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Abstract—Nowadays the robustness of Deep Neural Networks
(DNN) is gaining much more attention than ever. That is because
DNNs are intensively adopted in safety-critical AI-enabled appli-
cations such as autonomous driving and authentication control.
Formal methods have been proved to be effective to provide
provable guarantee to the robustness of DNNs. However, they are
suffering from bad scalability due to intrinsic high computational
complexity of the verification problem. In this paper, we propose
a novel attack-guided approach for efficiently verifying the
robustness of neural networks. The novelty of our approach
is that we use existing attack approaches to generate coarse
adversarial examples, by which we can significantly simply final
verification problem. In particular, we are focused on the neural
networks that take ReLU activation functions, which are widely
adopted for solving classification problems. The experimental
results show that our approach outperforms those verification
tools based on constraint solving by up to 69 times speedup, while
it can compute minimum adversarial examples. The improvement
is particularly significant on those adversarially trained networks.

I. Introduction

Over the last few years, deep neural networks (DNNs) are
increasingly employed as intelligent components in software
applications by safety critical domains such as medical diag-
nose [1], autonomous vehicles [2], and security authentication
[3]. Applications in these domains require certifications to both
security and reliability. However, many works have shown
that DNNs often make dangerous mistakes, especially for rare
corner case inputs. An even worse fact is that they are also
vulnerable to adversarial examples: perturbed inputs that are
very similar to some original input but fool DNNs to produce
incorrect outputs [4], [5]. Bugs in DNNs may lead to disasters.
For example, a woman was struck and killed by an Uber self-
driving SUV while crossing the road recently, and the root
reason for the accident is that the driving system misclassified
the pedestrian as an unknown object due to bad light condition
and the pedestrian’s black clothes.

It becomes increasingly important to guarantee DNNs can
always make correct perception even if target objects are
slightly perturbed. This requirement is called robustness. In-
creasing and guaranteeing the robustness of neural networks
are essential tasks. Many approaches have been investigated
and proposed to improve and evaluate neural networks’ ro-
bustness. [6] However, most of these works do not provide

provable guarantee because they are based on either testing or
statistics.

There have been a lot of works concerning about defense
methods to make DNNs more robust to adversarial examples.
Currently, the defense methods are being developed along
three main directions [7]: i) using modified dataset; ii) modi-
fying network architecture; iii) adding external network model
to assist with classification tasks. Attack-based approaches are
useful to detect potential flaws in networks by finding real
adversarial examples. However, they are evaluated via heuristic
attacks, such as the Fast Gradient Sign Method [4] or Projected
Gradient Descent [8]. When failing to find adversarial exam-
ples, they cannot guarantee whether the robustness of a neural
network is actually improved or not.

Recent works have shown formal methods are effective
in providing provable robustness guarantee to DNNs by
mathematically proving the absence of adversarial examples
when a neural network is robust. A comprehensive survey
on formal verification of neural networks [9] summarizes
various state-of-the-art techniques in this direction. Although
formal methods are promising to robustness verification, there
are several technical challenges such as low scalability of
algorithms and unexplainability of neural network models.
In particularly, the scalability issue is a realistic obstacle in
robustness verification due to the drastic increase of neural
networks’ scales. Many existing approaches adopt abstraction
and approximation techniques to improve efficiency at the
price of sacrificing completeness, i.e., no robustness guarantee
when no real adversarial examples are found [10]–[12]. It is
hard to achieve balance between accuracy and efficiency.

In this paper, we propose a novel attack-guided approach
to accelerate robustness verification of neural networks. The
basic idea of our approach is to compute a coarse adversarial
example using existing attack techniques then accelerate the
solving process by simplifying the constraints in the problem.
In particular, we are focused on feedforward ReLU-based
DNNs and MILP (Mixed Integer Linear Programming) based
verification approaches. We choose feedforward ReLU-based
DNNs as they are prevalently adopted in classification prob-
lems, and MILP-based approaches are both sound and com-
plete [13]. The robustness verification problem of ReLU-based
DNNs can be equivalently deduced to a MILP problem, whose
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computational complexity is proved NP-complete [14]. The
solving time sensitively depends on the number of variables
and constraints. In our approach, we simplify the deduced
MILP problems before feeding them into MILP solvers such
as Gorubi. To simplify the problems, we leverage efficient
attack techniques such as gradient attack to compute a coarse
adversarial example. Then, we estimate a rough perturbation
bound using the coarse adversarial example. The estimated
bound helps to remove redundant variables and constraints in
the MILP problems, which significantly reduces the solving
time.

