall be performed to the present state.

During training, agents continuously interact with the environment to obtain trajec-
tories. A trajectory is a 4-tuple, consisting of a state s, the action a on s, the reward of
executing a on s, and the successor state after the execution. A predefined loss function
uses the collected trajectories to estimate an action value and compute the distance
between the estimated value and the one computed by the neural network for the same
state. Guided by the distance, the parameters in the network are updated using gradient
descent algorithms [12]. The process is repeated until the system reaches a predefined
maximal iteration limit or a preset cumulative reward threshold.

Algorithm 1: Training for the Mountain Car Task using DQN
1 for episode = 1, . . . ,M do
2 Initialize s0 = (p0, v0)
3 for t = 0, . . . ,T do
4 at ← N(pt, vt); /* To determine at based on st = (pt, vt) and N */
5 (st+1,−1.0)← system(st, at); /* To execute at and transition to the next state st+1 */
6 P ← L(N , 〈si, ai,−1.0, si+1〉, . . . , 〈s j, a j,−1.0, s j+1〉); /* To compute the distance */
7 N ← update(N ,P); /* To update parameters in N based on P */

There are several well-established training algorithms, such as Deep Q-Network
(DQN) [35] and Deep Deterministic Policy Gradient (DDPG) [32]. Algorithm 1 depicts
a high-level process of training the mountain car using DQN. We call the process of
training the car to move from the initial position to the destination an episode. For each
episode, the initial state is firstly determined (Line 2). Then, the controller determines
the action to be adopted based on the current state st and the neural network N (Line 4).
After performing the action, the controller receives a reward value (−1.0 in this case) and
transitions to the next state based on the system dynamics (Line 5). A loss is estimated
by calling the loss function L with partially sampled trajectories. The loss is represented
by P (Line 6) used to update the parameters of the network N (Line 7). We omit the
details of L, as it is not the emphasis of our paper.

The Target DRL Systems in this Work. The types of DRL systems are diverse from
different perspectives, such as the availability of system dynamics [17] and the determin-
ism of actions. In this work, we assume system dynamics is prior knowledge for training,
and the actions are deterministic. That is, a unique action is determined to take on the
present state, and its successor state is also uniquely determined by system dynamics.

3 Model Checking of DRL Systems

3.1 The Model Checking Problem

A trained deterministic DRL system can be represented as a tuple M = (S , A, f , π, S 0, L),
where S is the state space which is usually infinite, S 0 ⊆ S is the initial state space, A is
a set of actions, f : S × A→ S is the system dynamics, π : S → A is a policy function,
and L : S → 2AP is a state labeling function. In this work, we use π to denote the policy
that is implemented by the trained deep neural network in the system.

The model M of a DRL system is essentially a Kripke structure [10], which is a
4-tuple (S ,R, S 0, L). Given two arbitrary states s, s′ in S , there is a transition from s to
s′, denoted by (s, s′) ∈ R, if and only if there is an action a in A such that a = π(s) and
s′ = f (s, a). Given that a property is formalized by a formula Φ in some logic, the model
checking problem of the system is to decide whether M satisfies Φ, denoted by M |= Φ.

In this work, we formulate properties in ACTL [4], a segment of CTL where only
universal path quantifiers are allowed and negation is restricted to atomic propositions
[14,15]. ACTL consists of state formula Φ and path formula ϕ in the following syntax:

Φ ::= true | false | a | ¬a | Φ1 ∧Φ2 | Φ1 ∨Φ2 | Aϕ,
ϕ ::= XΦ | Φ1 U Φ2 | Φ1 RΦ2.

The temporal operators fall into two main categories, i.e., quantifiers over paths and
path-specific quantifiers. In ACTL, only the universal path quantifier A is considered.
Path-specific quantifiers refer to X, U and R.

– A ϕ: Path formula ϕ has to hold on all paths starting from the current state.
– X Φ: State formula Φ has to hold at the next state.
– Φ1 U Φ2: State formula Φ1 has to hold at least until state formula Φ2.
– Φ1 R Φ2: Formula Φ2 has to hold until and including a point where Φ1 first becomes

true. If Φ1 never becomes true, Φ2 must hold forever.

Using the above basic temporal operators, we can define another two important path-
specific quantifiers G (globally) and F (finally) with G Φ = false R Φ and F Φ =

true U Φ. Intuitively, G Φ means that Φ has to hold on the entire subsequent path, and
F Φ means that Φ eventually has to hold (somewhere on the subsequent path).

We choose ACTL to formulate system properties or requirements in our framework
for two main reasons. Firstly, in our framework, we rely on refinement to the abstract
states where system properties are violated. Such states can be obtained as counterexam-
ples returned by model checkers when the system properties defined in ACTL are verified
not valid by model checking. Secondly, the verification results of ACTL formulas can
be preserved by property-based abstraction [9,11]. Such preservation is vital to ensure
the correctness of our verification results because the abstraction is necessary for our
framework to guarantee the scalability of the verification algorithm.

3.2 Challenges in Model Checking DRL Systems

Unlike the model checking problems for finite-state systems, model checking M |= Φ
for DRL systems is particularly challenging. The challenge arises from the three features
of DRL systems, i.e., (i) the infinity and continuity of state space S , (ii) the non-linearity
of system dynamics f , and (iii) the inexplicability of the policy π that is encoded as deep
neural networks. Usually, the state space of DRL systems is continuous and infinite, and
behaviors are non-linear due to high-order system dynamics. Even worse, the actions
of states are determined by inexplicable deep neural networks, which means that the
transitions between states cannot be defined as straightforwardly as those of traditional
software systems.

To build a model M for a DRL system, we have to compute the successor of each
state s by applying the neural network π on s to compute the action a and then performing
a to s according to the system’s dynamics f . Specifically, the successor of s can be
represented as f (s, π(s)). The non-linearity of both f and π and the infinity of S makes the
verification problem difficult. Most existing approaches rely on the over-approximation of
f and π to simplify the problem [46,25,16,29]. However, over-approximation inevitably
introduces over-estimation and restricts to only safety properties and reachability analysis
in bounded steps.

4 The CEGAR-Driven DRL Approach
4.1 The Framework

Figure 3 shows the overview of our framework. It consists of three parts, i.e., training,
verification and refinement. In the training part, a DRL system is trained on a finite set of

State (p, v)
p ∈ [−1.0, 1.0]
v ∈ [−0.5, 0.5]

[−1.0,−0.8]
[−0.5,−0.3]

(−0.9,−0.4)

Abstract state space

Current state

Action: −0.2

Deep Neural Network

Model checking ACTL formula φ

Verified

Done

Result?

