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Abstract. The rapid advance of deep reinforcement learning techniques
enables the oversight of safety-critical systems through the utilization of
Deep Neural Networks (DNNs). This underscores the pressing need to
promptly establish certified safety guarantees for such DNN-controlled
systems. Most of the existing verification approaches rely on qualitative
approaches, predominantly employing reachability analysis. However,
qualitative verification proves inadequate for DNN-controlled systems
as their behaviors exhibit stochastic tendencies when operating in open
and adversarial environments. In this paper, we propose a novel frame-
work for unifying both qualitative and quantitative safety verification
problems of DNN-controlled systems. This is achieved by formulating
the verification tasks as the synthesis of valid neural barrier certificates
(NBCs). Initially, the framework seeks to establish almost-sure safety
guarantees through qualitative verification. In cases where qualitative
verification fails, our quantitative verification method is invoked, yield-
ing precise lower and upper bounds on probabilistic safety across both
infinite and finite time horizons. To facilitate the synthesis of NBCs, we
introduce their k-inductive variants. We also devise a simulation-guided
approach for training NBCs, aiming to achieve tightness in computing
precise certified lower and upper bounds. We prototype our approach
into a tool called and showcase its efficacy on four classic DNN-controlled
systems.

Keywords: Safety verification · DNN-controlled systems · Neural
barrier certificates

1 Introduction

The widespread adoption of deep reinforcement learning techniques has propelled
advancements in autonomous systems, endowing them with adaptive decision-
making capabilities by Deep Neural Networks (DNNs) [36]. Ensuring the safety
of these DNN-controlled systems emerges as a critical concern, necessitating the
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provision of certified safety guarantees. Formal methods, renowned for their rig-
orousness and automaticity in delivering verified safety assurances, stand as a
promising means to address this concern. However, most of the existing formal
verification approaches rely on qualitative approaches, predominantly employing
reachability analysis [47]. Despite their significance, qualitative results fall short
for DNN-controlled systems due to the constant influence of various uncertainties
from different sources, such as environment noises [68], unreliable sensors [55],
and even malicious attacks [67]. When qualitative verification fails, it becomes
both desirable and practical to obtain quantitative guarantees, including quan-
tified lower and upper bounds on the safety probabilities of the systems. This
necessitates the use of quantitative verification engines [47].

Quantitative verification has proven its efficacy in enhancing the design
and deployment across a variety of applications, including autonomous systems
[33], self-adaptive systems [13], distributed communication protocols [26], and
probabilistic programs [57]. These applications are commonly modeled using
automata-based quantitative formalisms [25], such as Markov chains, timed
automata, and hybrid automata, and undergo verification using tools such as
Prism [32] and Storm [27]. Nonetheless, the quantitative verification of DNN-
controlled systems is challenging due to the incorporation of intricate and almost
inexplicable decision-making models by DNNs [46]. Compounding the issue, the
difficulty is amplified by the continuous and infinite state space, as well as the
non-linear dynamics inherent in DNN-controlled systems. First, building a faith-
ful automata-based probabilistic model for a DNN-controlled system is challeng-
ing. This difficulty arises as one cannot predict the action a DNN might take
until a specific state is provided, and exhaustively enumerating all continuous
states is impractical. Second, even if such a model is constructed under certain
constraints, such as bounded steps [9] and state abstractions [31], verification is
susceptible to state exploration issues—a well-known problem in model checking
[52]. For instance, the verification process can take up to 50 minutes for just 7
steps [9].

Leveraging barrier certificates (BCs) for verification emerges as a promis-
ing technique for formally establishing the safety of non-linear and stochastic
systems [34,43]. A BC partitions the state space of the system into two parts,
ensuring that all trajectories starting from a given initial set, located within one
side of the BC, cannot reach a given set of states (deemed to be unsafe), located
on the other side, almost surely (i.e., with probability 1) or with probability at
least p ∈ [0, 1). Once a BC is computed, it can be used to certify systems’ safety
properties either qualitatively or quantitatively. Recently, studies have shown
that BCs can be implemented and trained in neural forms called Neural Bar-
rier Certificates (NBCs). NBCs facilitate the synthesis of BCs and improve their
expressiveness [1,37,38,58,70]. A relevant survey is delegated to [18].

In this paper, we propose a unified framework for both qualitatively and
quantitatively verifying the safety of DNN-controlled systems by leveraging
NBCs. The key idea is to reduce both qualitative and quantitative verification
problems into a cohesive synthesis task of their respective NBCs. Specifically, we
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first seek to establish almost-sure safety guarantees through qualitative verifi-
cation. In cases where qualitative verification fails, our quantitative verification
method is invoked, yielding precise lower and upper bounds on probabilistic
safety across both infinite and finite time horizons.

We also establish relevant theoretical results. In qualitative verification, we
prove that an NBC satisfying corresponding conditions serves as a qualitative
safety certificate. In the quantitative counterpart, we establish that valid NBCs
can be utilized to calculate certified upper and lower bounds on the probabilis-
tic safety of systems, encompassing both infinite and finite time horizons. For
infinite time horizons, as the lower bounds on probabilistic safety approach zero,
indicating a decreasing trend in safety probabilities along the time horizon, we
provide both linearly and exponentially decreasing lower and upper bounds on
the safety probabilities over finite time horizons.

To facilitate the synthesis of valid NBCs, we further relax their constraints
by defining their k-inductive variants [6]. This necessitates the conditions to be
inductive for k-compositions of the transition relation within a specified bound
k [11]. Consequently, synthesizing a qualified NBC becomes more manageable
under these k-inductive conditions, while ensuring safety guarantees. As valid
NBCs are not unique and yield different certified bounds, we devise a simulation-
guided approach to train potential NBCs. This approach aims to enhance their
capability to produce more precise certified bounds. Specifically, we estimate
safety probabilities through simulation. The differences between the simulation
results and the bounds provided by potential NBCs are incorporated into the loss
function. This integration can yield more precise certified bounds after potential
NBCs are successfully validated.

We prototype our approach into a tool, called UniQQ, and apply it to four
classic DNN-controlled problems. The experimental results showcase the effec-
tiveness of our unified verification approach in delivering both qualitative and
quantitative safety guarantees across diverse noise scenarios. Additionally, the
results underscore the efficacy of k-inductive variants in reducing verification
overhead, by 25% on average, and that of our simulation-based training method
in yielding tighter safety bounds, with an up to 47.5% improvement over ordinary
training approaches.

Contributions. Overall, we make the following contributions.

1. We present a novel framework that unifies both qualitative and quantitative
safety verification of DNN-controlled systems by reducing these verification
problems into the cohesive task of synthesizing NBCs.