Our approach inherits the efficiency of gradient attack and
the completeness of MILP-based verification. We implement
our approach in a prototype tool Agrify (Attack-guided veri-
fication). We compare it with three state-of-the-art complete
NN verification tools including MIPVerify [13], Neurify [15],
Venus [16]. Experimental results show that our approach out-
performs other three tools by up to 69 times, and meanwhile
it computes minimum adversarial perturbation without loss of
completeness.

In summary, this work stays in line with previous sequel of
works neural network robustness verification and makes the
following two major contributions:

1) A novel approach of combing attack and verification
techniques to improve the efficiency of neural network
verification.

2) An efficient prototype tool for robustness verification
of ReLU-based FNNs, which can compute minimum
adversarial examples in non-robust cases.

The remaining part of this paper is organized as follows.
Section II introduces key concepts on neural networks and
background knowledge related to robustness verification. Sec-
tion III presents our verification framework. Section IV reports
the tool and experimental results. Section V discusses some
related work, and Section VI concludes the paper and mentions
some future work inspired by our approach.

II. Preliminaries

In this section, we briefly describe some preliminaries that
are necessary to understand our approach, including feed-
forward deep neural networks, gradient attack, interval analy-
sis and symbolic interval propagation.

A. Robustness of neural networks

A feed-forward deep neural network (FNN) is mathemati-
cally an acyclic graph with multiple layers between the input
and output layers, with each layer consisting of a number of
neurons. The semantics of an FNN can be defined as a function
f : Rm → Rn. The first layer is called input layer, denoted as
layer 0, and the last layer is the output layer, denoted as layer
l. Every layer between the input and output layers is called a
hidden layer, denoted as layer i, for 1 ≤ i ≤ l. Each neuron
in hidden layers is connected to all neurons in the previous
layer and associated with a bias. Each edge connecting two
neurons is associated with a weight. All weights and biases are

learned during training phase. The calculation of each layer
can be expressed as a function f , which is defined as follows:

x0 = x,

xk+1 = φ(Wk xk + bk) f or k = 0, ..., l − 1,

f (x) = W lxl + bl

(1)

where, x0 = x ∈ Rm is the input, Wk and bk respectively are the
weight matrix and bias vector of the k-th layer, and φ(.) is an
activation function applied to the input vector. Here, we only
consider the Rectified Linear Units (ReLU) activation function,
which is the most commonly-used activation functions in
DNNs. It is defined as ReLU(x) , max(x, 0) for x ∈ R.

Given an FNN f : Rm → Rn, it is robust if and only if it can
return the same classification result for a slightly perturbed
input and the original input. Namely, the network’s output
is not affected by small perturbation of given inputs. The
perturbation range of an input is usually evaluated by an L-
norm distance. There are three widely used L-norms: L1, L2
and L∞ norms. They are mainly used to measure the similarity
between two inputs. In this work, we mainly consider L∞
norm. That is, for each pair of vectors x, x′ with the same
size,

||x − x′||∞ ≡ max
1≤i≤n
{|xi − x′i |} (2)

where i is a vector component index. And our work also
supports the other two norms.

For an input x and a distance threshold ε, we define a norm-
ball is an input region which contains all the inputs x′ such
that ||x − x′||∞ ≤ ε. An FNN is called local robust w.r.t. the
input x and distance threshold ε, if and only if for all inputs
x′ such that ||x − x′||∞ ≤ ε, the FNN always returns the same
classification result [17]. In the literature, an FNN is called
global robust if it is local robust for each input of the given
test dataset [18]. In this work, we focus on the local robustness.