Counterexamples
Failed

[−1.0,−0.9]
[−0.4,−0.3]

[−0.9,−0.8]
[−0.4,−0.3]

Refine

Replace

Training

Abstract

[−1.0,−0.9]
[−0.5,−0.4]

[−0.9,−0.8]
[−0.5,−0.4]

Train

VerificationRefinement

Fig. 3: The training, verification and refinement framework for developing DRL systems.

abstract states. An actual state is first mapped to its corresponding abstract state, then fed
into the neural network to compute a corresponding action. The action is applied to the
actual state to drive the system to transition to the next state. The reward is accumulated
according to a predefined reward function, and the neural network is updated in the
same way as conventional DRL algorithms. In the verification part, we build a Kripke
structure on the finite abstract state space based on the trained neural network. Then,
we verify the desired properties that are predefined in ACTL formulas Φ. If all the
properties are verified valid, we stop training, and a DRL system is developed. If some
property is verified not valid, we move to the refinement part. When verification fails,
counterexamples are returned. They are the abstract states where the property is violated.
We refine these states by subdividing them into fine-grained sub-states and substitute
those bad states. We resume to train the system on the refined abstract state space and
repeat the whole process.

The integration of training, verification and refinement seamlessly constitutes a
verification-in-the-loop DRL approach, driven by the counterexample-guided abstraction
and refinement. We start with a coarse abstraction. After every training episode, we
model check the system against all the predefined properties. If all the properties are
verified, we stop training and obtain a verified system. Otherwise, counterexamples are
returned. The abstract state space is refined for further training. After several iterations,
a DRL system is trained with all the predefined properties rigorously verified.

4.2 Training on Abstract States

DRL is a process of learning optimal actions on all system states for specific objectives.
A trained model partitions the state space into a family of sets such that the same action is
taken in the states from a set [38]. Continuous state spaces can be adaptively discretized

[p1, p2]
[v0, v1]
[p1, p2]
[v1, v2]

[p0, p1]
[v1, v2]

[p3, p4]
[v0, v1]
[p3, p4]
[v1, v2]

[p2, p3]
[v1, v2]

[p1, p2]
[v2, v3]
[p1, p2]
[v3, v4]

[p0, p1]
[v3, v4]

[p4, p5]
[v0, v1]
[p4, p5]
[v1, v2]

[p2, p3]
[v0, v1]

[p0, p1]
[v2, v3]

[p3, p4]
[v2, v3]
[p3, p4]
[v3, v4]

[p2, p3]
[v3, v4]

[p2, p3]
[v2, v3]

[p4, p5]
[v2, v3]
[p4, p5]
[v3, v4]

[p0, p2]
[v0, v2]

[p2, p4]
[v0, v2]

[p0, p2]
[v2, v4]

[p2, p4]
[v2, v4]

[p4, p5]
[v0, v4]

[p0, p2]
[v0, v4]

[p2, p5]
[v0, v4]

v0

v1

v2

v3

v4

p0 p1 p2 p3 p4 p5

[p0, p1]
[v0, v1]

(a) An abstract state space. (b) An R-tree of the abstract state space.

Fig. 4: An example of encoding an abstract state space into an R-tree.

into finite ones for learning without affecting learning performance [41,42]. Motivated
by this observation, we discretize a continuous state space into a finite set of fragments.
We call each fragment an abstract state and train the DRL system by feeding abstract
states into the deep neural network for decision making.

System State Abstraction. Given an n-dimension DRL system, a concrete system state
s is represented as a vector of n real numbers. Each number has a physical meaning
about the system, such as speed and position in the running example. Let Li and Ui be
the lower and upper bounds for the i-th dimension value of S . Then, the state space S of
the control system is Πn

i=1[Li,Ui].
Initially, we use interval boxes to discretize S . An interval box I is a vector of n

intervals, denoted by (I1, I2, . . . , In). Each interval Ii(1 ≤ i ≤ n) represents all the system
states, denoted by S Ii , where a state s belongs to S Ii if and only if the i-th value in s is in
Ii. An interval box I represents the intersection of all the sets S Ii (i = 1, . . . , n).

Let di ∈ R (0 < di ≤ Ui − Li) be the diameter by which we subdivide evenly the
interval [Li,Ui] in each dimension i into (Ui − Li)/di unit intervals, and Ii = [Li,Ui]/di

denote the set of all the unit intervals. Then, we obtain the abstract state space S =

I1 × . . . × In, which is an abstraction of the infinite continuous state space S . We call
the vector (d1, d2, . . . , dn) of the n diameters abstraction granularity and denote it by δ.

Given a continuous state space S and its corresponding abstract state space S, we
call the mapping function from the states in S to the corresponding abstract states in S a
transformer A : S → S. The transformer can be encoded as an R-tree, a tree-like data
structure devised for efficiently indexing multi-dimensional objects [22]. Figure 4 depicts
an example of building an R-tree to index an abstract state space of the continuous space
[v0, v4] × [p0, p5]. A rectangle on a leaf node represents an abstract state, and the one on
a non-leaf node represents the minimum bounding rectangle enclosing all the rectangles
on its child nodes. There can be multiple rectangles on a single node. R-tree supports
intersection search, i.e., searching for the abstract states that intersect with the interval
we are querying. Given a concrete state, an R-tree can quickly return its corresponding
abstract state. Note that in Figure 4, we assume state space is discretized evenly for clarity.
During training, the size of abstract states becomes diverse after iterative refinement, and
the R-tree should be updated correspondingly.

The Training Algorithms. The algorithms for training on abstract states can be achieved
by extending existing DRL algorithms such as DQN and DDPG. The extension can be
easily achieved by adapting the neural networks and loss functions in DRL systems so
that they can admit abstract states as inputs.

