
LLM4Fin: Fully Automating LLM-Powered Test Case Generation
for FinTech Software Acceptance Testing

Zhiyi Xue

Shanghai Key Laboratory of

Trustworthy Computing, ECNU

Shanghai, China

Liangguo Li

Shanghai Key Laboratory of

Trustworthy Computing, ECNU

Shanghai, China

Senyue Tian

Shanghai Key Laboratory of

Trustworthy Computing, ECNU

Shanghai, China

Xiaohong Chen
∗

Shanghai Key Laboratory of

Trustworthy Computing, ECNU

Shanghai, China

Pingping Li

Software Testing Center

Guotai Junan Securities Co. Ltd.

Shanghai, China

Liangyu Chen

Shanghai Key Laboratory of

Trustworthy Computing, ECNU

Shanghai, China

Tingting Jiang

Software Testing Center

Guotai Junan Securities Co. Ltd.

Shanghai, China

Min Zhang

Dishui Lake International Software

Engineering Institute, ECNU

Shanghai, China

Abstract

FinTech software, crucial for both safety and timely market deploy-

ment, presents a compelling case for automated acceptance testing

against regulatory business rules. However, the inherent challenges

of comprehending unstructured natural language descriptions of

these rules and crafting comprehensive test cases demand human

intelligence. The emergence of Large Language Models (LLMs)

holds promise for automated test case generation, leveraging their

natural language processing capabilities. Yet, their dependence on

human intervention for effective prompting hampers efficiency.

In response, we introduce a groundbreaking, fully automated

approach for generating high-coverage test cases from natural lan-

guage business rules. Our methodology seamlessly integrates the

versatility of LLMs with the predictability of algorithmic methods.

We fine-tune pre-trained LLMs for improved information extrac-

tion accuracy and algorithmically generate comprehensive testable

scenarios for the extracted business rules. Our prototype, LLM4Fin,

is designed for testing real-world stock-trading software. Experi-

mental results demonstrate LLM4Fin’s superiority over both state-

of-the-art LLM, such as ChatGPT, and skilled testing engineers. We

achieve remarkable performance, with up to 98.18% and an average

of 20% − 110% improvement on business scenario coverage, and up

to 93.72% on code coverage, while reducing the time cost from 20

minutes to a mere 7 seconds. These results provide robust evidence

of the framework’s practical applicability and efficiency, marking a

significant advancement in FinTech software testing.

∗
Xiaohong Chen is the corresponding author, xhchen@sei.ecnu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680388

CCS Concepts

• Software and its engineering → Requirements analysis;

Software testing and debugging.

Keywords

Software acceptance testing, test case generation, fintech software,

large language model

ACM Reference Format:

Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu

Chen, Tingting Jiang, and Min Zhang. 2024. LLM4Fin: Fully Automating

LLM-Powered Test Case Generation for FinTech Software Acceptance Test-

ing. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680388

1 Introduction

FinTech (Finance Technology) software is indispensable in the fi-

nancial industry, especially for stock trading, requiring a delicate

balance between safety and rapid time-to-market. Before market

deployment, these applications must undergo Regulations/Compli-

ance Acceptance Testing (RAT)[18, 31]. This involves a black-box

testing procedure to ascertain if the target software meets specified

acceptance criteria, typically encompassing regulations, business

rules, or business requirements and standards [1, 11]. However, the

manual creation of valid test cases from lengthy, language-intensive

documents poses a daunting challenge for testing engineers. Given

the urgency of market releases and the dynamic nature of rules,

automation emerges as an appealing solution [50].

Automating the acceptance testing of FinTech software is a for-

midable task due to the inherent need for substantial human in-

telligence. Extracting and comprehending business rules, often

described in unstructured natural languages, and crafting compre-

hensive test cases require a level of understanding that current

automated systems struggle to achieve [6]. Human intelligence is

indispensable in the initial phases of interpreting rules, navigat-

ing through unstructured natural language and domain-specific

https://orcid.org/0009-0001-1389-8345
https://orcid.org/0009-0007-4565-0399
https://orcid.org/0009-0008-9215-5005
https://orcid.org/0000-0003-2217-6659
https://orcid.org/0009-0004-4557-4785
https://orcid.org/0009-0005-0243-3613
https://orcid.org/0009-0008-8671-4771
https://orcid.org/0000-0003-1938-2902
https://doi.org/10.1145/3650212.3680388
https://doi.org/10.1145/3650212.3680388

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu Chen, Tingting Jiang, and Min Zhang

terminologies, identifying testable rules, and subsequently compos-

ing thorough testing scenarios based on domain knowledge. This

complex process further extends to the strategic composition of

test cases, emphasizing the essential role of human intelligence in

ensuring the effectiveness of the testing process [16, 42].

The emergence of Large Language Models (LLMs) has revolu-

tionized labor-intensive tasks in software engineering, excelling in

code generation [17, 27, 48], collaborative high-coverage test case

generation with search-based software testing (SBST) [24], and

bug reproduction [20]. LLMs, with their profound understanding

of natural language, generate coherent and contextually relevant

responses, presenting significant advantages, especially whenwork-

ing collaboratively with engineers. They produce almost-ready-to-

use content, minimizing the need for substantial human effort in

error correction. However, this collaborative capability heavily re-

lies on users’ prompting skills and domain knowledge [28, 58].

Despite the prowess of LLMs, Soman and G [43] argue that fine-

tuning is inevitable for performance improvements, particularly for

domain-specific questions. We conducted a focus group interview

with eight senior testing engineers on their experience of using

LLMs for testing. We identified three major limitations when using

LLMs to generate test cases from business rules described in un-

structured natural languages for domain-specific software testing.

These limitations include high intellectual demand for composing

prompts, uncontrollable and intractable outputs, and limited do-

main knowledge in LLMs. These constraints pose a central technical

challenge: while LLMs excel at interpreting natural language busi-
ness rules, generating tractable test cases from unstructured natural
language business rules using them remains challenging. According
to the latest survey [49], there is still no research on the use of

LLMs in acceptance testing.

Building on the observations mentioned earlier, this paper in-

troduces a novel approach for fully automatic test case generation

in FinTech software acceptance testing, leveraging the capabilities

of LLMs. Our approach involves fine-tuning two LLMs: one for fil-

tering testable business rules and the other for transforming these

rules into formal ones. These formal rules are then algorithmically

assembled into testable scenarios based on domain knowledge. Fi-

nally, test cases are generated using strategies such as boundary

value [37] and equivalence partitioning [54], employing Satisfiabil-

ity Modulo Theories (SMT)-based constraint-solving algorithms.

Our approach uniquely combines intelligent and algorithmic

methods throughout the process, seamlessly integrating versatile

LLMs with predictable algorithms. A key insight is that, to fully au-

tomate the generation of high-coverage test cases using LLMs, the

assistance of predictable algorithms is essential to ensure tractabil-

ity. The limitations of LLMs can be effectively complemented by

algorithms, which are inherently terminating, deterministic, and

tractable. This synergistic approach addresses the challenges as-

sociated with LLMs, enhancing the efficiency and reliability of

automated test case generation for FinTech software.

To showcase the effectiveness of our approach, we have imple-

mented a prototype LLM4Fin and applied it to a real-world stock

trading system. Our comprehensive evaluation involves comparing

LLM4Fin with end-to-end models like ChatGPT and human testers

including three seasoned engineers boasting 5-7 years of extensive

experience in testing. The experimental results reveal that LLM4Fin

outperforms both ChatGPT and the experienced senior engineers.

It achieves remarkable performance, with up to 98.18% and an av-

erage of 20% − 110% improvement on business scenario coverage,

and up to 93.72% on code coverage, while reducing the time cost

from more than 20 minutes to a mere 7 seconds. These findings

emphasize the efficiency and efficacy of our approach for automatic

test case generation in domain-specific regulation testing. Our tool

is available at https://github.com/13luoyu/intelligent-test.

In summary, our work makes three major contributions:

(1) We introduce the first fully automated LLM-powered ap-

proach, seamlessly integrating artificial intelligence and al-

gorithmic methods to generate high-coverage test cases from

business rules expressed in natural language for FinTech soft-

ware acceptance testing.

(2) We implement the proposed approach in a prototype, named

LLM4Fin, for a real-world stock trading system. To the best

of our knowledge, this marks the first industry-level fully

automatic LLM-powered testing application.

(3) We conduct an extensive field study to evaluate LLM4Fin,

showcasing its significant advancements with up to 98.18%

business scenario coverage in about 7 seconds on generating

test cases.

2 Motivation

LLMs such as ChatGPT [38] have been increasingly used in testing

and other software development endeavors. However, people have

gradually realized that there are multiple difficulties and incon-

veniences to using universal LLMs to generate high-quality test

cases. We organized a focus group meeting to learn the difficulties

of using LLMs in testing and related activities. We invited software

development professionals who have extensive testing experience

using LLMs and other tools to share their experiences during the

meeting.We first summarized common concerns that emerged from

the meeting and then further illustrated them through an example.

2.1 Focus Group Meeting

2.1.1 The Process. The focus group meeting had 8 participants.

Two researchers served as moderators. We use FG1 to FG6 to rep-

resent the focus group meeting participants. The moderators first

introduced the aim and format of the focus group meeting, then

gave participants time to share their own experiences and discuss.

FG1 and FG2 were from the technical section of a company

focusing on financial services. They raised three concerns. First,

they said that the output test cases often did not follow the desired

format or routines in the financial service industry. Second, the

generated test cases are not rich enough. LLMs usually generate

test cases without using known testing strategies such as boundary

values. Third, sometimes the generated test cases were merely

straightforward expressions of the inputs. FG3 echoed that the

output format was often out of control even when the model was

explicitly directed to produce specific forms of output. In addition,

the information in the model was relatively complex. Sometimes it

contained a lot of extra unnecessary information in test cases while

not containing the desired information.