Definition 1 (Robustness): Given an FNN f : Rm → Rn, an
input x ∈Rm, and an L∞ distance threshold ε, f is robust w.r.t.
the input x and distance threshold ε if

L( f (x)) = L( f (x′)) (3)

for all x′ ∈ I with ||x − x′||∞ ≤ ε and L(.)=argmaxi( fi(x)).
If there exists an input x′ ∈ Rm such that ||x − x′||∞ ≤ ε and

L( f (x)) , L( f (x′)), then we call x′ an adversarial example
of x. Therefore, the robustness verification is equivalent to the
problem of checking the satisfiability of the conjunction of the
two constraints ||x − x′||∞ ≤ ε and L( f (x)) , L( f (x′)).

B. Project Gradient Descent (PGD) Attack

Gradient attacks mainly refer to artificially creating interfer-
ence and confusing models to produce wrong results. The best
way to make attack effectively is to maximize the loss function.
The classification model keeps parameters unchanged in the
process of gradient attacking. The method misclassifies model
by changing the input value.

There are some typical gradient-based adversarial attack
methods. These methods aim to find adversarial example of
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DNNs. Project Gradient Descent [8] is an iterative attack
method. It’s an advanced fast gradient sign method with
several iterations. The PGD attack is mainly a loop, it first
initializes the search at a random point within the allowed
norm ball, then it runs several iterations, each iteration runs
basic method to find the adversarial example. Compared with
the basic method, this iteration can correct the direction of the
gradient in time. The process can be formulated as

xt+1 =
∏
x+S

(xt + αsign(∇xL(θ, x, y))) (4)

Although the gradient attack method can efficiently find adver-
sarial examples, it cannot guarantee the minimum distance be-
tween the found adversarial example and the original input, so
the minimum adversarial perturbation cannot be determined.

C. Neural Network Verification Techniques

1) Symbolic Interval Analysis: Interval arithmetic [19] is an
efficient way of deriving pre-activation bounds by computing
and propagating the interval of the input range through the
network. It can be used to for verification by estimating output
range of neural networks. However, the resulting bounds
often suffer from large over-approximated error because naive
interval analysis ignores the input dependencies of input nodes
during propagation. To minimize over-approximation of output
intervals, approaches based on symbolic interval analysis [20]
replace concrete interval by symbolic ones during propagation
in order to preserve variable dependencies.

Figure 1 shows an example of symbolic interval analysis.
By propagating variables x, y layer by layer, we can obtain the
expression x − y for node n5, which gives an output interval
[−3, 1]. This result is much tighter than the one [−7, 5], which
is computed using the naive interval arithmetic approach.

Fig. 1. Example of symbolic interval propagation

2) MILP Formulation: The main idea of MILP-based
method is to express piece-wise linear activation function as
a Mixed Integer Linear Program (MILP). Specifically, the
verification property is verified if and only if the corresponding
MILP problem is unsatisfiable. The MILP encoding of a
neuron depends on its state, and in our approach the pre-
activation bounds of the neurons have already been calculated.
We introduce the way of formulating ReLU in MIPVerify [13].
Let y = max(x, 0), and l ≤ x ≤ u, if the neuron is strictly active,
then y ≡ x. Similarly, if the neuron is strictly inactive, then

y ≡ 0. Otherwise, the neuron is called unstable. The encoding
of a neuron is given by the following constraints:

y ≤ x − l(1 − a)
y ≥ x

y ≤ u · a

y ≥ 0
a ∈ {0, 1}

(5)

where, a is a binary variable such that a = 0 iff y = 0 and a
= 1 iff y = x.

In the context of FNNs, the efficiency of solving an MILP
problem i) the number of binary variables caused by unstable
nodes, and ii) the accuracy of the pre-activation bounds, it
related to the method used to calculate the bounds.

D. Minimum Adversarial Perturbation

Let d(.) denotes a distance metric that measures the distance
between two input images. The minimum adversarial pertur-
bation under d w.r.t the input x, adversarial example x′, true
label L( f (x)) is the solution to the optimization:

minx′d(x, x′)
subject to L( f (x′)) , L( f (x))

x′ ∈ Rvalid

(6)

We can target attacks to generate adversarial examples
corresponding to the label l by replacing L( f (x′)) , L( f (x))
with L( f (x′)) = l.