2. We establish relevant theoretical results, including new constraints of NBCs
for both qualitative and quantitative safety verification and the associated
lower and upper bounds for safety probabilities in both linear and exponential
forms.

3. To accelerate training, we relax the constraints of NBCs by introducing their
k-inductive variants. We also present a simulation-guided approach designed
to train potential NBCs to compute safety bounds as tightly as possible.
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4. We develop a prototype of our approach, showcasing its efficacy across four
classic DNN-controlled systems.

All omitted proofs and supplementary experimental results can be found in the
full version [71].

2 Preliminaries

Let N, Z, and R be the sets of natural numbers, integers, and real numbers,
respectively.

2.1 DNN-Controlled Systems

We consider DNN-controlled systems where the control policies are implemented
by deep neural networks and suppose the networks are trained for specific tasks.
Formally, a DNN-controlled system is a tuple M = (S, S0, A, π, f, R), where
S ⊆ R

n is the set of (possibly continuous and infinite) system states, S0 ⊆ S is
the set of initial states, A is the set of actions, π : S → A is the trained policy
implemented by a neural network, f : S × A → S is the system dynamics, and
R : S × A × S → R is the reward function.

Trajectories. A trained DNN-controlled system M = (S, S0, A, π, f, R) is a
decision-making system that continuously interacts with the environment. At
each time step t ∈ N0, it observes a state st and feeds st into its planted NN
to compute the optimal action at = π(st) that shall be taken. Action at is then
performed, which transits st into the next state st+1 = f(st, at) via the system
dynamics f and earns a reward rt+1 = R(st, at, st+1). Given an initial state
s0 ∈ S0, a sequence of states generated during interaction is called a trajectory,
denoted as ω = {st}t∈N0

. To ease the notation, we denote by ωt the t-th element
of ω, i.e., ωt = st, and by Ω the set of all trajectories.

State Perturbations. As DNN-controlled systems collect state information via
sensors, uncertainties inevitably originate from sensor errors, equipment inaccu-
racy, or even adversarial attacks [66,68]. Therefore, the observed states of the
systems can be perturbed and actions are computed based on the perturbed
states. Formally, an observed state at time step t is ŝt := st + δt where δt ∼ µ
is a random noise and µ is a probability distribution over R

n. We denote by
W := supp (µ) the support of µ. Due to perturbation, the actual successor state
is st+1 := f(st, ât) with ât := π(ŝt) and the reward is rt+1 := R(st, ât, st+1).
Note that the successor state and the reward are calculated according to the
actual state and the action on the perturbed state, and this update is com-
mon [68]. We then denote a DNN-controlled system M perturbed by a noise
distribution µ as Mµ = (S, S0, A, π, f, R, µ).

Assumptions. Given a DNN-controlled system M = (S, S0, A, π, f, R), we
assume that the state space S is compact in the Euclidean topology of R

n,
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its system dynamics f and trained policy π are Lipschitz continuous. We fur-
ther assume that the system has forward invariance [62], i.e., all the states fall
into the state space. These assumptions are common in control theory [4,72].
For perturbation, we require that the noise distribution µ either has bounded
support or is a product of independent univariate distributions.

Probability Space. Given a DNN-controlled system Mµ = (S, S0, A, π, f, R, µ),
for each initial state s0 ∈ S0, there exists a probability space (Ωs0

,Fs0
, Ps0

) such
that Ωs0

is the set of all trajectories starting from s0 by the environmental
interaction, Fs0

is a σ-algebra over Ωs0
(i.e., a collection of subsets of Ωs0

that
contains the empty set ∅ and is closed under complementation and countable
union), and Ps0

: Fs0
→ [0, 1] is a probability measure on Fs0

. We denote the
expectation operator in this probability space by Es0

.

2.2 Barrier Certificate and Its Neural Implementation

Barrier certificates (BCs) are powerful tools to certify the safety of continuous-
time dynamical systems. In the following we describe the discrete-time BCs
which this work is based upon. We refer readers to [42,44] for details about
continuous-time BCs.

Definition 1 (Discrete-time Barrier Certificates). Given a DNN-
controlled system M = (S, S0, A, f, π, R) with an unsafe set Su ⊆ S such
that Su ∩ S0 = ∅. A discrete-time barrier certificate is a real-valued function
B : S → R such that for some constant λ ∈ (0, 1], it holds that:

B(s) ≤ 0 for all s ∈ S0, (1)

B(s) > 0 for all s ∈ Su, (2)

B(f(s, π(s))) − B(s) + λ · B(s) ≤ 0 for all s ∈ S. (3)

If there exists such a BC for the system M , then M is safe, i.e., the system
cannot reach a state in the unsafe set Su from the initial set S0. The intu-
ition is that: Condition (3) implies that for any s ∈ S such that B(s) ≤ 0,
B(f(s, π(s))) ≤ 0. Since Condition (1) asserts that the initial value of B is not
greater than zero, any trajectory ω ∈ Ωs0

starting from an initial state s0 ∈ S0

cannot enter the unsafe set Su, where B(s) > 0 (see Condition (2)), thereby
ensuring the safety of the system.

Finding a BC is restricted to the expressiveness of templates. For example,
even if there exists a function satisfying Condition (1) to (3), it may be not found
under polynomial forms. Recent work [41,69,70] proposes a neural implemen-
tation of BCs as deep neural networks, leveraging the expressiveness of neural
networks. The neural implementation of a BC is called a neural barrier certifi-
cate (NBC), which consists of training and validation. First, a learner trains
a neural network (NN) to fit over a finite set of samples the conditions for a
BC. After training, an NBC is then checked whether it meets the conditions.
This is achieved by a verifier using SMT solvers [41,70] or other methods like
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Sum-of-Squares programming [69]. If the validation result is false, a set of coun-
terexamples can be generated for future training. This iteration is repeated until
a trained candidate is validated or a given timeout is reached. This training
and validation iteration is called CounterExample-Guided Inductive Synthesis
(CEGIS) [2].

3 Verification Problem and Our Framework

3.1 Problem Statement

We consider the safety of DNN-controlled systems from both qualitative
and quantitative perspectives. Below we fix a DNN-controlled system Mµ =
(S, S0, A, π, f, R, µ) and an unsafe set Su ⊆ S such that S0 ∩ Su = ∅ throughout
the paper.

Definition 2 (Almost-Sure Safety). The system Mµ is almost-surely (a.s.)
safe, if a.s. no trajectories starting from any initial state s0 ∈ S0 enter Su, i.e.,

∀s0 ∈ S0.ω ∈ Ωs0
=⇒ ωt 6∈ Su ∀t ∈ N.