Algorithm 2: Abstraction-Based DRL Training
1 for episode = 1, . . . ,M do
2 A ← discretize(S , δ); /* To discretize S by abstraction granularity δ */
3 Initialize s0;
4 for t = 0, . . . ,T do
5 st ← A(st) ; /* To get abstract state of st */
6 at ← N

′(st); /* To determine action at based on st and N ′ */
7 (st+1, rt)← system(st, at) ; /* To execute at on st and transition to st+1 with reward rt */
8 P = Loss(N ′, 〈si, ai, ri, si+1〉,. . . ,〈s j, a j, r j, s j+1〉); /* To get loss due to at */
9 N ′ ← update(N ′,P); /* To update parameters in N ′ based on P */

For neural networks, we only need to modify the input layer by doubling the number
of neurons on the input layer, denoted by N ′. Given an n-dimension system, we declare
2n neurons. Each pair of neurons read the lower and upper bounds of an interval in an
abstract state, respectively. This dedicated structure guarantees that a trained network
can produce the same action for all the states that correspond to the same abstract state.

Ip

Ip

Iv

Iv

Fig. 5: Adapting neural networks
for abstract states.

Figure 5 shows an example of adapting the net-
work in the Mountain Car for training it on abstract
states. For traditional DRL algorithms, two input neu-
rons are needed in the neural network to take p and
v as inputs, respectively. To train on abstract states,
four input neurons are needed to take the lower and
upper bounds of the position and velocity intervals
in abstract states. For instance, let the interval box
(Ip, Iv) be the abstract state of (p, v). Then, the lower
bounds Ip, Iv and the upper bounds Ip, Iv of p, v are
input to the four neurons, respectively. Apparently,
this adaption guarantees that the neural network always produces the same action on the
states that are transformed into the same abstract state.

We consider incorporating these two steps to extend Algorithm 1 as an illustrative
example. Algorithm 2 depicts the main workflow where the differences are highlighted.
The main difference from the traditional training process lies in line 6. Given a concrete
state s = (s1, . . . , sn),A will return the abstract state s = ([l1, u1], . . . , [ln, un]) such that
li ≤ si ≤ ui with i = 1, . . . , n, which is also the result fed into neural network. Although
the dimension of input states increases, the form of corresponding output actions does
not change. Therefore, the loss function can naturally adapt to changes in input states.

4.3 Model Checking Trained DRL Systems
A DRL system can be naturally verified using abstract model checking [26]. The actual
states of the system are first abstracted in the same way used in training, and then
the transitions between abstract states are determined by the corresponding action and
dynamics. ACTL formulas are then model checked on the abstract state transition system.

Building Kripke Structure. During the training phase, the actual state space has already
been abstracted into a finite set S of abstract states. Therefore, the main task for abstract
model checking is to build a Kripke structure by defining the transition relation on S.

Algorithm 3: Building Kripke Structure

Input: Initial state s0, state space S, system
dynamics f , neural network N ′

Output: A Kripke Structure K
1 K = Initialize_Kripke_Structure()
2 Queue← {s0}

3 while Queue is not empty do
4 Fetch s from Queue
5 for i = 1, . . . , n do
6 [li, ui]← g(f (s,N ′(s)), i)

7 {s1, . . . , sm} := h([l1, u1], . . . , [ln, un],S)
8 for j = 1, . . . ,m do
9 K .add_edge(s→ s j)

10 if s j is not traversed then
11 Push s j into Queue

12 return K

Algorithm 3 depicts the process
of building a Kripke structureK for a
trained DRL system. Firstly, K is ini-
tialized on set S with R being empty.
Starting from an initial abstract state
s0, we compute its successors and de-
fine the transitions from s0 to them.
We repeat the process until all reach-
able states are traversed.

Given an abstract state s, we com-
pute its abstract successor states by
applying the corresponding action a
and the dynamics to s. Because the
system is trained on abstract states,
all the actual states in s have the
same action, i.e., a = N ′(s). Let
f ∗(s, a) = { f (s, a)|s ∈ s} be the set of
all the successors of the actual states
in s. Due to the non-linearity of f and
the infinity of s, we over-approximate the set f ∗(s, a) = { f (s, a)|s ∈ s} as an interval
box. As shown in Figure 6, the dashed box is an over-approximation of f ∗(s, a). The
over-approximation may overlap one or more abstract states, e.g., s1, . . . , s4 in the ex-
ample. All the overlapped abstract states are successors of s. In Algorithm 3, function
g calculates the interval box and function h determines the overlapped abstract states.
Note that the shapes of abstract states may be different because they are refined during
training, which is to be detailed in Section 4.4.

We use an interval to approximate the i-th dimension’s values in all the succes-
sor states. Then, all the successor states are approximated as a vector of n intervals.

as
s1

s2

s3

s4

DNN

f ∗(s, a)

Fig. 6: Transitions between abstract states

We can compute the upper and lower
bounds for each i by solving the following
two optimization problems, respectively:

arg max
s∈s

vi · f (s,N ′(s))

arg min
s∈s

vi · f (s,N ′(s))

where, vi is a one-hot vector with the i-th
element being 1. Because all the states in s
have the same action according to the network,N ′(s) in the above optimization problems
can be substituted for a constant, i.e., the action taken by the system on all the states in
s. The substitution significantly simplifies the optimization problems; no information
of the networks is needed in the simplified problems. The simplified problems can be
efficiently solved using off-the-shelf scientific computing tools such as SciPy [48].

We consider an example in the mountain car system. We assume that the current
abstract state s is ([0, 0.2], [0, 0.02]) and the adopted action is 0.001, which says that the

controller accelerates to the right for all states in s. Based on the dynamics defined by
Equation 1, we can compute the upper bounds of both position and velocity in the next
step by solving the following two optimization problems:

arg max
pt∈[0,0.2],vt∈[0,0.02]

pt + vt (pt+1)

arg max
pt∈[0,0.2],vt∈[0,0.02]

vt + 0.001 − 0.0025cos(3pt) (vt+1)

The lower bounds of pt+1 and vt+1 are calculated similarly. Then, we obtain an abstract
state s′ = ([0, 0.22], [−0.0035, 0.0165]), which is an overestimated set of all the actual
successors of the states in s. There is a transition from s to any abstract state s′′ =

([p, p], [v, v]) in S, if s′ and s′′ overlap, i.e., (0< p < 0.22 ∨ 0< p<0.22) ∧ (−0.0035<
v<0.0165 ∨ −0.0035<v<0.0165) is true. Note that the transition from s to s′ includes
all the transitions between the actual states in s and s′, respectively. It may also include
those that do not actually exist due to the overestimation.

There are other approaches for over-approximating the set f ∗(s, a), such as template
polyhedrons like rectangle and octagon [2]. Note that there is always a trade-off between
the tightness of the polyhedral and the efficiency of computing it. For instance, an
octagon can approximate the set more tightly than a rectangle. However, it costs double
effort to compute the borders. The tighter an over-approximation is, the more accurate the
set of computed successors is, but the more time it costs to compute the approximation.