III. The Verification Framework

This section presents our approach of integrating attack and
verification techniques to the robustness verification of FNNs.

A. Overview

Our approach combines gradient attack and symbolic inter-
val analysis to the MILP-based method. The gradient attack
provides us with the initial perturbation values, we use this
information to define initial bounds. And then, we obtain
tighter bounds for hidden neurons through symbolic propa-
gation interval analysis. Tighter bounds lead to fewer binary
variables in the verification problem. Verification efficiency is
consequently improved by reducing the search space.

The overview of our approach is shown in Algorithm 1.
Given an FNN f , an input x ∈ Rn and an epsilon threshold ε,
Algorithm 1 outputs one of the following results:
• Robust, indicating that the robustness property is satisfied.
• An adversarial example, indicating that the violation of

the robustness property.
We first get the rough perturbation ε̂ using the PGD attack

approach (line 1). Then, we calculate node bounds according
to the input x and ε̂ using symbolic propagation interval analy-
sis (line 2). After obtaining bounds, we build the MILP model,
construct necessary constraints, and set objective function
(lines 3–5), where milp is the initial model that cannot return
a preconceived result. The build MILP model function takes
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Algorithm 1: Robustness verification of DNN
input : A DNN f , an input x, a distance threshold ε
output: {Robust, an adversarial example}

1 ε̂:=PGD Attack(x);
2 node bounds:=symbolic propagation(x, ε̂);
3 milp:=build MILP model( f , x,ε,node bounds);
4 milp′ :=add constraints(milp);
5 milp′′ :=set objective function(milp′);
6 result:=milp solver(milp′′);
7 if result is infeasible then
8 return Robust;
9 else

10 x′ :=get adv example(milp′′);
11 return x′ ;

the DNN f , the input x, the distance ε as inputs, and the output
initial model milp. It checks whether the FNN f is robust or
not by invoking milp solver (line 6), the solver solves the
MILP model milp and output infeasible or optimal objective
value. If the model is unsatisfiable, it returns robust. Otherwise,
we exact an adversarial example from the solver and return it
(lines 10–11).

B. Initial Perturbation Bound Estimation

Our approach relies on an initial perturbation bound, which
is expected to be close to the optimal one. We estimate the
bound using attack techniques. In our approach, we choose
the PGD gradient attack method. At first, we use the PGD
gradient attack to produce an adversarial example for each
input. Each adversarial example returned by the PGD attack
has minimum perturbation that the PGD attack can find. We
do not use the adversarial example directly but leverage the
information that comes from the adversarial example to find a
rough perturbation range ε̂. This information can be seen as a
rough robust radius, and we leverage these ε̂ to calculate the
bounds of all the neurons in networks.

We use the example in Figure 2 to explain the process of our
method. We assume that the input x = −2, y = 0, z = 3, then
through the PGD attack, we obtain an adversarial example
x′ = −1, y′ = 0, z′ = 2.5. According to L-∞ norm, we get the
ε̂ = max{|x = x′|, |y − y′|, |z − z′|} = 1. The ε̂ will be used for
subsequent bounds calculations.

In MIPVerify, there are two ways of determining the initial
perturbation range (the perturbation range determines the size
of the solver’s search space). One is to simply set ε̂ = 1. It
will produce more binary variables, and the solver will find an
adversarial example in hole search space. This way consumes
much time on solving. The other one is to allow users to
provide an initial value ε̂, which is hard for users to choose
an appropriate value.

To the best of our knowledge, most existing robustness ver-
ification approaches use formal methods without considering
the AI domain’s attack methods. Actually, in terms of finding
adversarial examples, gradient attacks have an extremely high

Fig. 2. Example of calculating the bounds of neurons

efficiency compared to formal verification methods. Although
the gradient attack method does not guarantee that the adver-
sarial examples have minimum perturbation, it does not affect
our use of effective information in the adversarial examples.