This almost-sure safety is a qualitative property and we call it “almost-sure”
due to the stochasticity from state perturbations. Since the almost-sure safety
does not always exist with the increase of state perturbations, we propose the
notion of probabilistic safety over infinite time horizons.

Definition 3 (Probabilistic Safety over Infinite Time Horizons). The
system Mµ is probabilistically safe over infinite time horizons with [linf , uinf ],
where 0 ≤ linf ≤ uinf ≤ 1, if the probability of not entering Su falls into [linf , uinf ]
for all the trajectories from any initial state s0 ∈ S0, i.e.,

∀s0 ∈ S0.Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ∈ N}] ∈ [linf , uinf ].

The probabilistic safety is a quantitative property and linf , uinf are called
lower and upper bounds on the safety probabilities over infinite time horizons,
respectively. Once both bounds equal one, it implies the almost-sure safety. When
the lower bound linf = 0, indicating that the system reaches the unsafe region at
some time step T < ∞, it is significant to figure out how the safety probability
decreases over the finite time horizon. Therefore, we present the probabilistic
safety over finite time horizons as follows.

Definition 4 (Probabilistic Safety over Finite Time Horizons). The sys-
tem Mµ is probabilistically safe over a finite time horizon T ∈ [0,∞) with
[lfin, ufin], where 0 ≤ lfin ≤ ufin ≤ 1, if the probability of not entering Su within T
falls into [lfin, ufin] for all the trajectories starting from any initial state s0 ∈ S0,

∀s0 ∈ S0.Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T }] ∈ [lfin, ufin].
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Safety Verification Problems of DNN-Controlled Systems. Consider a
DNN-controlled system Mµ = (S, S0, A, π, f, R, µ) with an unsafe set Su ∈ S
such that S0 ∩ Su = ∅. We formulate the qualitative and quantitative safety
verification problems of Mµ as follows:

1. Qualitative Verification (QV): To answer whether Mµ is almost-surely
safe.

2. Quantitative Verification over Infinite Time Horizons (QVITH): To
compute certified lower and upper bounds linf , uinf on the safety probability
of Mµ over infinite time horizons.

3. Quantitative Verification over Finite Time Horizons (QVFTH): To
compute certified lower and upper bounds lfin, ufin on the safety probability
of Mµ over a finite time horizon T .

3.2 Overview of Our Framework

We first provide an overview of our unified framework designed to address the
three safety verification problems. Our framework builds on two fundamental
results: (i) all the problems can be reduced to the task of defining BCs under
specific conditions, and the defined BCs can be used to certify almost-sure safety
for QV or safety bounds for QVITH and QVFTH, respectively, and (ii) these
BCs can be implemented and trained in neural forms. The fundamental results
are presented in Sects. 4 to 6, respectively.

The synthesis of NBCs has a preset timeout threshold, i.e., it will fail if NBCs
cannot be successfully synthesized within the time threshold. The procedure of
our framework is sketched in Fig. 1, which consists of the following three steps:

Step 1: QV. We try to synthesize an NBC satisfying conditions in Theorem 1.
If such an NBC is successfully synthesized, we can conclude that the system Mµ

is almost-surely safe by Theorem 1 and finish the verification. Alternatively, we
can resort to synthesizing a k-inductive NBC in Theorem 8 whose conditions are
weaker than those in Theorem 1. If the synthesis fails, we proceed to quantitative
verification.

Step 2: QVITH. We try to synthesize two NBCs under the conditions in
Theorems 2 and 3, respectively. If the synthesis fails, a timeout will be reported
and the process will be terminated. Otherwise, we can obtain the lower bound
linf and the upper bound uinf on probabilistic safety over infinite time horizons.
Alternatively, we can choose to synthesize the k-inductive variants of NBCs in
Theorems 9 and 10. If the lower bound linf is no less than some preset safety
threshold δ ∈ (0, 1), we terminate the verification. The purpose of setting δ is to
prevent the verification from returning a meaningless lower bound such as 0. If
linf is less than δ, we resort to computing safety bounds over finite time horizons.

Step 3: QVFTH. We try to synthesize two NBCs satisfying conditions in
Theorems 4 and 6, respectively. If the synthesis fails, a timeout will be reported
and the verification will terminate. Otherwise, we can compute the linear lower
and upper bounds on probabilistic safety over finite time horizons according
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Fig. 1. UniQQ: The unified verification framework.

to the synthesized NBCs. Alternatively, we can choose to synthesize two NBCs
satisfying conditions in Theorems 5 and 7 to achieve exponential bounds, which
might be tighter than linear ones.

4 Qualitative and Quantitative Safety Verification

In this section, we reduce all three safety verification problems of DNN-controlled
systems into a cohesive problem of defining corresponding BCs. We establish
specific conditions for candidate BCs and provide formulas for computing lower
and upper bounds for quantitative verification based on the defined BCs.

4.1 Qualitative Safety Verification

Theorem 1 (Almost-Sure Safety). Given an Mµ with an initial set S0 and
an unsafe set Su, if there exists a barrier certificate B : S → R such that for
some constant λ ∈ (0, 1], the following conditions hold:
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B(s) ≤ 0 for all s ∈ S0, (4)

B(s) > 0 for all s ∈ Su, (5)

B(f(s, π(s + δ))) − B(s) + λ · B(s) ≤ 0 for all (s, δ) ∈ S × W, (6)

then Mµ is almost-surely safe, i.e., ∀s0 ∈ S0. ω ∈ Ωs0
=⇒ ωt 6∈ Su ∀t ∈ N.

Intuition. The BC in Theorem 1 is similar to that in Definition 1 except Condi-
tion (6), in which we consider all stochastic behaviors of the system from state
perturbations. The proof of Theorem 1 resembles that in [43, Proposition 2].

Proof. We prove Theorem 1 by contradiction. Assume that there exists a barrier
certificate B satisfying conditions (4)-(6), but the system is unsafe, i.e., there is
a time step T > 0 and an initial state s0 ∈ S0 such that sT ∈ Su. Condition
(6) implies that for any state s ∈ S such that B(s) ≤ 0 and a noise δ ∈ W , the
value of B at the next step is no more than zero, i.e., B(f(s, π(s + δ))) ≤ 0. As
a result, B(sT ) must be no more than zero, which is contradictory to Condition
(5). Therefore, the system with a BC in Theorem 1 is almost-surely safe.

4.2 Quantitative Safety Verification over Infinite Time Horizon

Below we present the state-dependent lower and upper bounds on probabilistic
safety over infinite time horizons.