Property-Based Abstraction. For those high-dimensional DRL systems, the abstract
state space may be still too huge to model check directly when the abstraction granularity
becomes small after refinement. To improve the model checking scalability, we further
abstract the constructed Kripke structure based on the ACTL formula Φ to be model
checked using the abstraction approach in the work [9].

Definition 1 (State Abstraction). Given an abstract state space S = I1 × . . . ,×In and
an ACTL formula Φ, let DΦ be the set of dimensions that occur in Φ and Ŝ = Πd∈DΦ

Id.
Function αΦ : S → Ŝ is an abstract transformer such that for every s ∈ S and ŝ ∈ Ŝ,
ŝ = αΦ(s) if and only if s[d] = ŝ[d] for all d ∈ DΦ.

Given a Kripke structure K = (S,R, S0, L) and an ACTL formula Φ, let αΦ : S→ Ŝ
be the abstract transformer, and ÂP ⊆ AP be all the atomic propositions in Φ. We can
construct the following abstract Kripke structure K̂ = (̂S, R̂, Ŝ0, L̂) based on αΦ, where:

– Ŝ = Πd∈DΦ
Id;

– R̂ = {(αΦ(s), αΦ(s′))|s, s′ ∈ S.(s, s′) ∈ R};
– Ŝ0 = {αΦ(s) | s ∈ S0};
– L̂ : Ŝ→ 2ÂP such that L̂(̂s) = L(s) ∩ ÂP where s ∈ S and ŝ = αΦ(s).

We call K̂ a simulation of K with respect to Φ. An important property of the simulation
is that the property represented by Φ is preserved by the abstract model K̂ .

Theorem 1 (Soundness). Let K̂ be a simulation of K with respect to an ACTL formula
Φ, K̂ |= Φ implies K |= Φ.

The proof of Theorem 1 is straightforward. We omit the proof due to space limit.
According to the theorem, we can conclude that K |= Φ holds whenever we find a
simulation K̂ of K and model check that K̂ |= Φ holds.

p: [-1.2, 0.2]
v : [−0.07, 0.02]

(a) Counterexamples on an R-tree. (b) The R-tree after refinement on the counterexample.

. . .

. . .

p: [0, 0.2]
v : [0, 0.02]

p: [-0.2, 0.2]
v : [−0.02, 0.02]

. . .

. . .

p: [-1.2, 0.2]
v : [−0.07, 0.02]

. . .

. . .

. . .

. p: [0, 0.1]
v : [0, 0.02]

p: [0.1, 0.2]
v : [0, 0.02].

p: [-0.2, 0]
v : [−0.02, 0.02]

p: [0, 0.2]
v : [−0.02, 0.02]

Fig. 7: An example of refinements on abstract states where properties are violated.

4.4 Counterexample-Guided Refinement

If a formula Φ is verified not true, our algorithm returns corresponding counterexamples.
A counterexample is an abstract state where Φ is violated. We refine the abstract state
into finer ones and substitute them in the abstract state space for further training.

A naïve refinement approach subdivides each dimension of states into two intervals.
Assuming that a property is violated on an abstract state s = ([l0, u0], . . . , [ln, un]), we can
simply divide each dimension evenly into two intervals ([li, (li + ui)/2], [(li + ui)/2, ui]),
and obtain 2n finer abstract states. Apparently, the refinement may lead to state space
explosion, particularly for high-dimensional systems.

In our approach, we only refine the states on the dimensions that are used to define the
properties being verified to avoid state explosion. Considering the mountain car example,
we assume that the formula is AF[p ≥ 0.45], saying that the car will eventually reach the
hilltop where p = 0.45. Suppose that the property fails and counterexamples are returned.
We assume s = ([0, 0.2], [0, 0.02]) is the state where the property is violated, as shown in
Figure 7 (a). We bisect the state into two fine-grained sub-states, s1 = ([0, 0.1], [0, 0.02])
and s2 = ([0.1, 0.2], [0, 0.02]). Then, we substitute the two fine-grained states for s on
the R-tree for further training. Figure 7 (b) shows the new R-tree after the substitution.

It is worth mentioning that counterexamples may be false positives. Abstract states
may include the actual states that are unreachable in the trained system because of the
approximation of system dynamics. Unfortunately, it is difficult to check which states are
actually unreachable because we need to know their corresponding initial state to check
the reachability of these bad states. However, the corresponding initial state is enclosed
in an abstract state and cannot be identified due to the abstraction. In our approach, we
perform refinement without checking whether the counterexamples are real or not. After
refinement, the abstract states become finer-grained. Counterexamples can be discarded
by training and verifying on these finer-grained abstract states. The price of such extra
refinements is that more iterations of training and verification are conducted, but the
benefit is that the performance of the trained systems is better.

5 Implementation and Evaluation

5.1 Implementation

We implement our framework into a prototype toolkit called Trainify in Python. In the
toolkit, we leverage the open-source library pyModelChecking [6] as the back-end model
checker and the scientific computing tool SciPy [48] as an optimization solver.

5.2 Benchmarks and Experimental Settings

We evaluate the effectiveness of our approach on a wide range of classic control tasks
from public benchmarks. For each control task, we train two DRL systems using our
approach and the corresponding conventional DRL approach, respectively. We compare
the two trained systems in terms of their reliability, verifiability and system performance.

Benchmarks. We choose six classic control problems. Three of them are from the DRL
training platform Gym [5], including Mountain Car, Pendulum and Cartpole. The other
three, i.e., B1, B2 and Tora, are the problems that are widely used for evaluation by
state-of-the-art tools [19,25,27,28].

1. Mountain Car (MC). The running example in Section 2.
2. Pendulum (PD). A pendulum that can rotate around an endpoint is delineated.

Starting from a random position, the pendulum shall swing up and stay upright.
3. CartPole (CP). A pole is attached by an un-actuated joint to a cart. The goal of

training is to learn a controller that prevents the pole from falling over by applying a
force of +1 or −1 to the cart.

4. B1 and B2. Two classic nonlinear systems, where agents in both systems aim to
arrive at the destination region from the preset initial state space [19].

5. Tora. A cart is attached to a wall with a spring. It is free to move on a frictionless
surface. Inside the cart, there is an arm free to rotate about an axis. The controller’s
goal is to stabilize the system at the equilibrium state where all the system variables
are equal to 0.