C. Internal Neuron Bound Estimation

In the MILP model solving problem, one of the key factors
affecting the efficiency of the solution is the number of integer
variables (here is binary variables) [14]. If we can prove
that the phase of ReLU is stable, we can avoid introducing
binary variables. More generally, the loose bound input to a
neuron will propagate downstream, resulting in a looser bound
for the neurons in the following layer. Therefore, calculating
tight bounds for internal neurons is a key point to improve
verification efficiency.

We calculate the bounds using symbolic interval propa-
gation analysis techniques. First, we set the initial interval
[x − ε̂, x + ε̂]. Compared with other MILP-based methods
such as MIPVerify, we use approaches previously mentioned
instead of using MILP solver or naive interval propagation to
calculate the bounds of the nodes in hidden layers of DNNs.
Because using naive interval arithmetic leads to large over-
approximations, while using solver consumes too much time
and causes query timeouts. The combination of gradient attack
and symbolic interval propagation analysis can significantly
improve efficiency and produce tighter bounds.

Let us consider the example in Figure 2, we assume that
the inputs x = −3, y = 0, z = 3 and ε̂ = 1. Then the initial
intervals for neurons n1, n2, n3 are [−3,−1], [−1, 1], and [2, 4],
respectively. The input bounds are propagated layer by layer
using symbolic propagation interval analysis as we introduced
in Section II-C. We obtain the bounds for all the internal
neurons in the network.

In our approach, we calculate an initial epsilon ε̂ from
adversarial examples produced by PGD gradient attack. The ε̂
is usually close to the optimal robust radius, providing tighter
input bounds. A tighter input bound produces fewer binary
variables, by which search space is further reduced. We can
effectively reduce the build time and solution time and made
a trade-off between the two.
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D. MILP Problem Building and Solving

After obtaining all the bounds of internal neurons, we
build the MILP model based on these bounds. We create
a set of variables for the neurons in the input layer, these
variables propagate through the network, each neuron thus
can be represented by a variable or expression according to
the MILP formulation. We construct constraints to ensure that
the returned results are adversarial examples, i.e., line 2 of the
equation 6. By default, we target attack the label ls correspond-
ing to the second-highest confidence value, ls = argmaxi( fi(x))
and i , j where j is the true label of the input. The objective
function is set to find minimum adversarial perturbation. So
far, the MILP model is constructed, which is essentially a
series of variables, expressions, constraints, and an objective
function.

Considering the example shown in Figure 2, we create three
MILP variables v1 = −3+ ε1, v2 = 0+ ε2.v3 + ε3 for the neurons
in the input layer. When the variable propagates to the second
layer, we create a set of expressions and constraints for neuron
n4, n5, n6, v1 − 2v2 − v3 for n4, −2v1 + 2v2 + v3 for n5, v1 +

v3 for n6. Then, we add constraints to the unstable neuron
based on the previously calculated bounds. The neuron n4 with
bounds [−9,−1] is strictly inactive, n5 with bounds [3,11] is
strictly active, and n6 with bounds [-1,3] is unstable. We only
need to introduce a binary variable a for n6, and consequently
construct the following constraints:

vrect ≤ v1 + v3 − (−1)(1 − a)
vrect ≥ v1 + v3

vrect ≤ u · a

vrect ≥ 0
a ∈ {0, 1}

(7)

We use vrect to represent n6 when propagating it to next layer.
Therefore, the label l1 and l2 can be expressed as 3v1 − 3v2 −

2v3 +2vrect, −2v1 +v2 +v3 +2vrect respectively. We assume that
the true label of the input is l2, then we construct constraint
3v1 − 3v2 − 2v3 + 2vrect > −2v1 + v2 + v3 + 2vrect for verifying
robustness. The objective function is set to min(ε1 + ε2 + ε3).

We use Gurobi to solve this model, if solver returns an
adversarial example, the network does not satisfy robustness;
if solver returns that the model is not feasible, the network is
robustness on this input.