Theorem 2 (Lower Bounds on Infinite-time Safety). Given an Mµ with
an initial set S0 and an unsafe set Su, if there exists a barrier certificate B :
S → R such that for some constant ǫ ∈ [0, 1], the following conditions hold:

B(s) ≥ 0 for all s ∈ S, (7)

B(s) ≤ ǫ for all s ∈ S0, (8)

B(s) ≥ 1 for all s ∈ Su, (9)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ 0 for all s ∈ S \ Su, (10)

then the safety probability over infinite time horizons is bounded from below by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ∈ N}] ≥ 1 − B(s0). (11)

Intuition. A BC under conditions in Theorem 2 is a non-negative real-valued
function satisfying the supermartingale property, i.e., the expected value of the
function remains non-increasing at every time step for all states not in Su (see
Condition (10)). The proof of Theorem 2 resembles that in [43, Theorem 15].

Proof (Sketch). To obtain the lower bound in Eq. (11), we first construct a
stochastic process {Xt}t≥0 where Xt = B(st) with the safe initial state s0 ∈ S0

(see Condition (8)). Let κ be the first time that the system enters the unsafe set
Su. Then we prove that the stopped process of {Xt}t≥0 w.r.t. κ is a non-negative
supermartingale by Condition (7) and Condition (10). By Condition (9) and
Ville’s inequality [54], we have that Ps0

[st ∈ Su for some t ∈ N] ≤ X0 = B(s0).
Finally, we obtain the lower bound in Eq. (11) by the complementation of the
above upper bound.
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Theorem 3 (Upper Bounds on Infinite-time Safety). Given an Mµ with
an initial set S0 and an unsafe set Su, if there exists a barrier certificate B :
S → R such that for some constants γ ∈ (0, 1), 0 ≤ ǫ′ < ǫ ≤ 1, the following
conditions hold:

0 ≤ B(s) ≤ 1 for all s ∈ S, (12)

B(s) ≥ ǫ for all s ∈ S0, (13)

B(s) ≤ ǫ′ for all s ∈ Su, (14)

B(s) − γ · Eδ∼µ[B(f(s, π(s + δ))) | s] ≤ 0 for all s ∈ S \ Su, (15)

then the safety probability over infinite time horizons is bounded from above by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ∈ N}] ≤ 1 − B(s0). (16)

Intuition. A BC under conditions in Theorem 3 is a bounded non-negative func-
tion satisfying the γ-scaled submartingale property [53], i.e., the expected value
of B is increasing at each time step for states not in Su (Condition (15)). We
prove the theorem by Optional Stopping Theorem [56], while the former work [50]
is based on fixed-point theory [17].

Proof (Sketch). The proof is similar to that in Theorem 2. To obtain the upper
bound in Eq. (16), we first construct a stochastic process {Yt}t≥0 such that
Yt = γtB(st) with the safe initial state s0 ∈ S0 (see Condition (13) and Con-
dition (14)). Let κ be the first time that the system enters the unsafe set Su.
Then we prove that the stopped process of {Yt}t≥0 w.r.t. κ is a submartingale by
Condition (12) and Condition (15). By applying the Optional Stopping Theo-
rem [56], we derive that Ps0

[st ∈ Su for some t ∈ N] ≥ B(s0). Finally, we obtain
the upper bound in Eq. (16) by the complementation of the derived lower bound.

4.3 Quantitative Safety Verification over Finite Time Horizon

When the safety probability over infinite time horizons exhibits a decline, it
becomes advantageous to analyze the decreasing changes over finite time hori-
zons. In the following, we present our theoretical results on finite-time safety
verification, starting with two results related to lower bounds.

Theorem 4 (Linear Lower Bounds on Finite-time Safety). Given an Mµ

with an initial set S0 and an unsafe set Su, if there exists a barrier certificate
B : S → R such that for some constants λ > ǫ ≥ 0 and c ≥ 0, the following
conditions hold:

B(s) ≥ 0 for all s ∈ S, (17)

B(s) ≤ ǫ for all s ∈ S0, (18)

B(s) ≥ λ for all s ∈ Su, (19)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ c for all s ∈ S, (20)
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then the safety probability over a finite time horizon T is bounded from below
by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T }] ≥ 1 − (B(s0) + cT )/λ.

Intuition. A BC in Theorem 4 satisfies the c-martingale property [49], i.e., the
expected value of B can increase at every time step as long as it is bounded by a
constant c (Condition (20)), which is less conservative than the supermartingle
property (Condition (10)), at the cost providing safety guarantees over finite
time horizons. We prove the theorem by Ville’s Inequality [54] and the proof
resembles that in [6, Theorem 9].

Theorem 5 (Exponential Lower Bounds on Finite-time Safety). Given
an Mµ if there exists a function B : S → R such that for some constants
α > 0, β ∈ R, and γ ∈ [0, 1), the following conditions hold:

B(s) ≥ 0 for all s ∈ S, (21)

B(s) ≤ γ for all s ∈ S0, (22)

B(s) ≥ 1 for all s ∈ Su, (23)

αEδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ αβ for all s ∈ S \ Su. (24)

then the safety probability over a finite time horizon T is bounded from below by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T}] ≥ 1−
αβ

α − 1
+ (

αβ

α − 1
−B(s0)) ·α

−T
.

Intuition. A BC in Theorem 5 satisfies that its α-scaled expectation can increase
at most αβ at every time step (Condition (24)). We establish a new result in
discrete-time DNN-controlled systems and prove it by the discrete version of
Gronwall’s Inequality [24], which is inspired by former work [60] in continuous-
time dynamical systems.

Then we propose our two results of upper bounds on safety probabilities.

Theorem 6 (Linear Upper Bounds on Finite-time Safety). Given an
Mµ with an initial set S0 and an unsafe set Su, if there exists a barrier function
B : S → R such that for some constants β ∈ (0, 1), β < α < 1 + β, c ≥ 0, the
following conditions hold:

B(s) ≥ 0 for all s ∈ S, (25)

B(s) ≤ β for all s ∈ S \ Su, (26)

α ≤ B(s) ≤ 1 + β for all s ∈ Su, (27)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≥ c for all s ∈ S \ Su. (28)

then the safety probability over a finite time horizon T is bounded from above by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T }] ≤ 1 − B(s0) −
1

2
c · T + β.
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Intuition. A BC in Theorem 6 is non-negative and its value is bounded when
states are in Su (Condition (27)). Moreover, Condition (28) is the inverse of the
c-martingale property in Theorem 4, i.e., the expected value of B should increase
at least c at every time step.