Training Configurations and Evaluation Metrics. We adopt the same system config-
urations and training parameters for each task, including neural network architecture,
system dynamics, time interval, DRL algorithms and the number of training episodes.

We choose three metrics, including the satisfaction of predefined properties, cu-
mulative reward and robustness, to evaluate and compare the reliability, verifiability
and performance of the DRL systems trained in our approach and those trained in
the conventional DRL approach for the same task. The first metric is about reliability
and verifiability. The other two are about performance. The cumulative reward is an
important figure to evaluate a trained system’s performance because maximizing the
cumulative reward is the objective of learning. Robustness is another essential criterion
for DRL systems because the systems are expected to be robust against perturbations
from both the environment and adversarial attacks. Note that we classify robustness into
performance category instead of reliability because we restrict the reliability of DRL
systems to the safety and functional requirements.

Experimental Settings. All experiments are conducted on a workstation running Ubuntu
18.04 with a 32-core AMD Ryzen Threadripper CPU @ 3.7GHz and 128GB RAM.

5.3 Reliability and Verifiability Comparison

We first evaluate the reliability and verifiability of the DRL systems trained in our ap-
proach and conventional approach, respectively. For each task, we predefined system
properties according to their safety and functional requirements. The functional require-
ment is usually the objective of control tasks. For instance, the controller’s objective

Table 1: Expected properties and their definitions in ACTL of the selected control tasks.
Task ID ACTL Formula Type Meaning

MC

φ1 AF(p > 0.45) Liveness The car always reaches the target finally.

φ2 AG(|p − 0.2| < 0.05→ v > 0.02) Safety
The car’s speed should be greater than 0.02
at the position 0.2 within a 0.05 deviation.

PD φ3 AG(|θ|≤ π
2) Safety

The pendulum’s angle θ must always be in
the preset range [− π

2 ,
π
2].

CP φ4 AGt≤n(|p|≤2.4 ∧ a≤|0.21|) Safety
The cart always stays in the safe region and
the pole cannot fall down in n time steps.

B1
φ5 AF(x1 ∈ [0, 0.2] ∧ x2 ∈ [0.05, 0.3]) Liveness The agent always reaches the target finally.
φ6 AG(|x1|≤1.5 ∧ |x2|≤1.5) Safety The agent always stays in the safe region.

B2

φ7 AF(target) Liveness The agent always reaches the target finally.

φ8
A((|x1|≤1.5 ∧ |x2|≤1.5) U target)
∨ AG(|x1|≤1.5 ∧ |x2|≤1.5)

Safety
The agent must stay in the safe region until
it reaches the target region.

Tora φ9 AGt≤n(|x1|≤1.5 ∧ |x3|≤1.5) Safety
The agent can stay in the preset state space
with n time steps.

Remarks. target is an atomic proposition i.e., x1 ∈ [−0.3, 0.1] ∧ x2 ∈ [−0.35, 0.5] in B2.

to train in the mountain car example is to drive the car to the hilltop. We define an
atomic proposition p > 0.45 to indicate that the car reaches the hilltop. Then, we can
define an ACTL formula Φ1 = AF(p > 0.45) to represent the liveness property. Safety
requirements in DRL systems usually specify important parameters of the systems that
must always be kept in safe ranges. For instance, a safety requirement in the mountain
car example is that the car’s velocity must be greater than 0.02 when the car moves to
a position around 0.2 within a 0.05 deviation. The property can be represented by the
ACTL formula Φ2 as defined in Table 1. The properties of other tasks are formalized
similarly. The formulas and the types of properties are shown in the table.

We compare the reliability and verifiability of all the trained DRL systems with
respect to their predefined properties using both verification and simulation. The DRL
systems trained in our approach can be naturally verified in our framework. For those
trained in the conventional DRL approaches, our verification approach is not applicable
because we cannot construct abstract Kripke structures for them. The main reason is that
we cannot abstract the system states such that there is a unique action on all the actual
states represented by the same abstract state. We therefore resort to the state-of-the-art
reachability analysis tool Verisig 2.0 [25] to verify them. We also simulate all the trained
systems in a fixed number of rounds and detect the occurrences of property violations.
The purposes of the simulation are twofold: (i) to partially reflect the reliability of
systems; and (ii) to validate the verification results in a bounded number of steps.

Table 2 shows the comparison results. We can observe that all the systems trained in
our approach are successfully verified, and the corresponding properties hold on them.
No violations are detected by simulation. For those systems trained in conventional
DRL algorithms, only 8 out of 16 are successfully verified by Verisig. There are two
cases, where Verisig returns Unknown when verifying φ7 for task B2. It means that the
verification fails because Verisig 2.0 cannot determine whether the destination region
(defined by x1 ∈ [−0.3, 0.1]∧x2 ∈ [−0.35, 0.5]) must always be reached when it computes
a larger region that overlaps the target. The extra part in the larger region may be an

Table 2: Comparison of the verification and simulation results between the DRL
systems trained in our approach and conventional DRL algorithms, respectively.
Task Network Property By Trainify By Conventional Algorithms

A.F. Size T.T. V.R. V.T. Vio. T.T. V.R. V.T. Vio.

MC
Sigmoid 2 × 16 φ1 306 X 26.8 0 297 X 45.5 0

φ2 302 X 5.9 0 297 N/A – 0

Sigmoid 2 × 200 φ1 453 X 29.1 0 441 X 3709 0
φ2 462 X 7.1 0 441 N/A – 0

PD ReLU 3 × 128 φ3 771 X 1.2 0 501 N/A – 0
CP ReLU 3 × 64 φ4 135 X 3266 0 101 N/A – 12

B1
Tanh 2 × 20 φ5 52 X 89.0 0 31 X 4.6 0

φ6 43 X 5.3 0 31 X 4.6 0

Tanh 2 × 100 φ5 32 X 66 0 41 X 28.2 0
φ6 25 X 3.8 0 41 X 28.2 0

B2
Tanh 2 × 20 φ7 17 X 1.2 0 9 Unknown 4.8 27

φ8 9 X 1.3 0 9 N/A - 0

Tanh 2 × 100 φ7 9 X 1.3 0 11 Unknown 55.3 23
φ8 6 X 1.7 0 11 N/A – 0

Tora Tanh 3 × 100 φ9 402 X 1132 0 217 X 1271 0
Tanh 3 × 200 φ9 495 X 1242 0 239 X 6829 0

Remarks. A.F.: activation function; T.T.: average training time per iteration; V.R.: verifi-
cation result; V.T.: average verification time per iteration; Vio.: the number of violations in
simulation; N/A: not applicable; Unknown: verification fails. Time is recorded in seconds.

overestimation caused by the over-approximation. By simulation, we detect violations
to φ7. The violations can be considered as counterexamples to the property. The other
properties such as φ2, φ3, φ4, and φ8 are not supported by Verisig 2.0. Among these
unverified properties, we detect there exist violations by simulation for three of them.
The violations indicate that the systems trained in conventional DRL approaches may not
satisfy expected properties, and existing state-of-the-art verification tools cannot always
verify them or find violations. Our approach can guarantee that the trained systems
satisfy the properties. The simulation results show there are indeed no violations.