E. Completeness of the Approach

We argue that the techniques used in our approaches
preserve completeness. We only get the perturbation range
closer to the true robustness radius for the initial perturbation
range. It reasonably eliminates unnecessary search space. For
bounds of nodes in hidden layers, we illustrate this with the
example above, as shown in Figure 2. Assuming that initial
input bounds are n1 ∈[-3,1], n2 ∈[-1,1] and n2 ∈[2,4]. Using
symbolic interval propagation analysis, it can get that the
bounds of neuron n6 is [-1,3]. If we use the solver to computing
the bounds of neuron n6, they are [0,3]. Then our approach
produces one more binary variable in MILP formulation than

the most accurate one (cause that the lower bound of neuron
n5 is less than 0, and the upper bound is greater than 0). For a
stable neuron, adding the MILP constraints does not affect the
final result. Therefore, our approach guarantees completeness
like other MILP-based methods.

IV. Implementation and Evaluation

This section aims to demonstrate the effectiveness of our
approach to verify the robustness of DNNs and obtain an
adversarial example with minimum adversarial perturbation
when the DNN does not satisfy robustness.

A. Implementation

We implement our verification approach in a toolkit called
Agrify. The implementation language is Python. Our tool is
applicable to ReLU-based FNNs, which can be adversarially
trained, and the last layer can contain softmax activation
functions. We choose Gurobi as the back-end MILP solver.

B. Compared Methods

We only compare our approach with complete methods,
which always return a definite result that whether an FNN
satisfies robustness and guarantees the correctness of the result.
Particularly, we choose the three promising tools MIPVerify
[13], Neurify [15] and Venus [16] for comparison.
• MIPVerify formulates the robustness verification problem

as a MILP program. It improves plain MILP-based ap-
proaches via a tighter formulation for non-linearities and
a novel presolve algorithm.

• Neurify is a verification tool that can choose between
completeness and efficiency. It introduces symbolic in-
terval analysis and linear relaxation to compute tighter
bounds of outputs. Neurify is theoretically complete under
a fixed number of refinements, but the refinement process
might take too much time and thereby a threshold is set
to force termination.

• Venus is one of the most efficient approximation-based
DNN verification tools. Its main idea is to reduce the
search space via dependency analysis and dependency
cuts during a branch-and-bound approach.

C. Datasets

We use the most commonly used benchmarks in the context
of DNNs verification:
• MNIST [21] is a dataset of handwritten digits 0-9.

Each image in MNIST is formatted as a 28x28x1-pixel
grayscale image. In our experiment, we choose four
neural networks that have been verified by MIPVerify,
Neurify, and Venus. They have different architectures
denoted by FNNi with i=1,2,3,4. Among them, FNN4
is adversarially trained with SDP when the dual of a
semidefinite relaxation is used, as in [22].

• Fashion-MNIST [23] is a dataset of clothing. Each image
in Fashion-MNIST is also formatted as a 28x28x1-pixel
grayscale image. We trained two neural networks for the
experiment, denoted as FNN5 and FNN6.
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TABLE I
Experiment Results on four FNNs withMNIST dateset

FNN 1 FNN 2 FNN 3 FNN 4
ns tall na nn nu ns tall na nn nu ns tall na nn nu ns tall na nn nu

Agrify 99 202.769 96 3 0 99 565.763 87 12 0 99 24731.163 83 15 1 98 1027.622 4 94 0
MIPVerify 99 1451.656 96 3 0 99 2261.611 87 12 0 99 69054.317 83 15 1 98 36494.919 4 94 0
Neurify 100 798.837 97 3 0 100 OOT - - - 100 OOM - - - 100 OOT - - -
Venus 100 49.931 97 3 0 100 67.277 88 12 0 100 5031.701 84 15 1 100 36377.141 6 90 4
Remarks: ns, tall, na, nn, nu mean the number of valid input images, time (in second) on verification, the numbers of computed adversarial examples,

certified cases and unknown cases. OOT means out-of-time, and OOM means out-of-memory.

TABLE II
Details of the FNNs used in our experiments

Model ReLUs Network Architecture Source Note
MNIST

FNN1 48 〈784,24,24,10〉 Neurify
FNN2 60 〈784,40,20,10〉 MIPVerify
FNN3 1024 〈784,512,512,10〉 Venus
FNN4 500 〈784,500,10〉 MIPVerify SDP

Fashion-MNIST
FNN5 48 〈784,24,24,10〉 This work
FNN6 60 〈784,40,20,10〉 This work

Details of these networks are given in Table II, where column
2 gives the number of ReLU activation functions, and column
3 gives the number of layers and neurons in each layer.