Theorem 7 (Exponential Upper Bounds on Finite-Time Safety). Given
an Mµ with an initial set S0 and an unsafe set Su, if there exists a barrier
function B : S → R such that for some constants K ′ ≤ K < 0, ǫ > 0 and a
non-empty interval [a, b], the following conditions hold:

B(s) ≥ 0 for all s ∈ S \ Su, (29)

K ′ ≤ B(s) ≤ K for all s ∈ Su, (30)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ −ǫ for all s ∈ S \ Su, (31)

a ≤ B(f(s, π(s + δ))) − B(s) ≤ b for all s ∈ S \ Su and δ ∈ W, (32)

then the safety probability over a finite time horizon T is bounded from above by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T }] ≤ exp(−
2(ǫ · T − B(s0))

2

T · (b − a)2
).

Intuition. A BC under Conditions (29) to (32) is a difference-bounded ranking
supermartingale [16]. Condition (31) is the supermartingale difference condi-
tion, i.e., the expectation of B should decrease at least ǫ at each time step,
while Condition (32) implies that the update of B should be bounded. We prove
this theorem by Hoeffding’s Inequality on Supermartingales [28] and the proof
resembles that in the work [16].

Remark 1. In this section, we establish relevant theoretical results from the per-
spectives of qualitative and quantitative verification. In qualitative verification,
we prove that an NBC satisfying corresponding conditions serves as a qualitative
safety certificate. In the quantitative counterpart, we establish that valid NBCs
can be utilized to calculate certified upper and lower bounds on the probabilis-
tic safety of systems. It is worth noting that, for unifying safety verification in
Fig. 1, new theoretical results (Theorem 5 and Theorem 6) are established, which
mitigates the gaps of existing results [42,43].

Common conditions of different BCs. To clarify the construction of different BCs,
we give three common categories of their conditions. The first two categories
define the bounds of BCs for initial states and unsafe states, ensuring they are
disjoint. The third category specifies the monotonicity of the (expected) BC
values for successor states, yielding the possibility of the system reaching the
unsafe set.

5 Relaxed k-Inductive Barrier Certificates

We now introduce k-inductive barrier certificates, capable of offering both quali-
tative and quantitative safety guarantees, while relaxing the strict conditions for
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safety through the utilization of the k-induction principle [11,20]. Prior to pre-
senting our theoretical results, we first define the notion of k-inductive update
functions as follows.

Definition 5 (k-inductive Update Functions). Given an Mµ = (S, S0, A,
π, f, R, µ), a k-inductive update function gk

π,f with respect to π, f is defined
recursively, i.e.,

gk
π,f(st, ∆

k
t ) =











gπ,f(gk−1
π,f (st, ∆

k−1
t ), δt+k−1) if k > 1

f(st, π(st + δt)) if k = 1

st if k = 0

where ∆k
t = [δt, δt+1, . . . , δt+k−1] is a noise vector of length k with each δt ∼ µ,

and gπ,f(st, δt) := f(st, π(st + δt)).

Intuitively, gk
π,f computes the value of a state after k steps given a k-dimensional

noise vector ∆k ∈ W k ⊆ R
n×k, where W = supp (µ) is the support of µ. To cal-

culate the expectation w.r.t. k-dimensional noises, we denote by µk the product
measure on W k.

5.1 k-Inductive Barrier Certificates for Qualitative Safety

Theorem 8 (k-inductive Variant of Almost-Sure Safety). Given an Mµ

with an initial set S0 and an unsafe set Su, if there exists a k-inductive barrier
certificate B : S → R such that the following conditions hold:

∧

0≤i<k B(gi
π,f (s, ∆i)) ≤ 0 ∀(s, ∆i) ∈ S0 × W i,

(33)

B(s) > 0 ∀s ∈ Su,
(34)

∧

0≤i<k(B(gi
π,f (s, ∆i)) ≤ 0) =⇒ B(gk

π,f (s, ∆k)) ≤ 0 ∀(s, ∆i) ∈ S × W i,

(35)

then the system Mµ is almost-surely safe, i.e., ∀s0 ∈ S0. ω ∈ Ωs0
=⇒ ωt 6∈

Su ∀t ∈ N.

Intuition. Condition (33) implies that the state sequences starting from the safe
set will remain in the safe set for the next k − 1 consecutive time steps, while
Condition (35) means that for any k consecutive time steps, if the system is
safe, then the system will still be safe at the (k + 1)-th time step. We prove the
theorem by contradiction.

Note that Condition (35) contains an implication, in order to compute the
k-inductive BC, we replace it with its sufficient condition:

−B(gk
π,f (s, ∆k))−

∑

0≤i<k τi · (−B(gi
π,f (s, ∆i))) ≥ 0, ∀(s, ∆i) ∈ S ×W i. (36)

If there exist τ0, . . . , τk−1 ≥ 0 satisfying Eq. (36), Condition (35) is satisfied.
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5.2 k-Inductive Barrier Certificates for Quantitative Safety

Theorem 9 (k-inductive Lower Bounds on Infinite-time Safety). Given
an Mµ, if there exists a k-inductive barrier certificate B : S → R such that for
some constants k ∈ N≥1, ǫ ∈ [0, 1] and c ≥ 0, the following conditions hold:

B(s) ≥ 0 for all s ∈ S (37)

B(s) ≤ ǫ for all s ∈ S0, (38)

B(s) ≥ 1 for all s ∈ Su, (39)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ c for all s ∈ S, (40)

E∆k∼µk [B(fk
π,f (s, ∆k)) | s] − B(s) ≤ 0 for all s ∈ S, (41)

then the safety probability over infinite time horizons is bounded from below by

∀s0 ∈ S0. Ps0
[{ω0 ∈ Ωs0

| ωt 6∈ Su for all t ∈ N}] ≥ 1 − kB(s0) −
k(k − 1)c

2
.

Intuition. Condition (40) requires the barrier certificate to be a c-martingale
at every time step and Condition (41) requires the barrier certificate sampled
after every k-th step to be a supermartingale. We prove the theorem by Ville’s
Inequality [54].

Theorem 10 (k-inductive Upper Bounds on Infinite-time Safety).
Given an Mµ, if there exists a barrier certificate B : S → R such that for
some constant γ ∈ (0, 1), 0 ≤ ǫ′ < ǫ ≤ 1, c ≤ 0 the following conditions hold:

0 ≤ B(s) ≤ 1 for all s ∈ S (42)

B(s) ≥ ǫ for all s ∈ S0, (43)

B(s) ≤ ǫ′ for all s ∈ Su, (44)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≥ c for all s ∈ S, (45)

B(s) − γk · E∆k∼µk [B(gk
π,f (s, ∆k)) | s] ≤ 0 for all s ∈ S \ Su, (46)

then the safety probability over infinite time horizons is bounded from above by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Xu for all t ∈ N}] ≤ 1 − kB(s0) −
k(k − 1)c

2
.