As for efficiency, on average, our approach costs slightly more time on the training
because it takes extra time to look up the corresponding abstract state for an actual
state at every training step. But the small-time overhead is worthwhile for the sake of
being verifiable. Besides verifiability, another benefit from this extra time cost is that
the efficiency of verification in our approach is not affected by the size and type of
neural networks because we treat them as black-box in the verification. On the contrary,
the efficiency of verifying the systems that are trained in conventional approaches is
restricted by neural networks, as the verification time cost by Verisig 2.0 shows.

Based on the above analysis, we conclude that the reliability of the DRL systems
developed in our approach are more trustworthy as their predefined properties are
provably satisfied by the systems. Besides, their verification is more amenable and
scalable than the systems trained in conventional DRL approaches.

5.4 Performance Comparison

We compare the performance of the DRL systems trained in our approach and the
conventional approaches in terms of cumulative reward and robustness, respectively.

(a) Mountain Car (0.0005) (b) Pendulum (0.00125) (c) CartPole (0.005)

(d) B1 (0.0005) (e) B2 (0.002) (f) Tora (0.0003)

Fig. 8: Robustness comparison of the systems trained in our approach (blue) and in
conventional approaches (orange). The number in the parentheses is the base of σ. For
example, in Mountain Car, when the abscissa is equal to 50, σ = 50 × 0.0005 = 0.025.

Table 3: Comparison of accumulated reward.

Case Alg. Network Trainify Base

MC DQN Sigmoid 2 × 16 -112 -116
Sigmoid 2 × 200 -110 -111

PD DDPG ReLU 3 × 128 -131 -133
CP DQN ReLU 3 × 64 500 500

B1 DDPG Tanh 2 × 20 -120 -120
Tanh 2 × 100 -117 -118

B2 DDPG Tanh 2 × 20 -29 -26
Tanh 2 × 100 -27 -24

Tora DDPG Tanh 3 × 100 50 50
Tanh 3 × 200 50 50

Cumulative Reward. We record the
cumulative reward by running each
system for 100 episodes in the simula-
tion environment and calculating the
averages. A larger reward implies that
a system has a better performance. Ta-
ble 3 shows the cumulative reward of
the six DRL systems trained in our ap-
proach and conventional approaches,
respectively. All the trained systems
can achieve almost optimal cumula-
tive reward. Among the ten cases, the
systems trained in our approach have better performances in four cases, equivalent in
four cases, and lower in the rest two cases. Note that there is a difference, which is due to
floating point errors, but it is almost negligible. In this sense, we say that the performance
of the systems trained in the two different approaches is comparable.

Another observation from the results is that a system with a bigger neural network
produces a larger reward. This characteristic is shared by both our approach and the
conventional approaches. Thus, we can increase the size of networks and even modify
network architectures for better performance in our approach. Such change will not
cause the extra cost to the verification of the systems because our approach is entirely
black-box, using the network only to output actions for the given abstract state.

Robustness. We demonstrate that the systems trained in our approach can be more
robust than those trained in conventional DRL algorithms when the perturbation is set

in a reasonable range. To examine the robustness, we add Gaussian noise to the actual
states of systems and check the cumulative reward of the systems under different levels
of perturbations. Given an actual state s = (s1, . . . , sn), we add a noise X1, ...Xn to s and
obtain a perturbed state s′ = (s1 + X1, . . . , sn + Xn), where Xi ∼ N(µ, σ2) for 1 ≤ i ≤ n
with µ = 0. We start with σ = 0 and increase it gradually.

Figure 8 shows the trend of cumulative reward of the systems with the increase
of perturbations. For each system, we evaluate 200 different levels of perturbations,
and for each level of perturbation, we conduct 20 repetitions to obtain the average and
standard deviation of the reward, represented by the solid lines and shadows in Figure 8.
The general trend is that the cumulative reward deteriorate for all the systems that are
trained in either of the approaches. The result is reasonable because the actions computed
by neural networks are optimal to non-perturbed states but may not be optimal to the
perturbed ones, leading to lower reward at some steps. However, we can observe that the
decline ratio of the systems trained in our approach (blue) is smaller than the one trained
in conventional approaches (orange). When σ = 0, the accumulated reward of the two
systems for the same task is almost the same. With the increase of σ, the performance
declines more slowly for the systems trained in our approach than for those trained in
the conventional approaches when σ is in a reasonably small range. That is because a
perturbed state may belong to the same abstract state as its original state, and thus has
the optimal action. In this sense, we say the perturbation is absorbed by the abstract
state and the neural networks become less sensitive to perturbations. Our additional
experiments on these examples show that a larger abstraction granularity produces a
more robust system.

6 Related Work
Our work has been inspired by several related works, which attempted to integrate formal
methods and DRL approaches. We classify them into the following three categories.

Verification-in-the-Loop Training. Verification-in-the-loop training has been proposed
for developing reliable AI-powered systems. A pioneering work is that Nilsson et al.
proposed a correct-by-construction approach for developing Adaptive Cruise Control
(ACC) by first formally defining safety properties in Linear Temporal Logic (LTL) and
then computing the safe domain where the LTL specification can be enforced [36]. Wang
et al. proposed a correct-by-construction control learning framework by leveraging
verification during training to formally guarantee that the learned controller satisfies
the required reach-avoid property [49]. Lin et al. proposed an approach for training
robust neural networks for general classification problems by fine-tuning the parameters
in the networks based on the verification result [33]. Our work is a sequel of these
previous works with new features of training on abstract states, counterexample-guided
abstraction and refinement, and supporting more complex properties.