D. Experimental Settings

We verified the network against local robustness for a
perturbation radius of 15 on the first 100 images from the
test set of MNIST. Due to normalization, some parameters
need to be set to 15/255.0. For the experiments, MIPVer-
ify was running with LInfNormBoundedPerturbationFamily
(15/255.0), this parameter means MIPverify will limit L-∞
norm bound; all pixel will not be allowed to modify larger than
the parameter; Neurify was running with MAX THREAD set
to 1, depth set to 500, radius set to 15; Venus was running
with the radius set to 15/255.0, and other parameters reported
in [16]. Agrify was running with the radius set to 15/255.0.

We also choose the first 100 images from the test set of
Fashion-MNIST for experiments, the perturbation radius set to
15. We focus on performance on evaluating minimum adver-
sarial perturbation on this dataset. MIPVerify was running with
LInfNormBoundedPerturbationFamily set to 15/255.0; Agrify
was running with the radius set to 15/255.0.

The timeout threshold is set one hour for each image
and twenty-four hours for the whole 100 queries. All the
experiments were conducted on a workstation running Ubuntu
18.04 with a 32-core AMD Ryzen Thread-ripper 3970X CPU
@ 3.7GHz and 128 GB of RAM.

E. Result Analysis

Table I depicts the performance of four tools on the four
networks mentioned above. The tables give the number ns

of verification queries that were solved (note that Agrify and
MIPVerify will skip queries misclassified by neural networks),
the overall time tall taken for all queries, the number nadv,
nnon-adv, nunknown of verification queries that return adversarial
example, robust, and unknown when verification fails due to
out of time or memory.

The results show that Agrify’s performance was superior
on all four networks. MIPVerify takes the longest of all
experiments that have not timed out. Neurify was timed out
on FNN2 and FNN4, and for FNN3, it consumed excessive
memory. Venus was the most performing of the toolkits on
the first three networks. However, its performance on FNN4
was not well, because the network is adversarially trained, and
Venus can hardly cope with such type of structured network.

In terms of verification accuracy, the performance results
of Agrify and MIPVerify are the same, and Venus shows
similar results. That is because both methods in experiments
are complete. On FNN4, Venus returns 4 unknown results
where Agrify and MIPVerify return 0 unknown results. It can
be considered that our approach can handle some corner cases.

In addition to the accuracy and efficiency of the verification,
the perturbation value of the returned adversarial example is
also one of the important factors we consider.

Table III shows the images of the MNIST test set, which
contains one image for each label and the visual results of
adversarial examples returned by the different tools. To see
the difference more clearly, we made the image color-inverted.
There is a clear difference between them: the adversarial
perturbation. Adversarial examples returned by Neurify and
Venus are more distorted than ones returned by Agrify and
MIPVerify. That is because Agrify and MIPVerify can evaluate
the minimum adversarial perturbation, they return adversarial
examples with minimum perturbation while Neurify and Venus
return adversarial examples with larger perturbation (according
to the user’s parameter). Note that some adversarial examples
returned by Venus are not really adversarial examples (after
the second confirmation), the reason for this phenomenon is
the accuracy of floating-point numbers in the Venus code.
Furthermore, solving the optimal result is costly at the expense
of efficiency.

Figure 3 shows the adversarial perturbations returned by
the four tools on FNN1 for 100 queries. Since the result
visualization curves are highly overlapped, we display them
separately. The results show that Venus and Neurify return
similar curves because they have the same strategy: they will
return adversarial examples based on hyperparameters. In our
experiment, we set perturbation radius 15/255.0, so all adver-
sarial examples they returned are with 15 pixel perturbation.
And Agrify and MIPVerify returns similar results, which are
close to the optimal ones. Some of the returned results are
even trivial as they are close to 0. That means the adversarial
examples returned by Agrify and MIPVerify are close to the
input images.
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TABLE III
Example of adversarial examples onMNIST