Intuition. This BC is non-negative and bounded (Condition 42). Condition (45)
is the inverse of the c-martingale property, while Condition (46) requires the
barrier certificate sampled after every k-th step to be a γk-scaled submartingale.
We prove the theorem by the Optional Stopping Theorem [56].

Remark 2. To make the probabilistic bounds in Theorem 9 and Theorem 10
non-trivial, the value of k should be bounded by

1 ≤ k ≤
(c − 2B(s0)) +

√

4B(s0)2 + c2 − 4c(B(s0) − 2)

2c
.
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Remark 3. In this section, we relax constraints to facilitate the synthesis of valid
NBCs by defining their k-inductive variants [6]. Thus, synthesizing a valid NBC
becomes more manageable under these k-inductive conditions, while ensuring
safety guarantees. Besides, to our best knowledge, Theorem 10 is the first relax-
ation conclusion for upper bounds on infinite-time safety.

6 Synthesis of Neural Barrier Certificates

In this section, we show that the BCs defined in the previous sections for DNN-
controlled systems can be implemented and synthesized in the form of DNNs,
akin to those for linear or nonlinear stochastic systems [69].

We adopt the CEGIS-based method [2] to train and validate target NBCs.
Figure 2 sketches the workflow. In each loop iteration, we train a candidate BC
in the form of a neural network which is then passed to the validation. If the
validation result is false, we compute a set of counterexamples for future training.
This iteration is repeated until a trained candidate is validated or a given timeout
is reached. Moreover, we propose a simulation-guided training method by adding
additional terms to the loss functions to improve the tightness of upper and lower
bounds calculated by the trained NBCs.

We present the synthesis of NBCs in Theorem 2 for probabilistic safety
over infinite time horizons, as an example. We defer to the full version [71] the
synthesis of other NBCs.

6.1 Training Candidate NBCs

Two pivotal factors in the training phase are the generation of training data and
the construction of the loss function.

Fig. 2. CEGIS-based NBC synthesis [2].

Training Data Discretization. As
the state space S is possibly continu-
ous and infinite, we choose a finite set
of states for training candidate NBCs.
This can be achieved by discretizing the
state space S and constructing a dis-
cretization S̃ ⊆ S such that for each
s ∈ S, there is a s̃ ∈ S̃ with ||s−s̃||1 < τ ,
where τ > 0 is called the granularity of
S̃. As S is compact and thus bounded,
this discretization can be computed by
simply picking the vertices of a grid
with sufficiently small cells. For the re-
training after validation failure, S̃ will
be reconstructed with counterexamples
and a smaller granularity τ . Once the
discretization S̃ is obtained, we con-
struct two finite sets S̃0 := S̃ ∩ S0 and
S̃u := S̃ ∩ Su used for the training process.
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Loss Function Construction. A candidate NBC is initialized as a neural
network hθ w.r.t. the network parameter θ. hθ is trained by minimizing the
following loss function:

L(θ) := k1 · L1(θ) + k2 · L2(θ) + k3 · L3(θ) + k4 · L4(θ) + k5 · L5(θ)

where ki ∈ R, i = 1, · · · , 5 are the algorithmic parameters balancing the loss
terms.

The first loss term is defined via the condition in Condition (7) as:

L1(θ) =
1

|S̃|

∑

s∈S̃

(max{0 − hθ(s), 0})

Intuitively, a loss will incur if either hθ(s) is less than zero for any s ∈ S̃.
Correspondingly, the second and third loss terms are defined via Condition

(8) and (9) as:

L2(θ) =
1

|S̃0|

∑

s∈S̃0

(max{hθ(s) − ǫ, 0}) , and L3(θ) = 1

|S̃u|

∑

s∈S̃u

(max{1 − hθ(s), 0}) .

The fourth loss term is defined via the condition in Condition (10) as:

L4(θ) =
1

|S̃ \ S̃u|

∑

s∈S̃\S̃u

(

max{
∑

s′∈Ds

hθ(s′)
N

− hθ(s) + ζ, 0}

)

where for each s ∈ S̃\S̃u, Ds is the set of its successor states such that Ds := {s′ |
s′ = f(s, π(s + δi)), δi ∼ µ, i ∈ [1, N ]}, N > 0 is the sample number of successor
states. We use the mean of hθ(·) at the N successor states to approximate the
expected value Eδ∼µ[B(f(s, π(s + δ)))] for each s ∈ S̃ \ S̃u, and ζ > 0 to tighten
the condition.

Simulation-Guided Loss Term. A trained BC that satisfies the above four
conditions can provide lower bounds on probabilistic safety over infinite time
horizons for the system. However, these conditions have nothing to do with the
tightness of lower bounds and we may obtain a trivial zero-valued lower bound
by the trained BC.

To assure the tightness of lower bounds from trained NBCs, we propose a
simulation-guided method based on Eq. (11). For each s0 ∈ S̃0, we execute the
control system N ′ > 0 episodes, and calculate the safety frequency fs of all the
N ′ trajectories over infinite time horizons. Based on the statistical results, the
last loss term is defined as:

L5(θ) =
1

|S̃0|

∑

s∈S̃0

(max{fs + hθ(s) − 1, 0})

Intuitively, this term is to enforce the value of the derived lower bound to app-
roach the statistical result as closely as possible, ensuring its tightness.

We emphasize that our simulation-guided method plus the NBC validation
(see next section) is sound, as we will validate the trained BC to ensure it satisfies
all the BC conditions (see also Theorem 12).
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6.2 NBC Validation

A candidate NBC hθ is valid if it meets the Conditions (7) to (10). The first
three conditions condition can be checked by the following constraint

inf
s∈S

hθ(s) ≥ 0 ∧ sup
s∈S0

hθ(s) ≤ ǫ ∧ inf
s∈Su

hθ(s) ≥ 1

using the interval bound propagation approach [23,59]. When any state violates
the above equation, it is treated as a counterexample and added to S̃ for future
training.

For Condition (10), Theorem 11 reduces the validation from infinite states
to finite ones, which are easier to check.

Theorem 11. Given an Mµ and a function B : S → R, we have
Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ 0 for any state s ∈ S \ Su if the formula
below

Eδ∼µ[B(f(s̃, π(s̃ + δ))) | s̃] ≤ B(s̃) − ζ (47)

holds for any state s̃ ∈ S̃\S̃u, where ζ = τ ·LB ·(1+Lf ·(1+Lπ)) with Lf , Lπ, LB

being the Lipschitz constants of f, π and B, respectively.