FG4 and FG5 said that using LLMs in testing was very demanding

to users. Since natural language was ambiguous, it was difficult

https://github.com/13luoyu/intelligent-test

LLM4Fin: Fully Automating LLM-Powered Test Case Generation for FinTech Software Acceptance Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Please help me generate test cases for the above
financial trading rules.

…
Rule 1:

Test Case 1: Declare quantity of 300,000 yuan. Valid.
Test Case 2: Declare quantity of 250,000 yuan. Invalid.
Test Case 3: Declared quantity of 100,000 yuan. Valid.
Test Case 4: Declared quantity of 90,000 yuan. Invalid.
Test Case 5: Declared quantity of 0 yuan. Invalid.

Rule 2:
Test Case 1: Matching trading method with price change of 0.01
yuan. Valid.
Test Case 2: Matching trading method with price change of 0.007
yuan. Invalid.

Other than matching trading method Test Case 3: with price change
of 0.005 yuan. Valid.

Other than matching trading method Test Case 4: with price change
of 0.003 yuan. Valid.
Test Case 5: Any trading method with price change of 0 yuan.
Invalid.

Rule 1:
Equivalence Classes: Valid Class: Quantities of 100,000 yuan and its
integral multiples. Invalid Class: Quantities less than 100,000 yuan and
not multiples of 100,000 yuan.
Boundary Values: Exactly 100,000 yuan. Just above 100,000 yuan (e.g.,
100,001 yuan). Just below 100,000 yuan (e.g., 99,999 yuan)
…
Test Case 1: Method: Matching, Quantity: 100,000 yuan, Price Change:
0.01 yuan, Direction: Buy, Market: Domestic (Result? Valid or not?)

Method: Other, Test Case 2: Quantity: 200,000 yuan, Price Change:
0.005 yuan, Direction: Sell, Market: International
Test Case 3: Method: Matching, Quantity: 99,999 yuan (Invalid), Price
Change: 0.01 yuan, Direction: Buy, Market: Domestic

Method: Other, Test Case 4: Quantity: 150,000 yuan, Price Change:
0.004 yuan (Invalid), Direction: Sell, Market: International
Test Case 5: Method: Matching, Quantity: 100,001 yuan, Price Change:
0.01 yuan, Direction: Buy, Market: Domestic

Model Input

Rule 1. If the matching trading method is adopted, the declared quantity of cash bonds shall be 100,000 yuan in face value or an integral multiple thereof.
The portion less than 100,000 yuan in face value when sold shall be declared in one go.

Rule 2. The minimum change unit of the declared price using the matching trading method is 0.01 yuan, and if other trading methods are used, the
minimum change unit of the declared price is 0.005 yuan.

Model Output Model Output

Introduction of
scenario and task

Requirements
on test data

Requirements
on knowledge

Suppose you are a testing expert in the financial field. Now there are some
rules that require you to help generate test cases. It is required that the test
cases should be as detailed as possible and use testing strategies such as
equivalence classes and boundary values. The test cases should contain all
the elements given in the rules, such as declaration methods, trading
varieties, etc. In addition, test cases should also include other elements such
as the trading direction, trading market, etc. Note that if there are abstract
or referential words in the sentence, make them concrete.
Please help me generate test cases for the above financial trading rules.

Model Input Model Input
Simple Prompt Carefully Designed Prompt

Figure 1: Using ChatGPT (GPT-4) [38] with simple and carefully designed prompts to generate test cases from financial business

rules. Purple-highlighted rules in the input are those that do not produce any test cases. Yellow-highlighted test cases deviate

from the prompts (also in yellow).

for LLMs to understand our requirements. To use an LLM well

meant that the user had to write well-designed prompts, which

required the user to read documents and keep trying. The learning

curve was quite steep. FG6 offered his view from a knowledge

perspective. LLMs contained rich knowledge, but we did not know

how to prompt them to use their knowledge to complete tasks.

Moreover, some knowledge was not available to these models, and

it tended to fabricate some answers, which further aggravated the

uncertainty in using these models.

2.1.2 The Outcomes. Based on participants’ narratives in the focus

groupmeeting, we summarized three common problems that people

in different fields encounter when using LLMs for testing, as follows:

(1) Intellectually-demanding. People who want to make use

of LLMs effectively in tasks such as testing should master

both specific knowledge and prompt skills.

(2) Uncontrollable and intractable outputs. The outputs of

LLMs are uncontrollable and intractable, making it difficult

to reproduce and manage generated test cases.

(3) Limited domain-knowledge. The models have limited

fintech domain knowledge and blind spots, depending on

the training data and the knowledge fed into them.

2.2 A Concrete Example

To highlight the challenges with LLMs, we conducted experiments

using ChatGPT (GPT-4) as an illustrative example, exploring its

performance in generating test cases for financial business rules

described in natural language [38].

For Problem 1, we randomly selected business rules related to

trading quantity and price. We designed two prompts to assess

ChatGPT’s responsiveness. The first prompt was a straightforward

request to generate test cases, while the second prompt was metic-

ulously crafted, incorporating information about task participants,

test case requirements, testing strategies, and other relevant de-

tails. The carefully designed prompt aimed to optimize ChatGPT’s

outputs. The rules, prompts, and outputs are detailed in Figure 1.

In response to Prompt 1, ChatGPT focused solely on the test

points related to declaration quantity in Rule 1 and price changes

in Rule 2, generating both successful and unsuccessful test cases.

However, with Prompt 2, ChatGPT expanded its focus to include

additional test points such as trading markets and trading methods.

It demonstrated the ability to employ diverse testing strategies,

resulting in a more extensive set of test cases.

This experimentation underscores the significance ofwell-crafted

prompts in utilizing ChatGPT effectively. Notably, effective prompts

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu Chen, Tingting Jiang, and Min Zhang

often require professionals with domain knowledge to iteratively

refine them, exemplified by the success of Prompt 2 above.

In the response to Rule 1, we observe Problem 2 in both prompts.

ChatGPT generated test cases for only the first half of the sentence,

considering both integer multiples of 100,000 yuan and non-integer

multiples, while neglecting the second half of the sentence. Even

with explicit reminders about the overlooked rule and clarification

that it pertained to “The port less than 100,000 yuan in face value
when solid shall be declared in one go," ChatGPT struggled to gen-

erate valid test cases for this rule. This lack of control over the

model’s output represents a significant challenge.

For Rule 2, we encounter Problem 3 in both prompts. The ob-

jective of Rule 2 is to assess the model’s knowledge and ability to

enumerate other trading methods beyond the matching trading. De-

spite using Prompt 2 and explicitly instructing the model to specify

abstract expressions like other, the model appears to lack knowl-

edge in this domain. Consequently, the generated test cases still

include only matching tradings and vaguely refer to "other trading

methods." The model does not possess the necessary information

to specify other trading methods, such as click tradings, bidding

tradings, and negotiation tradings. To assist LLMs in this task, users

have to provide such domain-specific knowledge by prompting.

However, such interaction reduces the automation and increases

extra burdens to human users.

In addition to these technical challenges, non-technical obstacles

hinder the application of LLMs in fields like finance. Strict permis-

sions and data security regulations within financial institutions

mandate the isolation of sensitive information, limiting the online

use of general-purpose LLMs.

Overcoming these challenges requires a systematic approach that

combines versatile yet intractable LLMs with traditional algorithms

to produce deterministic, reproducible, and high-quality test cases

fully automatically from unstructured documents.

3 LLM4Fin

3.1 The Architecture in a Nutshell

LLM4Fin comprises three fundamental steps: LLM-powered rule
extraction, knowledge-guided test scenario generation, and test data
generation, delineated in Figure 2. The primary tasks for each step

are elucidated below. LLM4Fin takes a business rule document

described in natural language as input and yields a suite of test

cases designed to cover all scenarios defined by the rules.

Step I - LLM-Powered Rule Extraction: LLM4Fin filters non-

testable rules, extracts testable rules from the document, and trans-

forms them into formal business rules. AI models are employed for

testable rule classification and extraction, ensuring the automated

identification of rules suitable for testing.

Step II - Knowledge-Guided Test Scenario Generation: Formal

rules generated in Step I are interpreted, and their relations are

mined under domain knowledge guidance to create test scenarios.
Test scenarios encapsulate all necessary information for generating

a test case and are derived through an interpretation process guided

by domain expertise.

Step III - Test Data Generation: Test cases are generated from

assembled test scenarios using data enumeration and constraint

solving. Test generation strategies, such as boundary value [37] and

equivalence partitioning [54], are applied to ensure test coverage.

The entire process is fully automated, eliminating the need for

human intervention. This three-step workflow provides a system-

atic and automated approach for generating test cases from un-

structured business rules, showcasing the potential of LLMs in

collaboration with domain knowledge for efficient and accurate

FinTech software testing.

3.2 Step I: Rule Extraction

Step I consists of three tasks, i.e., Rule Filtering, Rule Element Ex-
traction, and Formal Rule Assembly. By rule filtering, those rules

that do not need testing are filtered out by a pre-trained LLM which

is fine-tuned for this specific classification task. The rules that are

classified to be testable are then fed into another LLM that is fined-

tuned for element extraction. The extracted elements are assembled

algorithmically to be formal rules, following a concrete syntax.

3.2.1 Rule Filtering. There are basically three kinds of sentences in
a business rule document. One kind of sentence describes testable

business rules that software systems are expected to comply with.

The other two kinds of sentences can be definitions of terminologies

that are considered knowledge, or explanations of background and

other information, which all do not need to be tested. The rules in

Example 1 are two typical instances. Apparently, Rule 1 should be

tested, while Rule 2 cannot. Therefore, we first need to filter out

those rules that cannot be tested in a document.

Example 1: Testable and Untestable Rules.

Rule 1: For trades conducted through the click trading method, the de-
clared quantity should be 100,000 yuan or its multiples.