Original Image Agrify MIPVerify Neurify Venus

0 6 6 6 6

1 8 8 8 8

2 5 5 5 6

3 5 5 5 3

4 9 9 6 9

5 6 6 6 5

6 2 2 0 0

7 3 3 0 7

8 6 6 2 6

9 4 4 8 4

Tables IV and V show the performance of our tool and
MIPVerify on the FNN5 and FNN6, trained on the dataset
Fashion-MNIST. We cannot compare with other two tools
because they do not support this network architecture. It can
be seen that our tool takes much less time to verify 100
images than MIPVerify, while it can compute almost the same
adversarial examples. There is basically no difference between
the adversarial examples and the original image. This is back
to the original intention of verifying the robustness of neural
networks. The subtle human-imperceptible perturbations will
cause the neural network to make wrong judgments, resulting
in unpredictable consequences. We believe that these mini-
mally perturbed adversarial examples can help improve the
robustness of neural networks.

TABLE IV
Experiment Results on Fashion-MNIST

FNN 5 FNN 6
ns tall na nn nu ns tall na nn nu

Agrify 87 350.75 85 2 0 87 1041.99 86 0 0
MIPVerify 87 1548.15 85 2 0 87 3302.66 86 0 0

In summary, the above experiments show that our approach
can verify the robustness property of DNNs more efficiently.
Moreover, it can evaluate the mean minimum adversarial
perturbation.

Fig. 3. Adversarial perturbation of adversarial examples returned by four
tools on FNN1

V. RelatedWork

Our work relates most closely to other work on verification
of ReLU-based DNNs. Katz et al. [24] proved that the
verification problem of FNNs against simple properties such
as robustness is NP-complete. Due to high computational
complexity, many verification methods have The robustness
verification methods of neural networks can be divided into
two types: complete and incomplete.

Complete methods can be divided into three main groups:
(i) MILP solving [13], [25]–[27] that formulate the verification
problem at hand as a mixed-integer linear program; (ii) SMT-
based methods that encode the verification problem as the
satisfiability modulo theory problem [24], [28]; (iii) methods
that use a combination of over-approximating and refinement
to get a definite result [15], [20]. Recently, a novel dependency
analysis based framework [16] has been proposed, which is
also based on MILP-solving. Although these methods suffer
from limited scalability, they return a definite answer as to
whether the neural networks satisfy robustness property.

In contrast, incomplete ones may erroneously conclude
that the neural network is not robust when it actually is.
Approximation and abstraction are two effective techniques
for robustness verification with better scalability. Incomplete
methods include duality [29], abstract interpretation [11] [10],
[30], symbolic interval analysis [20], layer-by-layer approx-
imations of the adversarial polytope [31], discretizing the
search space [17], linear approximations [12], bounding the
local Lipschitz constant [12], or bounding the activation
of the ReLU activation function with linear functions [12].
All these methods have a common feature. They tune the
verification problem into a linear programming problem by
over-approximating. The result is improved scalability at the
expense of losing completeness.
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TABLE V
Example of adversarial examples on Fashion-MNIST.

Original Image
T-Shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

Agrify
Dress T-Shirt Shirt Trouser Shirt Dress T-Shirt Ankle boot Shirt Sneaker

MIPVerify
Dress T-Shirt Shirt Trouser Shirt Dress T-Shirt Ankle boot Shirt Sneaker

VI. Conclusion

In this paper, we have proposed an efficient approach to
verify the robustness of neural networks by integrating attack
and verification techniques. We simplify verification problem
using attack result, which significantly reduces the verification
time. We implemented our approach into a prototype tool
Agrify. Experimental results showed that Agrify can verify
neural networks efficiently and evaluate minimum adversarial
perturbation, compared with other relevant tools. In particular,
Agrify performs better in terms of combining verification and
minimum adversarial perturbation evaluation, achieving high
efficiency without losing verification accuracy. Due to the
intrinsic high computational complexity of neural network ver-
ification, we believe that attack techniques are algorithmically
helpful to improve verification efficiency by simplifying the
formal models to verify. We would investigate integrating other
existing attack approaches into verification in our future work.
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