To check the satisfiablility of Eq. (47) in hθ and a state s̃, we need to compute
the expected value Eδ∼µ[hθ(f(s̃, π(s̃+δ))) | s̃]. However, it is difficult to compute
its closed form because hθ is provided in the form of neural networks. Hence, We
bound the expected value Eδ∼µ[hθ(f(s̃, π(s̃+ δ))) | s̃] via interval arithmetic [23,
59] instead of computing it, which is inspired by the work [35,72]. In particular,
given the noise distribution µ and its support W = {δ ∈ R

n | µ(δ) > 0}, we
first partition W into finitely m ≥ 1 cells, i.e., cell(W) = {W1, · · · , Wm}, and
use maxvol = max

Wi∈cell(W)
vol(Wi) to denote the maximal volume with respect to

the Lebesgue measure of any cell in the partition, respectively. For the expected
value in Eq. (47), we bound it from above:

Eδ∼µ[hθ(f(s̃, π(s̃ + δ))) | s̃] ≤
∑

Wi∈cell(W)

maxvol · supδ F (δ)

where, F (δ) = hθ(f(s̃, π(s̃ + δ))). The supremum can be calculated via interval
arithmetic. We refer interested readers to [35,72] for more details.

Theorem 12 (Soundness). If a trained NBC is valid, it can certify the almost-
sure safety for the qualitative verification, or the derived bound by the NBC is a
certified lower/upper bound on the safety probability for the quantitative case.

The proof of soundness is straightforward by the NBC validation.
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7 Evaluation

Our experimental goals encompass evaluating the effectiveness of (i) the qual-
itative and quantitative verification methods within our framework, (ii) the k-
inductive BCs, and (iii) the simulation-guided training method, respectively.

7.1 Benchmarks and Experimental Setup

Table 1. Qualitative verification results.
Task Perturbation Verification k #Fail.

CP

0 X 1 0
r = 0.01 Unknown 1 0
r = 0.01 X 2 0
r = 0.03 Unknown 1 207

PD
r = 0 X 1 0
r = 0.01 Unknown 1 675
r = 0.03 Unknown 1 720

Tora

r = 0 X 1 0
r = 0.02 Unknown 1 0
r = 0.02 X 2 0
r = 0.04 Unknown 1 1113

B1
r = 0 X 1 0
r = 0.1 X 1 0
r = 0.2 Unknown 1 43

We assess the effectiveness of our app-
roach on four classic DNN-controlled
tasks from public benchmarks: Pen-
dulum and Cartpole from the DRL
training platform OpenAI’s Gym [12],
while B1 and Tora commonly used by
the state-of-the-art safety verification
tools [30]. All experiments are executed
on a workstation running Ubuntu 18.04,
with a 32-core AMD Ryzen Threadrip-
per CPU, 128GB RAM, and a single
24564MiB GPU.

The NBCs in this work are small
fully-connected feedforward networks
(FNNs) i.e., four-layer ReLU FNNs with
4×64×64×1. For the safety verification
of DNN-controlled systems, we consider
state perturbations of uniform noises with zero means and different radii. Specifi-
cally, for each state s = (s1, . . . , sn), we add noises X1, . . . , Xn to each dimension
of s and obtain the perturbed state (s1 +X1, . . . , sn +Xn), where Xi ∼ U(−r, r)
(1 ≤ i ≤ n, r ≥ 0). We adopt the CEGIS-based method in Fig. 2 to train and
validate target NBCs. For qualitative and various quantitative safety verification
of these four systems, each synthesis of an NBC requires 3 iterations on average
and each iteration produces an average of 1827 counterexamples.

For qualitative evaluations, the existence of an NBC in Theorem 1 can ensure
the almost-sure safety of the whole system. Due to the data sparsity of an initial
state, we randomly choose 10,000 initial states (instead of a single one) from the
initial set S0. For quantitative evaluations, to measure the quantitative safety
probabilities from the system level, we calculate the mean values of lower/upper
bounds by NBCs on these 10,000 states under different perturbations. The cor-
rectness of such system-level safety bounds is witnessed by Theorem 12 as each
lower/upper bound on a single state s0 is a certified bound for the exact safety
probability from s0, and thus the same holds on the system level. We also sim-
ulate 10,000 episodes starting from each of these 10,000 initial states under
different perturbations and use the statistical results as the baseline.
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Fig. 3. The certified upper and lower bounds over infinite (a-d) and finite (e-h) time
horizons, respectively, and their comparison with the simulation results. (Color figure
online)

7.2 Effectiveness of Qualitative Safety Verification

Table 1 shows the qualitative verification results under different perturbation
radii r’s and induction bounds k’s. Given a perturbed DNN-controlled system,
we verify its qualitative safety by training an NBC under the conditions in
Theorem 1. Once such an NBC is trained and validated, the system is verified
to be almost-surely safe, marked as X. If no valid barrier certificates are trained
within a given timeout, the result is marked as Unknown.

As for simulation, we record the number of those episodes where the system
enters the unsafe region, marked as the column #Fail. in the table. We can
observe that for the systems that are successfully verified by NBCs, no failed
episodes are detected by simulation. For systems with failed episodes by simu-
lation, no corresponding NBCs can be trained and validated. The consistency
experimentally reflects the effectiveness of our approach.

Furthermore, we note that for CP with r = 0.01 and Tora with r = 0.02,
there are no failed episodes, but no NBCs in Theorem 1 can be synthesized for
these systems. By applying Theorem 8, we find the 2-inductive NBCs, which
ensures the safety of the systems. It demonstrates that k-inductive variants can
relax the conditions of NBCs and thus ease the synthesis of valid NBCs for
qualitative safety verification.

As the perturbation radius increases, ensuring almost-sure safety becomes
challenging, and qualitative verification only results in the conclusion of
Unknown. Consequently, we proceed to conduct quantitative verification over
infinite time horizons.
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7.3 Effectiveness of Quantitative Safety Verification over Infinite
Time Horizon

Figure 3 (a-d) show the certified upper and lower bounds and simulation results
(i.e., black lines marked with ‘•’) over infinite time horizons. The red lines marked
with ‘�’ and blue lines marked with ‘+’ represent the mean values of the lower
bounds in Theorem 2 and the upper bounds in Theorem 3 on the chosen 10,000
initial states calculated by the corresponding NBCs, respectively. The purple
lines marked with ‘N’ and green lines marked with ‘×’ represent the mean values
of the 2-inductive upper and lower bounds calculated by the corresponding NBCs
in Theorems 10 and 9, respectively. We can find that the certified bounds enclose
the simulation outcomes, demonstrating the effectiveness of our trained NBCs.