Rule 2: Click trading is a trading method in which the quoting party
submits a quote, and the receiving party clicks on the quote, upon which
the trading system confirms the transaction or matches it automatically
based on the relevant rules specified in this regulation.

Rule filtering is essentially a classic sentence classification task

and thus can be achieved using classification models in NLP. We

achieve this task by constructing a dedicated corpus, where business

rules are manually annotated according to their testability, and fine-

tuning a pre-trained LLM. Corpus construction and LLMfine-tuning

are going to be detailed in Section 4.

3.2.2 Rule Element Extraction. The objective of this task is to ex-

tract the basic elements from testable sentences. The extracted

elements are the principal ingredients for defining formal business

rules. For instance, Rule 1 contains two elements about the trading

method and declared quantity regulations on this type of trading.

The extracted elements can be represented as key-value pairs, as

shown in Example 2.

Example 2: Extracted Information from Rule 1.

Trading Method: click trading method
Declared Quantity: 100,000 yuan or its multiples

Element extraction can be naturally achieved as an NLP task

known as Named Entity Recognition (NER) [25]. Named entities

in unstructured texts are classified into corresponding pre-defined

LLM4Fin: Fully Automating LLM-Powered Test Case Generation for FinTech Software Acceptance Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Business rules in
natural language

Test cases

① Generate enumerate data
② Generate numerical data

Step III: Test Data Generation

Testing
strategiesExtraction

LLM
Classification

LLM Event sequences

Fine-Tuned
Large Languge
Models (LLMs)

① Operationalize rules
② Mine rule relations

Step II: Test Scenario Generation

① Filter rules
② Extract rule elements
③ Assemble formal rules

Step I: Rule Extraction

Terminology
base

Domain
knowledge

Figure 2: The three-step workflow of LLM4Fin for incorporating LLMs with algorithms for test case generation.

categories. NER is essential for various applications, including in-

formation retrieval [4], question answering systems [34], and sen-

timent analysis [8]. We leverage this technique to assemble formal

business rules from unstructured texts. Recent studies [51] show

that LLMs exhibit a greater ability in the low-resource and few-shot

setups for NER. To enhance its accuracy, we devise a key-value

annotation method to construct a dedicated corpus and fine-tune a

pre-trained LLM on it. The details will be presented in Section 4.

3.2.3 Formal Business Rule Assembling. Utilizing extracted ele-

ments from business rules, we construct structured formal rules

adhering to the syntax outlined by Knauf et al. [21]. Formal business

rules take the form of if-then statements, incorporating conjunctive

and/or disjunctive conditions regarding an attribute’s value in the

condition part. Additionally, these rules include an assignment of

such a value to an attribute in the conclusion part. This structured

representation ensures clarity and consistency in expressing the

logic encapsulated within the business rules.

Each formal rule consists of several basic units which are called

clauses. For example, “trading method is click trading” is a clause,
stating that the trading method of interest in the rule is click trading.
The clause is a pair of a label “Trading Method” and a value “click

trading”. Clauses can be connected together logically with logical

operators such as “and” and “or”, as shown in Example 3.

Example 3: Formal Representation for Rule 1.

if Trading Method is "click␣trading" and
Declared Quantity is "100 ,000␣yuan␣or␣its␣multiples"

then Result is "success"

Algorithm 1 outlines the process of assembling formal rules

from extracted elements. It iterates through each label-element pair,

composing them into clauses (Lines 2-3). The algorithm addresses

two special cases and one common case during this task. Typically,

it forms a clause of the form “label is ‘element’ ” and saves it in

a clause array (Lines 11-13). When encountering a duplicate label

“Operator”, the algorithm sets the label of the patient as “Operational

Target” and composes the corresponding clause (Lines 4-6). In the

case of a duplicate label “Operation”, it merges the two operations

and updates the operation clause (Lines 7-10). The generated clauses

are then connected with “and” after “if” and “then” to construct

formal business rules (Line 14). If a rule has conflicting labels, the

algorithm divides it into a set of non-conflicting rules (Lines 15-16).

Ultimately, the algorithm returns the assembled business rules.

This algorithm’s handling of special cases in composing clauses

enhances the clarity and conciseness of rules, optimizing com-

prehension and analysis of interconnected operational activities.

Algorithm 1: Formal Business Rule Assembly

Input :𝐸: extracted rule elements; 𝐿: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 labels.

Output :𝐵𝑅𝑠 = [𝐵𝑅1, 𝐵𝑅2, · · · , 𝐵𝑅𝑛]: the assembled BRs.

1 𝐶 ← [], 𝐵𝑅𝑠 ← [] ; // Initialize clause array𝐶 and formal rule array 𝐵𝑅𝑠
2 for each element 𝑒𝑖 in 𝐸 do

3 𝑙𝑖 ← GetLabel(𝐿, 𝑒𝑖);

4 if 𝑙𝑖 == “Operator” and “Operator” ∈ 𝐶 then // multiple operator
5 𝑐𝑖 ← “Operational Target is ‘𝑒𝑖 ’ ”;

6 𝐶 ← Append(𝐶 , 𝑐𝑖) ; // Add the clause to the end of𝐶
7 else if 𝑙𝑖 == “Operation” and “Operation” ∈ 𝐶 then // multiple operation
8 𝑐0 ← GetClauseByLabel(𝐶 , 𝑙𝑖);

9 𝑐𝑖 ←MergeOperation(𝑐0 , 𝑒𝑖);

10 𝐶 ← UpdateClauseByLabel(𝐶 , 𝑙𝑖 , 𝑐𝑖);

11 else

12 𝑐𝑖 ← “𝑙𝑖 is ‘𝑒𝑖 ’ ”;

13 𝐶 ← Append(𝐶 , 𝑐𝑖);

14 𝐵𝑅𝑖 ← ComposeClauses(𝐶); // Compose a formal rule
15 if Conflict(𝐵𝑅𝑖) then // Cope with conflicting labels
16 𝐵𝑅𝑠 ← Divide(𝐵𝑅𝑖); // Divide into a set of non-conflict subrules.
17 else

18 𝐵𝑅𝑠 ← Append(𝐵𝑅𝑠 , 𝐵𝑅𝑖);

19 return 𝐵𝑅𝑠 ;

Additionally, the conflict detection and resolution process ensures

the accuracy and feasibility of the resulting business rules.

3.3 Step II: Test Scenario Generation

Structured formal rules often capture specific aspects of a transac-

tion scenario. To facilitate the generation of test cases for a given

scenario, it becomes essential to establish connections among all

rules related to that scenario and concretize them. We refer to a

comprehensive sequence of concretized formal rules as a test sce-
nario. This ensures that the rules collectively represent a cohesive

and complete description of the transaction scenario, laying the

groundwork for effective and comprehensive test case generation.

3.3.1 Domain Knowledge Representation. The generation of test

scenarios relies heavily on domain knowledge. To systematically in-

corporate this knowledge into the process, a formal representation

of domain knowledge is essential. This representation will then be

seamlessly integrated into the algorithms responsible for mining

relationships among formal rules.

We categorize domain knowledge into three distinct types. The

first type signifies the is-a relation, elucidating hierarchical connec-
tions between categories, where one category serves as a subtype

of another. For instance, in the statement “Bidding trading is a

trading method in which the seller sells bonds to the single or

multiple bidders with the best bid”, bidding trading is categorized

as a subtype of trading method. The second type embodies the

has-a relation, denoting that an entity or object possesses or en-

compasses another entity as one of its components or attributes. In

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu Chen, Tingting Jiang, and Min Zhang

Partial
Fill

Completed

declare
cancel fail

continued partial fill

cancel all

EntrustedNot
Entrusted

entrust

Order
Failure

Order
Cancelled

Order
Expired

timeout
cancel order

fill

partial fill
Declared

cancel failorder fail

Figure 3: A state diagram for bond trading.

the statement “The elements of Price-limited Order shall include

the securities account number, securities code, trading direction,

quantity, price, etc.”, the securities account number, securities code,

etc, are considered components of the elements of Price-limited

Order. The third category involves event dependency, capturing the

logical interdependency of events and behaviors. An illustrative

example is presented in Figure 3, where each node represents a

state, and the edge symbolizes an operation. These three types of

domain knowledge are represented in JSON format and stored in a

terminology base. The acquisition of this knowledge is effectively

achieved through a combination of document extraction and ju-

dicious manual supplementation. The rules classified as domain

knowledge in Section 3.2.1 will be incorporated into the base.

By formalizing domain knowledge, we enhance the algorithms’

capability to interpret and connect formal rules in a manner consis-

tent with the domain’s intricacies. This incorporation ensures that

the generated test scenarios not only adhere to the specified formal

rules but also align with the nuanced understanding provided by

domain expertise. The synergy between formal representation and

algorithmic processing strengthens the overall effectiveness and

accuracy of the test scenario generation process.

3.3.2 Rule Operationalization. This sub-step primarily focuses on

concretizing abstract expressions. Abstract expressions refer to busi-

ness rules that cannot be directly operated or utilized as test input

but need to be comprehended and converted manually before appli-

cation, such as references, complex terms, etc. If left unaddressed,

these expressions can pose challenges in the testing process.

To tackle this issue, we leverage domain knowledge and the

context of related rules to provide specific alternatives for abstract

representations within formal business rules. The process begins

by extracting all the values from the domain knowledge base corre-

sponding to the label associated with the abstract clause. We then

identify the values that appear in the context of the same rule, ex-

cluding those previously mentioned. Subsequently, we instantiate

abstract expressions with suitable concrete values, resulting in a

new set of operational rules. This approach ensures that abstract ex-

pressions are replaced with practical, contextually relevant values,

facilitating seamless integration into the testing workflow.

For instance, consider Rule 1 in Example 4, which is operational,

while Rule 3 is not. The hindrance lies in the undefined nature

of “other trading methods” in this context. To render the rule op-

erational entails retrieving corresponding instances and assigning

them to the undefined labels. Example 4 exemplifies the impact of

operationalization by transforming Rule 3 into four operational

rules. The trading method is instantiated by four distinct trading

types based on Knowledge 1. This operationalization process en-

sures the rules applicable within the defined context.