Safe DRL via Formal Methods. Most of the existing approaches for formal verification
of DRL systems follow the train-then-verify style. Bacci and Parker [3] proposed an
approach to split an abstract domain into fine-grained ones and compute their successor
abstract states separately for probabilistic model checking of DRL systems. The approach
can reduce the overestimation and meanwhile construct a transition system upon abstract

states, which allows us to verify more complex liveness and probabilistic properties
than safety using bounded model checking [29] and probabilistic model checking. A
criteria of subdividing an abstract domain is to ensure that all the states in the same
sub-domain have the same action. Identifying these sub-domains is computationally
expensive because it relies on iterative branching and bounding [3]. Furthermore, these
approaches need to compute the output range of the neural networks on the abstract
domains, and therefore are restricted to specific types and scales of networks. Besides
model checking, reachability analysis [46,25,16,13] has been well studied to ensure the
safety of DRL systems. The basic idea is to over-approximate system dynamics and
neural networks to compute over-estimated safe regions and check whether they have
interactions with unsafe regions. However, large overestimation, limited scalability, and
requirements on specific network architectures are the common restrictions of these
approaches. Online verification [47] and runtime monitoring [18] in formal methods is
another lightweight but effective means to detect potential flaws timely during system
execution. Another direction is to synthesize safe shields [54,7] and barrier functions
[53] to prevent agents from adopting dangerous actions. A strong assumption of these
methods is that the valid safe states set is given in advance. However, computing valid
safe states set may be computationally intensive, and it is restricted to safety properties.

Abstraction and State Discretization in DRL. Abstraction in DRL has gained more
attention in recent years. Abel presented a theory of abstraction for DRL in his disserta-
tion and concluded that learning on abstraction can be more efficient while preserving
near-optimal behaviors [1]. Abel’s abstraction theory is focused on the systems with
finite state space for learning efficiency. Our work demonstrates another advantage of
learning on abstraction, i.e., formal reliability guarantee to trained systems even with
infinite state space.

The state-space abstraction approach in our framework is also inspired by state
space discretization, a technique for discretizing continuous state space, by which a
finer partition of the state-action space is maintained during training for higher payoff

estimates [41,42]. Our work shows that, after being integrated with formal verification,
state-space discretization is also useful in developing highly reliable DRL systems
without loss of performance. In addition, our CEGAR-driven approach provides a flexible
mechanism for fine-tuning the granularity of discretization to reach an appropriate
balance between system performance and the scale of state space for formal verification.

7 Discussion and Conclusion
We have presented a novel verification-in-the-loop framework for training and verifying
DRL systems, driven by counterexample-guided abstract and refinement. The framework
can be used to train reliable DRL systems with their desired properties on safeties and
functionalities formally verified, without compromising system performances. We have
implemented a prototype Trainify and evaluated it by training six classic control prob-
lems from public benchmarks. The experimental results showed that the systems trained
in our approach were more reliable and verifiable than those trained in conventional
DRL approaches, while their performances are comparable or even better than the latter.

Our verification-in-the-loop training approach sheds light on a new search direction
for developing reliable and verifiable AI-empowered systems. It follows the idea of

correctness-by-construction in traditional trustworthy software system development and
makes it possible to take system properties (or requirements) into account during the
training process. It also reveals that (i) it is not necessary to learn on actual data to build
high-performance (e.g., high reward and robust) DRL systems, and (ii) abstraction is
an effective means to deal with the challenges in verifying DRL systems and shall be
introduced earlier during training, rather than an ex post facto method in verification.

Our work would inspire more research in this direction. One important research
objective is to investigate appropriate abstractions for the DRL systems with high
dimensions. In our current framework, we adopt the simplest interval abstraction that
suffices to the systems with low dimensions. It would be interesting to investigate more
sophisticated abstractions such as floating-point polyhedra combined with intervals,
designed mainly for neural networks [43], to those high-dimensional DRL systems.
Another direction is to extend our framework to non-deterministic DRL systems. In the
non-deterministic case, a neural network returns both actions and their corresponding
probabilities. We can associate probabilities to state transitions and obtain a probabilistic
model. The model can be naturally verified using existing probabilistic model checkers
such as Prism [30]. Thus, we believe that our approach is also applicable to those systems
after a slight extension. It would be another piece of our future work.

Acknowledgments
The authors thank all the anonymous reviewers and Katz Guy from the Hebrew University
of Jerusalem for their valuable comments on this work. The work has been supported by
National Key Research Program (2020AAA0107800), Shanghai Science and Technology
Commission (20DZ1100300), Shanghai Trusted Industry Internet Software Collaborative
Innovation Center, Shanghai AI Innovation and Development Fund (2020-RGZN-02026),
Shenzhen Institute of AI and Robotics for Society (AC01202005020), NSFC-ISF Joint
Program (62161146001,3420/21) and NSFC project (61872146).

References

1. Abel, D.: A Theory of Abstraction in Reinforcement Learning. dissertation, Brown University
(2020)

2. Bacci, E., Giacobbe, M., Parker, D.: Verifying reinforcement learning up to infinity. In:
IJCAI’21. pp. 2154–2160. ijcai.org, Montreal, Canada (2021)

3. Bacci, E., Parker, D.: Probabilistic guarantees for safe deep reinforcement learning. In:
FORMAT’20. pp. 231–248. Springer (2020)

4. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
5. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.:

OpenAI Gym (2016), arXiv:1606.01540
6. Casagrande, A.: pyModelChecking. https://github.com/albertocasagrande/pyModelChecking

(2020)
7. Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforcement learning

through barrier functions for safety-critical continuous control tasks. In: AAAI’19. vol. 33,
pp. 3387–3395. AAAI Press (2019)

8. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.:
Abstraction and counterexample-guided refinement in model checking of hybrid systems.
International journal of foundations of computer science 14(04), 583–604 (2003)

https://github.com/albertocasagrande/pyModelChecking

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: CAV’00. pp. 154–169. Springer (2000)

10. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of model checking. Springer
(2018)

11. Cousot, P.: Abstract interpretation. ACM Computing Surveys (CSUR) 28(2), 324–328 (1996)
12. Du, S., Lee, J., Li, H., Wang, L., Zhai, X.: Gradient descent finds global minima of deep

neural networks. In: ICML’19. pp. 1675–1685. PMLR (2019)
13. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feedback systems

using regressive polynomial rule inference. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control. pp. 157–168 (2019)

14. Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching versus
linear time temporal logic. Journal of the ACM (JACM) 33(1), 151–178 (1986)

15. Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Information and Control
61(3), 175–201 (1984)

16. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: Reachnn*: A tool for reachability analysis of
neural-network controlled systems. In: ATVA’20. pp. 537–542. Springer (2020)

17. Faust, A., Ruymgaart, P., Salman, M., Fierro, R., Tapia, L.: Continuous action reinforcement
learning for control-affine systems with unknown dynamics. IEEE/CAA Journal of Automatica
Sinica 1(3), 323–336 (2014)

18. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward safe control
through proof and learning. In: AAAI’18. pp. 6485–6492. AAAI Press (2018)

19. Gallestey, E., Hokayem, P.: Lecture notes in nonlinear systems and control (2019)
20. Gilpin, L., Bau, D., Yuan, B.Z., et al.: Explaining explanations: An overview of interpretab-

ility of machine learning. In: DSAA’18. pp. 80–89 (2018)
21. Gomes, L.: When will Google’s self-driving car really be ready? It depends on where you live

and what you mean by “ready”. IEEE Spectrum 53(5), 13–14 (2016)
22. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD’84. pp.

47–57. ACM (1984)
23. Hasanbeig, M., Kroening, D., Abate, A.: Towards verifiable and safe model-free reinforcement

learning. CEUR Workshop Proceedings (2020)
24. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement

learning that matters. In: AAAI’18. pp. 3207–3214. AAAI Press (2018)
25. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0: Verification

of neural network controllers using taylor model preconditioning. In: CAV’21. pp. 249–262.
Springer (2021)

26. Jackson, D.: Abstract model checking of infinite specifications. In: International Symposium
of Formal Methods Europe. pp. 519–531. Springer (1994)

27. Jankovic, M., Fontaine, D., KokotoviC, P.V.: Tora example: cascade-and passivity-based
control designs. IEEE Transactions on Control Systems Technology 4(3), 292–297 (1996)

28. Johnson, T.T., Manzanas Lopez, D., Musau, P., et al.: Arch-comp20 category report: artificial
intelligence and neural network control systems (ainncs) for continuous and hybrid systems
plants. EPiC Series in Computing 74 (2020)

29. Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems. In: 2019
Workshop on Network Meets AI & ML. pp. 83–89. ACM (2019)

30. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time
systems. In: CAV’11. pp. 585–591. Springer (2011)

31. Li, Y.: Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274 (2017)
32. Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al.: Continuous control with deep reinforcement

learning. In: ICLR’16. OpenReview.net (2016)
33. Lin, X., Zhu, H., Samanta, R., Jagannathan, S.: Art: Abstraction refinement-guided training

for provably correct neural networks. In: FMCAD. pp. 148–157. AAAI Press (2020)

34. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Playing Atari with deep reinforcement learning.
CoRR abs/1312.5602 (2013)

35. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep reinforcement
learning. Nature 518(7540), 529–533 (2015)

36. Nilsson, P., Hussien, O., Balkan, A., et al.: Correct-by-construction adaptive cruise control:
Two approaches. IEEE Transactions on Control Systems Technology 24(4), 1294–1307 (2015)

37. Ohn-Bar, E., Trivedi, M.M.: Looking at humans in the age of self-driving and highly automated
vehicles. IEEE Transactions on Intelligent Vehicles 1(1), 90–104 (2016)

38. Pyeatt, L.D., Howe, A.E.: Decision tree function approximation in reinforcement learning.
Tech. rep., ISAS’11 (2011)

39. Schmidt, L.M., Kontes, G., Plinge, A., Mutschler, C.: Can you trust your autonomous car?
interpretable and verifiably safe reinforcement learning. In: 2021 IEEE Intelligent Vehicles
Symposium (IV). pp. 171–178. IEEE (2021)

40. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, multi-agent, reinforcement learning for
autonomous driving. CoRR abs/1610.03295 (2016), http://arxiv.org/abs/1610.03295

41. Sinclair, S., Wang, T., Jain, G., Banerjee, S., Yu, C.: Adaptive discretization for model-based
reinforcement learning. In: NeurIPS’20. vol. 31, pp. 3858–3871 (2020)

42. Sinclair, S.R., Banerjee, S., Yu, C.L.: Adaptive discretization for episodic reinforcement learn-
ing in metric spaces. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3(3), 1–44 (2019)

43. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural
networks. In: POPL’19. pp. 1–30. ACM (2019)

44. Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., Finn, C.: Learning to be safe: Deep RL with a
safety critic. arXiv preprint arXiv:2010.14603 (2020)

45. Stevia, P., Mindom, N., Nikanjam, A., Khomh, F., Mullins, J.: On assessing the safety of
reinforcement learning algorithms using formal methods. arXiv preprint arXiv:2111.04865
(2021)

46. Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety verification
of cyber-physical systems with reinforcement learning control. ACM Trans. on Emb. Comp.
Sys. 18(5s), 1–22 (2019)

47. Van Wesel, P., Goodloe, A.E.: Challenges in the verification of reinforcement learning algo-
rithms. NASA STI Program (2017)

48. Virtanen, P., Gommers, R., Oliphant, T.E., et al.: SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods 17, 261–272 (2020)

49. Wang, Y., Huang, C., Wang, Z., Wang, Z., Zhu, Q.: Verification in the loop: Correct-by-
construction control learning with reach-avoid guarantees. arXiv preprint arXiv:2106.03245
(2021)

50. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and verification for
multilayer neural networks. IEEE Transactions on Neural Networks and Learning Systems
29(11), 5777–5783 (2018)

51. Xiong, Z., Jagannathan, S.: Scalable synthesis of verified controllers in deep reinforcement
learning. arXiv preprint arXiv:2104.10219 (2021)

52. Yampolskiy, R.V.: Unexplainability and incomprehensibility of AI. J. Artif. Intell. Conscious.
7(2), 277–291 (2020)

53. Yang, Z., Zhang, Y., Lin, W., Zeng, X., Tang, X., Zeng, Z., Liu, Z.: An iterative scheme of safe
reinforcement learning for nonlinear systems via barrier certificate generation. In: CAV’21.
pp. 467–490. Springer (2021)

54. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework for verifi-
able reinforcement learning. In: PLDI’19. pp. 686–701. ACM (2019)

http://arxiv.org/abs/1610.03295

	Trainify: A CEGAR-Driven Training and Verification Framework for Safe Deep Reinforcement Learning