Table 2. Synthesis time for different
NBCs.
Task Lower 2-Lower Upper 2-Upper

CP 2318.5 1876.0 2891.9 2275.3
PD 1941.6 1524.0 2282.7 1491.5
Tora 280.3 218.5 895.1 650.7
B1 587.4 313.6 1127.3 840.1

Table 2 shows a comparison of average
synthesis time (in seconds) for different
NBCs. The synthesis time includes both
training time and validation time. On
average, the training time is 846 s and the
validation time is 498 s. We observe that
the synthesis time of 2-inductive NBCs is
25% faster than that of normal NBCs, at
the sacrifice of tightness. Note that the tightness of certified bounds depends
on specific systems and perturbations. Investigating what factors influence the
tightness to yield tighter bounds is an interesting future work to explore.

Approaching zero for infinite time horizons, the lower bounds indicate a
declining trend in safety probabilities over time. Therefore, we proceed to con-
duct quantitative verification over finite time horizons, providing both linear and
exponential lower and upper bounds.

7.4 Effectiveness of Quantitative Safety Verification over Finite
Time Horizon

Figure 3 (e-h) depict the certified upper and lower bounds and simulation results
(i.e., black lines) over finite time horizons from the system level. Fix a sufficiently
large noise level for each system, the x-axis represents the time horizon, while
the y-axis corresponds to the safety probabilities. The purple lines and blue lines
represent the mean values of the exponential lower and upper bounds calculated
by the corresponding NBCs in Theorem 5 and Theorem 7, respectively. The
red lines and green lines represent the mean values of the linear lower and upper
bounds calculated by the corresponding NBCs in Theorem 4 and Theorem 6,
respectively. The results indicate that our computed certified bounds encapsulate
the statistical outcomes. Moreover, the exponential upper bounds are always
tighter than the linear upper bounds, and the exponential lower bounds become
tighter than the linear ones with the increase of time. It is worth exploring the
factors to generate tighter results in future work.
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Fig. 4. The certified bounds w/ and w/o simulation-guided loss terms over infinite
time horizons. (Color figure online)

7.5 Effectiveness of Simulation-Guided Loss Term

The simulation-guided loss term is proposed in Sect. 6.1 to tighten the certified
bounds calculated by NBCs. To evaluate its effectiveness, we choose NBCs in
Theorems 2 and 3, and train them with and without the simulation-guided loss
terms. The comparison between them is shown in Fig. 4. The red lines marked
with ‘�’ and blue lines marked with ‘+’ represent the mean values of the bounds
in Theorems 2 and 3 on initial states calculated by the corresponding NBCs
trained with the simulation-guided loss terms, respectively. The purple lines with
‘N’ and green lines with ‘×’ represent the mean values of the bounds calculated
by the NBCs trained without the simulation-guided loss terms. Apparently, the
upper and lower bounds derived by NBCs trained without the simulation-guided
loss terms are looser than the bounds trained with these terms. Specifically, the
results computed by NBCs with simulation-guided loss terms can achieve an
average improvement of 47.5% for lower bounds and 31.7% for upper bounds,
respectively. Hence, it is fair to conclude that accounting for simulation-guided
loss terms is essential when conducting quantitative safety verification.

8 Related Work

Barrier Certificates for Stochastic Systems. Our unified safety verifica-
tion framework draws inspiration from research on the formal verification of
stochastic systems employing barrier certificates. Prajna et al. [42–44] propose
the use of barrier certificates in the safety verification of stochastic systems.
This idea has been further expanded through data-driven approaches [45] and
k-inductive variants [6]. As the dual problem of computing safety probabili-
ties, computing reachability probabilities in stochastic dynamical systems has
been studied for both infinite [22,62,63] and finite time horizons [60,61]. Alireza
et al. [3] represent non-negative repulsing supermartingales as neural networks
and use them to derive upper bounds on the finite-time reachability probabil-
ity. Probabilistic programs, viewed as stochastic models, have their reachability
and termination probabilities investigated using proof rules [21] and martingale-
based approaches [7,15,16], where the latter are subsequently unified through
order-theoretic fixed-point approaches [50,51,53].
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Formal Verification of DNN-Controlled Systems. Modeling DNN-
controlled systems as Markov Decision Processes (MDPs) and verifying these
models using probabilistic model checkers, such as PRISM [32] and Storm [27],
constitutes a quantitative verification approach. Bacci and Parker [9,10] employ
abstract interpretation to construct interval MDPs and yield safety probabilities
within bounded time. Carr et al. [14] propose probabilistic verification of DNN-
controlled systems by constraining the analysis to partially observable finite-state
models. Amir et al. propose a scalable approach based on DNN verification tech-
niques to first support complex properties such as liveness [5].

Reachability analysis is a pivotal qualitative approach in the safety veri-
fication of DNN-controlled systems. Bacci et al. [8] introduce a linear over-
approximation-based method for calculating reachable set invariants over an
infinite time horizon for DNN-controlled systems. Other reachability analysis
approaches, such as Verisig [30] and Polar [29], focus solely on bounded time.
These approaches do not consider perturbations as they assume actions on states
to be deterministic.

Barrier Certificates for Training and Verifying DNN Controllers. BC-
based methods [1,41] have recently been investigated for training and verifying
DNN controllers. The key idea is to train a safe DNN controller through inter-
active computations of corresponding barrier certificates to ensure qualitative
safety [19,64]. Vishnu et al. [40] present a data-driven algorithm for training a
neural network to represent the closure certificates in [39]. Existing BC-based
approaches for the verification of DNN-controlled systems focus solely on qual-
itative aspects but neglect the consideration of perturbations [40,48,65]. Our
approach complements them by accommodating the inherent uncertainty in
DNN-controlled systems.

9 Conclusion and Future Work

We have systematically studied the BC-based qualitative and quantitative safety
verification of DNN-controlled systems. This involves unifying and transforming
the verification problems into a general task of training corresponding neural
certificate barriers. We have also defined the conditions that a trained certifi-
cate should satisfy, along with the corresponding lower and upper bounds pre-
sented in both linear and exponential forms and k-inductive variants. Through
the unification of these verification problems, we have established a comprehen-
sive framework for delivering various safety guarantees, whether qualitatively or
quantitatively, in a unified manner.

Our framework sheds light on the quest for scalable and multipurpose safety
verification of DNN-controlled systems. It accommodates both qualitative and
quantitative aspects in verified results, spans both finite and infinite time hori-
zons, and encompasses certified bounds presented in both linear and exponential
forms. Our work also showcases the potential to circumvent verification chal-
lenges posed by DNN controllers. From our experiments, we acknowledge that
both qualitative and quantitative verification results are significantly dependent
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on the quality of the trained NBCs. Our next step is to explore more sophisti-
cated deep learning methods and hyperparameter settings (e.g., the architecture
of NBCs and the k-inductive horizon) to train valid NBCs for achieving more
precise verification results.
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