Example 4: Operationlization of Formal Rules.

Knowledge 1: There are five bond tradingmethods: i.e., matching trading,
click trading, inquiry trading, negotiation trading, and bidding trading.

Rule 1:
if Trading Method is "click␣trading" and

Declared Quantity is "100 ,000␣yuan␣or␣its␣multiples"
then Result is "success"

Rule 3:
if Trading Method is "other␣trading␣method" and

Declared Quantity is "1000␣yuan␣or␣its␣multiples"
then Result is "success"

After operationalization

Rule 1:
if Trading Method is "click␣trading" and

Declared Quantity is "100 ,000␣yuan␣or␣its␣multiples"
then Result is "success"

Rule 3.1:
if Trading Method is "matching␣trading" and

Declared Quantity is "1000␣yuan␣or␣its␣multiples"
then Result is "success"

Rule 3.2:
if Trading Method is "inquiry␣trading" and

Declared Quantity is "1000␣yuan␣or␣its␣multiples"
then Result is "success"
...

3.3.3 Relation Mining. This sub-step involves mining dependency

relations among different rules to construct test scenarios. A test

scenario comprises a sequence of continuous operations with strict

sequential relationships between them, and each operation is con-

strained by several rules. For testing, a system needs to start from

an initial state and reach a terminal state after a series of operations.

To test a specific rule, the tester needs to execute all preceding rules.

This implies that some rules should not be tested separately due

to temporal dependencies among them. This feature highlights the

necessity for the test scenario to account for rule dependencies.

We employ two methods to mine relations among rules: explicit
extraction using preconditions and postconditions and utilizing state
diagrams. For rules with explicit temporal prepositions such as

“before”, “after”, and “until”, we extract the temporal relations by

transferring postconditions into rules to be executed after the orig-

inal rule and vice versa for preconditions.

For the rules where temporal relations are not explicit, we em-

ploy state diagrams to address this challenge. In a state diagram,

each state transition is triggered by an operation. When comparing

two rules with the operations in a state diagram, aligned operations

indicate identical sequences. For example, consider the scenario

illustrated in Figure 4, where two rules are matched with the oper-

ations “declare” and “cancel”. By referencing the bond trading state

machine (Figure 3), we can infer that canceling a declaration must

follow the declaration. Leveraging this temporal relationship among

operations and analyzing the corresponding state diagram allows

us to accurately determine the correct sequence for executing these

rules, optimizing the system’s functionality and behavior.

LLM4Fin: Fully Automating LLM-Powered Test Case Generation for FinTech Software Acceptance Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Rule 4

if Trading Method is "click trading" and

Operation is "cancel" and Trading Market is

"Shenzhen Stock Exchange " and Trading

Product is "bond" and Trading Direction is

"buy" and State is "Declared"

then Result is "success"

declare

Entrusted

Declared

cancel fail

...
Rule 1

if Trading Method is "click trading" and

Operation is "declare" and Trading Market is

"Shenzhen Stock Exchange" and Trading

Product is "bond" and Trading Direction is

"buy" and State is "Entrusted"

then Result is "success" and State is "Declared"

constraint Declared Quantity % 100000 == 0

State Diagram (Partial)

①

②
cancel all

Figure 4: Example: relation mining among rules based on

event sequences.

3.4 Step III: Test Data Generation

Once a test scenario is established, algorithmic generation of high-

coverage test cases becomes feasible. Formally, a test case serves as

a specification encompassing inputs, execution conditions, testing

procedures, and expected results, all directed toward accomplishing

a specific software objective [1].

Our test case generation approach, outlined in Algorithm 2, sys-

tematically processes each formal rule by identifying the type of

constraint for each clause (Lines 1-4). If a clause entails an enu-

meration constraint, the algorithm retrieves all enumeration values

for the label from the terminological base, utilizing them as the

generated test data (Lines 6-8). Alternatively, if the clause involves

a numerical constraint, the algorithm encodes the clause into SMT

constraints using diverse testing strategies from the terminological

base, such as boundary value and equivalence class. It then em-

ploys the Z3 SMT solver [7] to solve these constraints, obtaining

corresponding test data (Lines 9-12).

Algorithm 2: Test Case Generation from Formal Rules.

Input :𝐵𝑅𝑠 : test scenarios;𝑇𝐵: the terminological base;𝑇𝑆 : the test

strategy.

Output :𝑇𝐶 : generated test cases.

1 𝑇𝐶 ← []; // Initialize𝑇𝐶 to be empty
2 for each business rule 𝐵𝑅𝑖 in 𝐵𝑅𝑠 do
3 𝑇𝐷 ← {} ; // Initialize𝑇𝐷 to be empty for each label
4 for each constraint clause 𝑐𝑖 in 𝐵𝑅𝑖 do
5 𝑙𝑖 ← getLabelFromClause(𝑐𝑖);

6 if isEnumerateConstraint(𝑐𝑖) then
7 𝑉 ← getEnumerateValue(𝑇𝐵, 𝑙𝑖) ; // Enumerate values of 𝑙𝑖
8 𝑇𝐷 [𝑙𝑖] ← 𝑉 ;

9 else

10 𝜙 ← getSMTConstraint(𝑐𝑖 ,𝑇𝑆);// Encode into SMT constraints
11 𝑉 ← solveSMTConstraint(𝜙);// Solve 𝜙 by calling SMT solvers
12 𝑇𝐷 [𝑙𝑖] ← 𝑉 ;

13 𝑇𝐶𝑖 ← CartesianProduct(𝑇𝐷);

14 𝑇𝐶 ← Append(𝑇𝐶 ,𝑇𝐶𝑖);

15 return𝑇𝐶 ;

Finally, the algorithm computes the Cartesian product of the

test data generated for each label to form the final test cases (Lines

13-15). Example 5 illustrates the generated test cases for Rule 1.

Example 5: Generated test cases for Rule 1.

Market Product Method Direction Quantity Result
Case 1 Shenzhen Bond Click trading Buy 100,000 Success
Case 2 Shenzhen Bond Click trading Buy 200,000 Success
Case 3 Shenzhen Bond Click trading Buy 50,000 Fail
Case 4 Shenzhen Bond Click trading Buy 100,001 Fail
Case 5 Shenzhen Bond Click trading Sell 200,000 Success
Case 6 Shenzhen Bond Matching trading Sell 200,000 Success
Case 7 Shenzhen Stock Click trading Buy 200,000 Fail

...

4 LLM Fine-Tuning

In our approach, pre-trained general-purpose LLMs need to be fine-

tuned for high accuracy in the tasks of rule filtering and element

extraction. The routine of fine-tuning an LLM is standard, basically

consisting of corpus construction and model training.

4.1 Corpus Construction

Due to the lack of publicly available training datasets, we need to

construct the corpus for training first. We create two corpora for

fine-tuning pre-trained LLMs, one for rule filtering and the other

for element extraction, accessible at [56].

For the rule filtering task, we compile 18 business rule documents

from financial authorities like the Shenzhen Stock Exchange. After

spending 10 man-weeks annotating each rule as testable, untestable,

or domain knowledge, we acquire 3,334 annotated rules for model

training. The element extraction corpus is more intricate to ensure

high accuracy in fine-tuning. Given the diverse and free form of

rules in unstructured languages, annotation requires both consis-

tency and flexibility. Consistency facilitates formal rule assembly,

while flexibility allows extensive element annotation, enhancing

fine-tuned model accuracy. To balance both, we introduce meta-

model and key-value-based methods for document annotation.

4.1.1 A Meta-Model of FinTech Business Rule Documents. We con-

duct a systematic analysis of business rule documents to formulate a

meta-model that comprehensively captures both syntactical and se-

mantic aspects of unstructured rules. The meta-model, illustrated in

Figure 5, divides each rule into two fundamental components: Con-
dition and Consequence. These components can be linked through

logical connectors like “and” or “or”.Within each rule,Condition and
Consequence are further subdivided into multiple ConstraintClauses.

Each ConstraintClause falls into one of six categories: Time-
Constraint, PriceConstraint, QuantityConstraint, TradingMethod-
Constraint, TradingResultConstraint, or TradingOperationConstraint.
The first three types focus on constraints related to time, price,

and quantity, respectively. For instance, a TimeConstraint might be

specified as “9:00 to 11:30 on each trading day.” The TradingOper-
ationConstraint can be subdivided into three components: Action,
Operator, and Operational Object, based on the syntactic structure

within a constraint. Additionally, the TradingResultConstraint in-
volves constraints associated with the outcomes of trading opera-

tions, covering aspects such as success and failure.

In alignment with the meta-model, we crafted a set of 9 labels

for the systematic annotation of corresponding arguments within

the rules. These labels encompass crucial elements such as Trading
Product, Trading Method, Time, Price, Quantity, Result, Operator,
Operation, and Operational Object. Each label represents distinct

constraint clauses and is color-coded accordingly in Figure 5.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu Chen, Tingting Jiang, and Min Zhang

Time
Constraint Condition Rule

OperatorAction Operational
Object

Issuer Regulatory
AuthorityInvestorBrokerExchange

and/or/dependency

11 1 1
1 1

1..*1..*
0..*

0..* 0..* 0..*0..1

0..1

0..1

1

0..*0..* 0..*

Relation

AND
Relation

OR Relation
1

0..*

Constraint
Clause

Quantity
Constraint

TradingMethod
Constraint

TradingProduct
Constraint

Consequence

TradingResult
ConstraintPriceConstraint TradingAction

Constraint

Figure 5: Ameta-model for the domain knowledge in the Fin-

Tech domain. Blocks in different colors represent different

types of categories.

4.1.2 The Key-Value Annotation Method. Key-Value annotation is

to deal with concepts that are not referred to in the meta-model.

The necessity arises from the fact that some elements only manifest

themselves once in the document. They are important to test case

generation but cannot be captured by the meta-model. We propose

a Key-Value (K-V) annotation method to handle this problem. In

our K-V method, a label (called Key) and one of its values usually

come in pairs. The Key enables the annotation of the labels that

fall outside the previously defined label sets in the meta-model.

Conversely, the Value serves to annotate the instances of the label.

The Key-Value annotation method yields numerous advantages,

notably fostering more succinct labeling, maintaining a consistent

format, and ultimately reducing the error rate during the annotation

process. This method optimizes the annotation workflow, ensuring

greater accuracy and facilitating a more streamlined and efficient

analysis of the rule documents.

Example 6 showcases the annotated text of Rule 1 using our

annotation approach. The labels of Trading Method and Quantity
are derived from the meta-model, while Key is introduced by the

Key-Value approach for the new concept of “declared quantity”.

Example 6: Text Annotation for LLM Fine-Tuning.

We employ the annotation tool POTATO [40] to thoroughly an-

notate all sentences in the 18 documents issued by stock authorities,

requiring over 8 man-months. This corpus comprises a total of 1,331

sentences, with each sentence having an average of over 5 annota-

tions. Importantly, domain experts have meticulously verified the

annotations in our corpus, ensuring their accuracy and reliability.

4.2 Model Selection and Training

We fine-tune the pre-trained Chinese language model Mengzi [60]

on our constructed corpora to perform our rule filtering and extrac-

tion tasks. Mengzi is a series of lightweight yet powerful models

whose backbone model is RoBERTa [29]. As we focus on the finan-

cial domain, we choose Mengzi-BERT-base-fin as the base model,

which comprises 12 transformer layers and a substantial of 103𝑀

parameters and has been trained on over 20𝐺 financial materials.

To train the rule filtering model, the constructed corpus is split

into a training dataset and a validation dataset in a 9:1 ratio. The

training dataset is augmented using the method in [52], resulting

in sizes of 32, 945 for training and 333 for validation. The input of

the model is a sentence, and the output is a number representing

the corresponding class. During training, we use the cross-entropy

loss function. With a batch size set to 8, the model is trained for

50 epochs, employing the AdamW [30] as the optimizer. Initially,

the learning rate is set to 1𝑒 − 5 and linearly decreases to 0 after a

5-epoch warm-up [12]. Our fine-tuned model demonstrates robust

performance, achieving up to 99.1% accuracy in classifying rules

within the validation dataset.

To train the rule element extraction model, we divided the corpus

into training and validation datasets in a 9:1 ratio and applied two

data augmentation techniques [2, 52] to the training dataset. The

resulting datasets contain 41, 215 instances for training and 634 for

testing. The input of the model is a sentence, and the output is

a sequence of numbers corresponding to the class of each input

token. The training setup is similar to the classification model,

with the learning rate set to 2𝑒 − 5, weight decay to 0.002, training

epochs to 20, andwarmup epochs to 2. After training, our fine-tuned

model achieves an accuracy of up to 87.0%. Both the fine-tuned rule

filtering model and rule extraction model are available at [55].

The hyper-parameter settings above are those that achieve the

highest accuracy on the validation datasets, respectively. When

applied to other domains or rule sets, the hyper-parameter settings

may need to be adjusted based on factors like the size of the training

dataset and the features of the data, while the model structure and

fine-tuning process remain unchanged.

5 Experimental Evaluation

To assess the effectiveness and efficiency of LLM4Fin, we conducted

comparisons with both expert and non-expert testing engineers, as

well as general-purpose LLMs, focusing on the quality of generated

(or manually composed) test cases and the time cost. Besides, we

also evaluate the impact of the performance of the fine-tuned LLMs

on the overall framework.

Metrics.We assess the quality of test cases using two metrics: Busi-

ness Scenario Coverage (BSC) [19, 59] and Code Coverage (CC) [22].

Business scenarios are modeled as a tree structure, where nodes

represent constraints and edges are values corresponding to the

constraints. For example, in stock trading, a node might denote

a “Trading Method” with edges like “bidding trading” and “block

trading”. The final leaf node signifies the consequence of business

execution, encompassing success and failure. BSC is the ratio of trig-

gered business scenarios to the total number of scenarios, calculated

as 𝐵𝑆𝐶 = 𝑝𝑡/𝑝𝑎 , where 𝑝𝑡 is the number of triggered scenarios and

𝑝𝑎 is the total number. A higher BSC indicates broader coverage of

generated test cases from the perspective of software requirements.

CC measures the coverage of generated test cases from the source

code side. We use widely adopted metrics such as Statement Block

Coverage (SBC) [36] and Modified Condition/Decision Coverage

(MC/DC) [14] to evaluate the code coverage. Additionally, we con-

sider the time cost of generating or composing test cases as a metric

for assessing efficiency.

LLM4Fin: Fully Automating LLM-Powered Test Case Generation for FinTech Software Acceptance Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Competitors. We compare our tool with human testers, including

senior testing engineers in the FinTech domain and non-expert

graduate students. All the expert testers and non-expert testers

work individually. Additionally, we consider two language models,

the general-purpose LLM ChatGPT [38], and a state-of-the-art LLM

called ChatGLM [9], specifically designed for the Chinese corpus.

Table 1 shows the detailed information about these competitors.

Table 1: Details of Competitors.

Competitor Description

Expert testers

Three senior testing engineers with 5-7 years of ex-

perience in FinTech software centers.

Non-expert

testers

Four graduate students with approximately one year

of software testing knowledge acquired from courses.

ChatGPT [38] GPT-4, including 1800 billion parameters.

ChatGLM [9]

A LLM fine-tuned in Chinese with 130 billion param-

eters, leading the c-eval [15] leaderboard.

Datasets.As the target software is commercial and domain-specific,

there are no publicly available benchmarks. To ensure fairness, we

randomly selected five functionalities from five typical trading

categories, with each functionality’s related business rules forming

a dataset. The details of these five datasets are presented in Table 2.

The datasets are publicly available to facilitate reproducibility [56].

Experimental Settings. We conducted all the experiments on

a workstation equipped with a 32-core AMD Ryzen Threadripper

PRO 5975WX CPU, 256GB RAM, and an NVIDIA RTX 3090Ti GPU

running Ubuntu 22.04.

5.1 Experiment I: Business Scenario Coverage

5.1.1 Experiment Design. We provided the five datasets to both

expert and non-expert testers and requested them to generate test

cases for them and record the time cost. Using the carefully crafted

prompts detailed in Section 2, we requested LLMs to generate test

cases for each dataset, one rule at a time, and record the time taken

for the task. LLM4Fin was fed with the datasets to produce the

corresponding outputs without any prompts.

The number of test cases and business scenario coverage were au-

tomatically calculated. To accomplish this, we initially constructed

business scenarios for each dataset and developed a program to

compute the business scenario coverage for each set of test cases.

One path in a business scenario is composed of multiple nodes

(constraints) connected from root to leaf. The algorithm counts the

number of nodes covered by the test case at most and divides it by

the number of all nodes in the path to obtain the coverage of the

path. The coverage of all paths in the business scenario is computed

by the average coverage of each path.

5.1.2 Experimental Results. Table 3 provides a detailed overview of

the experiment’s results. Notably, our approach excels in generating

test cases, surpassing all comparison tools and human testers in

terms of BSC. Across all five evaluation datasets, our approach

achieved coverage rates exceeding 80%, with Dataset 3 reaching

an impressive 98.67%. To further visualize the coverage deviations

of the generated test cases, Figure 6 is presented. It illustrates that

LLM4Fin exhibits nearly the same deviation as experts, both of

which are lower than those of the general-purpose LLMs. The

higher deviation of LLMs reflects the inherent challenge of ensuring

consistent and high-quality test case generation with LLMs.

Table 2: Details of Evaluation Datasets. #Rules (BS) refers to

the number of rules (business scenarios) in the dataset.

Dataset Sub-domain # Rules # BS

Dataset 1

GEM after-hours pricing trading: trading method

conducted outside regular market hours.

11 12

Dataset 2

Stock block trading: buying or selling a large

block of shares in a single transaction.

12 40

Dataset 3

Fund trading: transaction where investors con-

tribute funds managed by fund managers.

13 37

Dataset 4

Convertible bond trading: trading variety with

characteristics of both bonds and stocks.

8 24

Dataset 5

Stock auction trading: a trading method in which

trades are matched by price and time priority.

13 400

Figure 6: The BSC (left) and time cost (right) distributions

and deviations with respect to the generated test cases.

In Figure 6 (right), the time cost and deviation of the five methods

are illustrated, providing insights into their efficiency and stability.

Notably, LLM4Fin emerges as the epitome of efficiency, showcasing

consistently swift execution times and minimal variance across

tasks. Following closely is ChatGPT, demonstrating moderate ef-

ficiency albeit with some inconsistency and instability. ChatGLM,

while requiring more time, exhibits lower deviation than ChatGPT.

Unsurprisingly, the manual composition of test cases proves to be

the least efficient approach. Moreover, when compared to experts,

non-experts require significantly more time, and their deviation is

notably higher than both experts and automated tools.

5.2 Experiment II: Code Coverage

5.2.1 Experiment Design. The code coverage can be computed on

a cloud test platform called TestStars [44], where the corresponding

securities trading system code needs to be uploaded. It executes

each test case on this code and records the traversed statement

block or condition/decision branch. Because every test case has

to be manually input into the target web-based trading system,

the experiment is very labor intensive. As an example, we only

evaluate on the most complex dataset 5, which has the largest

number of business scenarios among all the datasets. Besides, we

did not compare with ChatGLM because the BSC by its test cases

are too low, i.e., 8.77%. The total number of statement blocks and

condition/decisions in Dataset 5 are 1, 687 and 2, 418, respectively.

5.2.2 Experimental Results. Table 4 shows Statement Block Cov-

erage (SBC) and Modified Condition/Decision Coverage (MC/DC)

scores for test cases generated through different methods. Notably,

LLM4Fin outshines all other approaches in both SBC and MC/DC,

achieving the highest coverage scores of 93.72% and 90.86%, respec-

tively. This demonstrates its superior effectiveness in generating

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu Chen, Tingting Jiang, and Min Zhang

Table 3: Comparison of the number of test cases (#TC), business scenario coverage (BSC), and time consumption (Time) of

generated test cases with experts, non-experts, and general LLMs on 5 evaluation datasets.

Datasets

Experts Non-Experts ChatGPT ChatGLM LLM4Fin

#TC BSC (%) Impr. (%) Time #TC BSC (%) Impr. (%) Time #TC BSC (%) Impr. (%) Time #TC BSC (%) Impr. (%) Time #TC BSC (%) Time

Dataset 1 24 83.43 15.1 33m 22 45.83 109.6 105m 24 44.61 115.3 30m 54 27.48 249.6 20m 218 96.06 7.01s

Dataset 2 50 83.80 2.5 38m 34 38.58 122.6 90m 42 50.48 70.1 25m 67 45.01 90.8 9m 672 85.36 6.85s

Dataset 3 168 71.15 38.0 30m 33 46.79 109.8 110m 32 61.81 58.8 17m 33 43.88 123.7 20m 270 98.18 6.82s

Dataset 4 30 77.34 25.4 35m 29 42.47 128.3 80m 34 25.00 287.8 10m 35 83.02 16.8 30m 88 96.96 5.57s

Dataset 5 67 60.10 38.0 35m 30 43.64 90.0 110m 41 66.35 25.0 15m 51 8.77 845.4 20m 880 82.91 8.72s

Average 68 75.16 22.3 34m 30 43.46 111.4 99m 35 49.65 85.1 19m 48 41.63 120.7 20m 426 91.89 6.99s

Table 4: Code coverage in Statement Block Coverage (SBC)

and Modified Condition/Decision Coverage (MC/DC) on

Dataset 5.

Experts Non-Experts ChatGPT LLM4Fin

SBC (%) 86.90 (1466) 71.01 (1198) 87.61 (1478) 93.72 (1581)

MC/DC (%) 82.30 (1990) 64.06 (1549) 81.76 (1977) 90.86 (2197)

comprehensive test cases. Experts and ChatGPT also perform ad-

mirably on code coverage, achieving comparable SBC and MC/DC

scores. This result aligns with the findings in Experiment I, where

experts and ChatGPT achieve comparable results, i.e., 60.10% and

66.35%, respectively. It is worth mentioning that the increase in

code coverage by our tool is not as substantial as in business sce-

nario coverage. This is primarily because the target software under

testing does not consider all the business scenarios described by

the business rules in Dataset 5, a fact confirmed by the software de-

veloper. Similar to the results for BSC, non-experts still lag behind

in both CC metrics, compared with other approaches.

5.3 Experiment III: Impact of Back-End LLMs

In this experiment, we explore the impact of fine-tuned LLMs in

our approach on the quality of generated test cases and showcase

the compatibility of our framework with different back-end LLMs.

5.3.1 Experiment Design. In addition to Mengzi, we choose Fin-

Bert [26], and Llama2 (7B) [46] as base models. We choose the three

LLMs because they are (i) pre-trained on Chinese corpus and have a

good understanding of Chinese content, (ii) open-source and can be

fine-tuned to apply to different downstream tasks, and (iii) hetero-

geneous where FinBert and Mengzi are BERT-based classification

models, while Llama2 is a GPT-based generative model.

We fine-tune FinBert with the same method mentioned in Sec-

tion 4.2. For Llama2, we fine-tune it on a question-answer dataset

transformed from the training dataset used by FinBert and Mengzi,

where each question includes the prompt for rule extraction and

the rule, and the answer is the extracted rule elements and their

labels. The accuracy of the trained FinBert, Mengzi, and Llama2 on

the validation set is 56.05%, 86.84%, and 94.76%, respectively. Each

fine-tuned LLM is used in the rule extraction step.

5.3.2 Experimental Results. We compute the BSC of the generated

test cases using different fine-tuned LLMs on the same five datasets

employed in Experiment I. The results are shown in Figure 7. We

observe that the BSC remains consistently high, exceeding 80%

on average, regardless of the LLMs employed. The variation in

BSC across different datasets is minimal, never surpassing 8%. This

suggests that our approach is compatible with and orthogonal to

backend LLMs. An LLM with high accuracy in rule filtering and

extraction is substitutable, ensuring our approach’s transferability.

Figure 7: The BSCs of the test cases generated by LLM4Fin.

5.4 Takeaways from the Experimental Results

The experimental results yield valuable insights into the perfor-

mance of LLMs in the task of generating test cases from unstruc-

tured language requirement documents:

Finding I: Crucial Role of Domain Knowledge. The findings

underscore the pivotal role of domain knowledge in achieving

high-coverage test case generation. Experts and LLM4Fin, both pre-

sumably equipped with domain knowledge, achieve significantly

higher coverage than non-experts and ChatGPT. This reinforces the

idea that domain knowledge plays a crucial role in understanding

and covering complex business logic. Our approach, by leveraging

domain knowledge in test case generation, surpasses even the ex-

perts. This further strengthens the argument for integrating domain

knowledge into LLMs and incorporating with traditional algorithms

to improve their effectiveness.

Finding II: Non-Expert Level Performance byGeneral-Purpose

LLMs.While general-purpose LLMs show promise in test case gen-

eration, their effectiveness falls short of expert human testers and

our dedicated test case generation tool, as shown in Figure 6 (left).

Notably, LLM performance exhibits significantly higher variation in

outcome, indicating potential instability and limitations in handling

complex test scenarios. These findings suggest that relying solely

on general-purpose LLMs for critical software testing tasks may

introduce unacceptable risks. However, the potential of LLMs in

this domain remains significant. Future research should prioritize

investigating the efficacy of sophisticated fine-tuning approaches

and high-quality, domain-specific corpora, which hold significant

potential to improve the effectiveness and stability of LLMs.

LLM4Fin: Fully Automating LLM-Powered Test Case Generation for FinTech Software Acceptance Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Finding III: Synergistic potential of LLMs and algorithms.

The performance of LLM4Fin demonstrates the significant potential

for synergy between LLMs and algorithms. Such hybrid leverages

the strengths of both paradigms: LLMs excel at capturing complex

domain knowledge and language nuances, while algorithms provide

efficient and systematic execution. By combining these strengths,

we can solve tasks that require both human-like intelligence and

mechanical processing, leading to superior outcomes.

5.5 Transferability and Human Efforts

Our LLM4Fin framework is transferable to other application do-

mains, although in this work its effectiveness is showcased only in

the FinTech domain. The transferability benefits from its widely-

adopted three-step workflow for test case generation, standard LLM

fine-tuning and well-established test case generation strategies.

First, our three-step workflow is built on the widely adopted test

case generation framework. The three-step workflow is general

and has been adopted to many domains such as finance [18, 50],

electronic commerce [5], and automation [10]. We follow such

architecture while incorporating LLMs to automate those steps that

have to be manually achieved by domain experts.

Second, fine-tuning LLMs for rule extraction is applicable to

other domains. The core of rule extraction is information extraction,

where fine-tuning LLMs has become a widely adopted technique

for it in various domains [25, 41, 47]. Our framework incorporates

the fine-tuned LLMs into the workflow, which makes it applicable

and transferable to other domains, such as road rule testing.

Third, the test case generation strategies are well-established

and make no assumption to application domains. They are domain-

independent, and have been widely adopted to domains like fi-

nance [18, 50] and autonomous driving [23, 45].

Thanks to the transferability of LLM4Fin, it only requires min-

imal human efforts to adapt the framework to other application

domains. The adaptation primarily involves two domain-specific

tasks, i.e., fine-tuning LLMs and constructing corresponding do-

main knowledge bases. For the LLM fine-tuning, one can follow

the steps in Section 4.2 to construct high-quality corpus by an-

notating unstructured texts and labeling testable and untestable

sentences and to re-train LLMs until their accuracy is reasonably

high, e.g., 86.84% in LLM4Fin. Another manual effort is needed to

build domain knowledge bases which are necessary to generate

high-coverage test scenarios. It requires human expertise to build

precise and compact formal models such as state diagrams that can

be efficiently accessed by algorithms.

5.6 Threats to Validity

Our study acknowledges and addresses potential threats to the valid-

ity of our work, emphasizing the importance of domain knowledge

and the inherent challenges posed by natural language flexibility.

Domain Knowledge Insufficiency: The threat of inadequate do-

main knowledge is a potential limitation. As aforementioned, the re-

liance on high-quality, domain-specific corpora for LLM fine-tuning

and the creation of comprehensive terminology bases demand con-

siderable human effort. Despite this challenge, we assert that the

investment in robust domain knowledge is indispensable, aligning

with the recognized value of business rules as crucial assets [33].

Natural Language Ambiguity: The inherent flexibility and ambi-

guity of natural languages pose another potential concern. While

our framework accommodates free-style expression of business

rules, well-structured and organized documents enhance precision.

Our approach encourages simplicity and clarity in business rule doc-

uments, essential for AI-driven methodologies [3, 13, 32, 35, 38, 39].

6 Related Work

Our work builds upon the existing body of research focused on

generating test cases from business rules expressed in unstructured

natural languages, as highlighted in [13]. Existing approaches often

rely on heuristic methods for entity and fact extraction due to the

inherent flexibility of natural languages. For instance, Meservy et al.

[33] proposed a business rulemodeling language and automated test

sequence generation, addressing the challenge of engineers lacking

expertise in composing formal rules. Willmor and Embury [53]

introduced the concept of intensional database test cases containing

check-conditions for testing compliance with rules.

The recognition of the importance of domain knowledge in au-

tomated test case generation is a growing trend. Yin et al. [57]

proposed a domain knowledge-based test case generation approach

for space telemetry systems, further emphasizing the significance of

domain-specific knowledge in automated testing. Jin et al. [18] pro-

posed FinExpert, a domain-specific test generation tool for FinTech

systems that incorporates domain knowledge, including data-field

dependencies, exceptional input cases, and test oracles.

The field of applying LLMs to software testing has experienced

significant growth in recent times. However, the majority of this

focus has centered around unit testing and system testing. Accord-

ing to a recent survey [49], limited research has explored the use

of LLMs in acceptance testing, i.e., testing whether software aligns

with business requirements, which is the primary focus of our work.

While Wang et al. [49] suggested a human-in-the-loop schema with

LLMs, our work demonstrates the potential for fully automating

the process by incorporating LLMs with classical algorithms.

7 Concluding Remarks

We presented a fully automated methodology that seamlessly in-

tegrates LLMs and deterministic algorithms for the purpose of

generating high-coverage test cases in FinTech software accep-

tance testing. Our approach lies in its utilization of versatile LLMs,

coupled with traditional algorithms that ensure determinism and

tractability. This synergistic blend proves instrumental in overcom-

ing the inherent challenges in interpreting unstructured business

rules, rendering the whole process more efficient and tractable.

Our approach also sets the groundwork for a pioneering frame-

work for the deterministic generation of high-quality test cases from

unstructured software requirement documents. The impact of our

work reaches beyond the FinTech domain, potentially benefiting

various domain-specific and safety-critical software applications.

Further exploration into finding the optimal balance between LLMs

and algorithms is a valuable avenue for future research.

Acknowledgments

This work is supported by NSFC Programs (62161146001, 62372176,

62272166), Shanghai Trusted Software Innovation Center, Huawei,

and Shanghai International Joint Lab (22510750100).

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu Chen, Tingting Jiang, and Min Zhang

References

[1] 2010. ISO/IEC/IEEE International Standard - Systems and software engineering –

Vocabulary. ISO/IEC/IEEE 24765:2010(E) (2010). https://doi.org/10.1109/IEEESTD.

2010.5733835

[2] 425776024. 2020. NLPCDA. https://github.com/425776024/nlpcda. Accessed:

2023-07-19.

[3] Anthropic. 2023. Meet Claude: A next-generation AI assistant for your tasks, no

matter the scale. "https://claude.ai/".

[4] Hsin-Hsi Chen, Yung-Wei Ding, and Shih-Chung Tsai. 1998. Named entity

extraction for information retrieval. Computer Processing of Oriental Languages
12, 1 (1998), 75–85.

[5] Pavan Kumar Chittimalli, Kritika Anand, Shrishti Pradhan, Sayandeep Mitra,

Chandan Prakash, Rohit Shere, and Ravindra Naik. 2019. BuRRiTo: a framework

to extract, specify, verify and analyze business rules. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 1190–
1193. https://doi.org/10.1109/ASE.2019.00134

[6] Jean-Pierre Corriveau, Vojislav Radonjic, and Wei Shi. 2014. Requirements ver-

ification: Legal challenges in compliance testing. In 2014 IEEE International
Conference on Progress in Informatics and Computing (PIC). IEEE, 451–454.
https://doi.org/10.1109/pic.2014.6972376

[7] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[8] Leon Derczynski, Diana Maynard, Giuseppe Rizzo, Marieke Van Erp, Genevieve

Gorrell, Raphaël Troncy, Johann Petrak, and Kalina Bontcheva. 2015. Analysis

of named entity recognition and linking for tweets. Information Processing &
Management 51, 2 (2015), 32–49. https://doi.org/10.1016/J.IPM.2014.10.006

[9] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and

Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive

Blank Infilling. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (ACL). 320–335. https://doi.org/10.18653/V1/2022.ACL-
LONG.26

[10] Shuo Feng, Yiheng Feng, Chunhui Yu, Yi Zhang, and Henry X Liu. 2020. Test-

ing scenario library generation for connected and automated vehicles, part I:

Methodology. IEEE Transactions on Intelligent Transportation Systems 22, 3 (2020),
1573–1582. https://doi.org/10.1109/TITS.2020.2972211

[11] Jannik Fischbach, Julian Frattini, Andreas Vogelsang, Daniel Mendez, Michael

Unterkalmsteiner, Andreas Wehrle, Pablo Restrepo Henao, Parisa Yousefi, Tedi

Juricic, Jeannette Radduenz, et al. 2023. Automatic creation of acceptance tests

by extracting conditionals from requirements: NLP approach and case study.

Journal of Systems and Software 197 (2023), 111549. https://doi.org/10.1016/J.JSS.

2022.111549

[12] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,

Large Minibatch SGD: Training ImageNet in 1 Hour. CoRR (2017). http://arxiv.

org/abs/1706.02677

[13] "Business Rule Group". [n. d.]. "The business rules manifesto". "https://www.

businessrulesgroup.org/brmanifesto.htm"

[14] Kelly J Hayhurst and Dan S Veerhusen. 2001. A practical approach to modified

condition/decision coverage. In 20th DASC. 20th Digital Avionics Systems Confer-
ence (Cat. No. 01CH37219), Vol. 1. 1B2/1–1B2/10 vol.1. https://doi.org/10.1109/

DASC.2001.963305

[15] Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang,

Tangjun Su, Junteng Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao

Fu, Maosong Sun, and Junxian He. 2023. C-Eval: A Multi-Level Multi-

Discipline Chinese Evaluation Suite for Foundation Models. In Advances
in Neural Information Processing Systems (NeurIPS). http://papers.nips.cc/

paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-

Datasets_and_Benchmarks.html

[16] Simon Holm Jensen, Suresh Thummalapenta, Saurabh Sinha, and Satish Chandra.

2015. Test Generation from Business Rules. In 8th IEEE International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 1–10. https://doi.

org/10.1109/ICST.2015.7102608

[17] Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. 2023. Self-

planning code generation with large language model. CoRR (2023). https:

//doi.org/10.48550/ARXIV.2303.06689

[18] Tiancheng Jin, Qingshun Wang, Lihua Xu, Chunmei Pan, Liang Dou, Haifeng

Qian, Liang He, and Tao Xie. 2019. FinExpert: Domain-specific test generation for

FinTech systems. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 853–862. https://doi.org/10.1145/3338906.3340441

[19] Cem Kaner. 2003. On scenario testing. Software Testing and Quality Eng. Magazine
(2003), 16–22.

[20] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large LanguageModels are Few-

shot Testers: Exploring LLM-based General Bug Reproduction. (2023), 2312–2323.

https://doi.org/10.1109/ICSE48619.2023.00194

[21] Rainer Knauf, Silvie Spreeuwenberg, Rik Gerrits, and Martin Jendreck. 2004. A

Step out of the Ivory Tower: Experiences with Adapting a Test Case Generation

Idea to Business Rules.. In FLAIRS Conference. Citeseer, 343–348. http://www.

aaai.org/Library/FLAIRS/2004/flairs04-061.php

[22] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code coverage

and test suite effectiveness: Empirical study with real bugs in large systems.

In 2015 IEEE 22nd international conference on software analysis, evolution, and
reengineering (SANER). IEEE, 560–564. https://doi.org/10.1109/SANER.2015.

7081877

[23] Thomas Laurent, Stefan Klikovits, Paolo Arcaini, Fuyuki Ishikawa, and Anthony

Ventresque. 2023. Parameter coverage for testing of autonomous driving systems

under uncertainty. ACM Transactions on Software Engineering and Methodology
32, 3 (2023), 1–31. https://doi.org/10.1145/3550270

[24] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.

2023. Codamosa: Escaping coverage plateaus in test generation with pre-trained

large language models. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE). IEEE, 919–931. https://doi.org/10.1109/ICSE48619.2023.

00085

[25] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 2020. A survey on deep

learning for named entity recognition. IEEE Transactions on Knowledge and Data
Engineering 34, 1 (2020), 50–70. https://doi.org/10.1109/TKDE.2020.2981314

[26] Yu Li and Panpan Hou. 2020. FinBert. https://github.com/valuesimplex/FinBERT.

[27] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your

code generated by chatgpt really correct? rigorous evaluation of large language

models for code generation. (2023). http://papers.nips.cc/paper_files/paper/

2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html

[28] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and

Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of

prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35. https://doi.org/10.1145/3560815

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:

A robustly optimized bert pretraining approach. CoRR abs/1907.11692 (2019).

http://arxiv.org/abs/1907.11692

[30] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regulariza-

tion. In 7th International Conference on Learning Representations (ICLR). OpenRe-
view.net. https://openreview.net/forum?id=Bkg6RiCqY7

[31] Jelena Madir. 2021. FinTech: Law and regulation. Edward Elgar Publishing.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversar-

ial Attacks. In 6th International Conference on Learning Representations (ICLR).
OpenReview.net. https://openreview.net/forum?id=rJzIBfZAb

[33] Thomas O Meservy, Chen Zhang, Euntae T Lee, and Jasbir Dhaliwal. 2011. The

business rules approach and its effect on software testing. IEEE software 29, 4
(2011), 60–66. https://doi.org/10.1109/MS.2011.120

[34] Diego Mollá, Menno Van Zaanen, and Daniel Smith. 2006. Named entity recog-

nition for question answering. In Proceedings of the Australasian language tech-
nology workshop 2006. Australasian Language Technology Association, 51–58.

https://aclanthology.org/U06-1009/

[35] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.

DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2574–2582. https://doi.org/10.1109/CVPR.2016.282

[36] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. 2004. The
art of software testing. Vol. 2. Wiley Online Library. https://doi.org/10.1002/

9781119202486

[37] Glenford JMyers, Corey Sandler, and TomBadgett. 2011. The art of software testing.
John Wiley & Sons. https://malenezi.github.io/malenezi/SE401/Books/114-the-

art-of-software-testing-3-edition.pdf

[38] OpenAI. 2023. ChatGPT: get instant answers, find creative inspiration, and learn

something new. "https://openai.com/chatgpt".

[39] OpenAI. 2023. Sage. "https://poe.com/Assistant".

[40] Jiaxin Pei, Aparna Ananthasubramaniam, Xingyao Wang, Naitian Zhou, Aposto-

los Dedeloudis, Jackson Sargent, and David Jurgens. 2022. POTATO: The Portable

Text Annotation Tool. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. Association for Computa-

tional Linguistics, 327–337. https://doi.org/10.18653/V1/2022.EMNLP-DEMOS.33

[41] Nadeesha Perera, Matthias Dehmer, and Frank Emmert-Streib. 2020. Named

entity recognition and relation detection for biomedical information extraction.

Frontiers in cell and developmental biology 8 (2020), 673. https://doi.org/10.3389/

fcell.2020.00673

[42] Suman Roychoudhury, Sagar Sunkle, Deepali Kholkar, and Vinay Kulkarni. 2017.

From natural language to SBVR model authoring using structured English for

compliance checking. In 2017 IEEE 21st International Enterprise Distributed Object
Computing Conference (EDOC). IEEE, 73–78. https://doi.org/10.1109/EDOC.2017.

19

[43] Sumit Soman and Ranjani H G. 2023. Observations on LLMs for Telecom Domain:

Capabilities and Limitations. (2023), 36:1–36:5. https://doi.org/10.1145/3639856.

3639892

https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2010.5733835
https://github.com/425776024/nlpcda
"https://claude.ai/"
https://doi.org/10.1109/ASE.2019.00134
https://doi.org/10.1109/pic.2014.6972376
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/J.IPM.2014.10.006
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.1109/TITS.2020.2972211
https://doi.org/10.1016/J.JSS.2022.111549
https://doi.org/10.1016/J.JSS.2022.111549
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
"https://www.businessrulesgroup.org/brmanifesto.htm"
"https://www.businessrulesgroup.org/brmanifesto.htm"
https://doi.org/10.1109/DASC.2001.963305
https://doi.org/10.1109/DASC.2001.963305
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1109/ICST.2015.7102608
https://doi.org/10.1109/ICST.2015.7102608
https://doi.org/10.48550/ARXIV.2303.06689
https://doi.org/10.48550/ARXIV.2303.06689
https://doi.org/10.1145/3338906.3340441
https://doi.org/10.1109/ICSE48619.2023.00194
http://www.aaai.org/Library/FLAIRS/2004/flairs04-061.php
http://www.aaai.org/Library/FLAIRS/2004/flairs04-061.php
https://doi.org/10.1109/SANER.2015.7081877
https://doi.org/10.1109/SANER.2015.7081877
https://doi.org/10.1145/3550270
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/TKDE.2020.2981314
https://github.com/valuesimplex/FinBERT
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.1145/3560815
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1109/MS.2011.120
https://aclanthology.org/U06-1009/
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1002/9781119202486
https://doi.org/10.1002/9781119202486
https://malenezi.github.io/malenezi/SE401/Books/114-the-art-of-software-testing-3-edition.pdf
https://malenezi.github.io/malenezi/SE401/Books/114-the-art-of-software-testing-3-edition.pdf
"https://openai.com/chatgpt"
"https://poe.com/Assistant"
https://doi.org/10.18653/V1/2022.EMNLP-DEMOS.33
https://doi.org/10.3389/fcell.2020.00673
https://doi.org/10.3389/fcell.2020.00673
https://doi.org/10.1109/EDOC.2017.19
https://doi.org/10.1109/EDOC.2017.19
https://doi.org/10.1145/3639856.3639892
https://doi.org/10.1145/3639856.3639892

LLM4Fin: Fully Automating LLM-Powered Test Case Generation for FinTech Software Acceptance Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

[44] Ltd Suzhou Insight Cloud Information Technology Co. 2023. TestStars: A Preci-

sion Cloud Test Platform. "http://www.threadingtest.com".

[45] Shuncheng Tang, Zhenya Zhang, Yi Zhang, Jixiang Zhou, Yan Guo, Shuang Liu,

Shengjian Guo, Yan-Fu Li, Lei Ma, Yinxing Xue, et al. 2023. A survey on automated

driving system testing: Landscapes and trends. ACM Transactions on Software
Engineering and Methodology 32, 5 (2023), 1–62. https://doi.org/10.1145/3579642

[46] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. CoRR
abs/2307.09288 (2023). https://doi.org/10.48550/ARXIV.2307.09288

[47] Amalie Trewartha, Nicholas Walker, Haoyan Huo, Sanghoon Lee, Kevin Cruse,

John Dagdelen, Alexander Dunn, Kristin A Persson, Gerbrand Ceder, and Anub-

hav Jain. 2022. Quantifying the advantage of domain-specific pre-training

on named entity recognition tasks in materials science. Patterns 3, 4 (2022).

https://doi.org/10.1016/J.PATTER.2022.100488

[48] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation

vs. experience: Evaluating the usability of code generation tools powered by

large language models. In Chi conference on human factors in computing systems
extended abstracts. ACM, 332:1–332:7. https://doi.org/10.1145/3491101.3519665

[49] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing

Wang. 2024. Software testing with large language model: Survey, landscape, and

vision. IEEE Trans. Software Eng. 50, 4 (2024), 911–936. https://doi.org/10.1109/

TSE.2024.3368208

[50] Qingshun Wang, Lintao Gu, Minhui Xue, Lihua Xu, Wenyu Niu, Liang Dou,

Liang He, and Tao Xie. 2018. FACTS: Automated black-box testing of FinTech

systems. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 839–844. https://doi.org/10.1145/3236024.3275533

[51] Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang,

Jiwei Li, and Guoyin Wang. 2023. GPT-NER: Named Entity Recognition via Large

Language Models. https://doi.org/10.48550/ARXIV.2304.10428

[52] Jason W. Wei and Kai Zou. 2019. EDA: Easy Data Augmentation Techniques for

Boosting Performance on Text Classification Tasks. In Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Association for Computational Linguistics, 6381–6387. https://doi.org/10.18653/

V1/D19-1670

[53] David Willmor and Suzanne M Embury. 2006. Testing the implementation of

business rules using intensional database tests. In Testing: Academic & Industrial
Conference-Practice and Research Techniques (TAIC PART’06). IEEE Computer

Society, 115–126. https://doi.org/10.1109/TAIC-PART.2006.28

[54] Hao Wu. 2012. An effective equivalence partitioning method to design the test

case of the WEB application. In 2012 International Conference on Systems and
Informatics (ICSAI2012). 2524–2527. https://doi.org/10.1109/ICSAI.2012.6223567

[55] Zhiyi Xue, Liangguo Li, et al. 2023. Trained Model. "https://huggingface.co/

13luoyu/LLM4Fin".

[56] Zhiyi Xue, Liangguo Li, et al. 2024. Constructed Corpus and Datasets. "https:

//github.com/13luoyu/intelligent-test/data".

[57] Bin Yin, Xiaohong Chen, Wanyu Li, and Jinyue Tian. 2022. An Incremental

Software Automation Testing for Space Telemetry, Track and Command Software

Systems Based on Domain Knowledge. J. Circuits Syst. Comput. 31, 7 (2022),

2250133:1–2250133:24. https://doi.org/10.1142/S021812662250133X

[58] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.

2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design

LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, CHI 2023, Hamburg, Germany, April 23-28, 2023. ACM, 437:1–

437:21. https://doi.org/10.1145/3544548.3581388

[59] Xudong Zhang and Yan Cai. 2023. Building Critical Testing Scenarios for Au-

tonomous Driving from Real Accidents. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). ACM, 462–474.

https://doi.org/10.1145/3597926.3598070

[60] Zhuosheng Zhang, Hanqing Zhang, Keming Chen, Yuhang Guo, Jingyun Hua,

Yulong Wang, and Ming Zhou. 2021. Mengzi: Towards Lightweight yet Ingenious

Pre-trained Models for Chinese. CoRR abs/2110.06696 (2021). https://arxiv.org/

abs/2110.06696

"http://www.threadingtest.com"
https://doi.org/10.1145/3579642
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1016/J.PATTER.2022.100488
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1145/3236024.3275533
https://doi.org/10.48550/ARXIV.2304.10428
https://doi.org/10.18653/V1/D19-1670
https://doi.org/10.18653/V1/D19-1670
https://doi.org/10.1109/TAIC-PART.2006.28
https://doi.org/10.1109/ICSAI.2012.6223567
"https://huggingface.co/13luoyu/LLM4Fin"
"https://huggingface.co/13luoyu/LLM4Fin"
"https://github.com/13luoyu/intelligent-test/data"
"https://github.com/13luoyu/intelligent-test/data"
https://doi.org/10.1142/S021812662250133X
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3597926.3598070
https://arxiv.org/abs/2110.06696
https://arxiv.org/abs/2110.06696

	Abstract
	1 Introduction
	2 Motivation
	2.1 Focus Group Meeting
	2.2 A Concrete Example

	3 LLM4Fin
	3.1 The Architecture in a Nutshell
	3.2 Step I: Rule Extraction
	3.3 Step II: Test Scenario Generation
	3.4 Step III: Test Data Generation

	4 LLM Fine-Tuning
	4.1 Corpus Construction
	4.2 Model Selection and Training

	5 Experimental Evaluation
	5.1 Experiment I: Business Scenario Coverage
	5.2 Experiment II: Code Coverage
	5.3 Experiment III: Impact of Back-End LLMs
	5.4 Takeaways from the Experimental Results
	5.5 Transferability and Human Efforts
	5.6 Threats to Validity

	6 Related Work
	7 Concluding Remarks
	References

