
Provably Tightest Linear Approximation for
Robustness Verification of Sigmoid-like Neural

Networks
Zhaodi Zhang

zdzhang@stu.ecnu.edu.cn
East China Normal University

Shanghai, China

Yiting Wu
51205902026@stu.ecnu.edu.cn
East China Normal University

Shanghai, China

Si Liu
si.liu@inf.ethz.ch

ETH Zürich
Zürich, Switzerland

Jing Liu
jliu@sei.ecnu.edu.cn

Shanghai Key Laboratory of
Trustworthy Computing,

East China Normal University
Shanghai, China

Min Zhang
zhangmin@sei.ecnu.edu.cn

East China Normal University,
Shanghai Institute of Intelligent

Science and Technology
Shanghai, China

ABSTRACT

The robustness of deep neural networks is crucial to modern AI-
enabled systems and should be formally verified. Sigmoid-like neu-
ral networks have been adopted in a wide range of applications. Due
to their non-linearity, Sigmoid-like activation functions are usu-
ally over-approximated for efficient verification, which inevitably
introduces imprecision. Considerable efforts have been devoted to
finding the so-called tighter approximations to obtain more pre-
cise verification results. However, existing tightness definitions
are heuristic and lack theoretical foundations. We conduct a thor-
ough empirical analysis of existing neuron-wise characterizations of
tightness and reveal that they are superior only on specific neural
networks. We then introduce the notion of network-wise tightness
as a unified tightness definition and show that computing network-
wise tightness is a complex non-convex optimization problem. We
bypass the complexity from different perspectives via two effi-
cient, provably tightest approximations. The results demonstrate
the promising performance achievement of our approaches over
state of the art: (i) achieving up to 251.28% improvement to certified
lower robustness bounds; and (ii) exhibiting notably more precise
verification results on convolutional networks.

CCS CONCEPTS

• Software and its engineering→ Formal software verification; •
Theory of computation→ Abstraction.

ACM Reference Format:

Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang. 2022. Provably
Tightest Linear Approximation for Robustness Verification of Sigmoid-like
Neural Networks . In 37th IEEE/ACM International Conference on Automated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556907

Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3551349.3556907

1 INTRODUCTION

The reliability concerns about deep neural networks (DNNs) are
increasing more drastically than ever, especially as such networks
are being embedded into software systems to make them intelli-
gent. Considerable efforts from both AI and software engineering
communities have been devoted to achieving robust DNNs by lever-
aging testing and verification techniques [4, 12, 32, 40, 42, 47, 48, 54].
Among these attempts, formal methods have been demonstrated ef-
fective in offering certified robustness guarantees, giving birth to an
emerging research field called Trustworthy AI [50]. One distinguish-
ing feature of formal methods is that they could provide rigorous
proofs of correctness automatically when the properties are sat-
isfied or disprove them by counterexamples (i.e., witnesses to the
violations) [3, 9]. Robustness is an important correctness property
in DNN verification: Minor modifications to the neural network’s
inputs must not alter its outputs [7]. Guaranteeing robustness is
indispensable to prevent AI-enabled systems from environmental
perturbations and adversarial attacks.

Formal robustness verification of DNNs has been well stud-
ied in recent years [14, 16, 20, 32, 33, 42, 45, 47–49]. Most efforts
are focused on the ReLU networks that only use the simple piece-
wise ReLU activation function. Despite their wide adoptions in
modern AI-enabled systems, another notable class of S-shaped
(or Sigmoid-like) activation functions, such as Sigmoid, Tanh, and
Arctan, have not attracted much attention yet. Due to their non-
linearity, Sigmoid-like activation functions are far more complex
to be verified. A de facto solution is to over-approximate such func-
tions by linear bounds and to transform the verification problem
into efficiently solvable linear programming. Many state-of-the-art
DNN verification techniques, e.g., abstract interpretation [16, 40],
symbolic interval propagation [45], model checking [33], differen-
tial verification [32], reachability and output range analysis [13, 44],
are based on linear approximation.

Over-approximation inevitably introduces imprecision, render-
ing approximation-based verification incomplete: Unknown results

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-1938-2902
https://doi.org/10.1145/3551349.3556907
https://doi.org/10.1145/3551349.3556907

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang

may be returned when the neural network’s robustness cannot be
verified. Considerable efforts have been devoted to finding the so-
called tighter approximations to achieve more precise verification
results. For example, a larger certified lower robust bound [5, 28]
(the perturbation distance under which a neural network is proved
robust against any allowable perturbation) is preferable in approxi-
mation. Several characterizations of tightness and approximation
approaches have been proposed for Sigmoid-like activation func-
tions [5, 18, 26, 28, 51, 55]. However, they are all heuristic and lack
theoretical foundations for the individual outperformance.

We conduct a thorough empirical analysis of existing approaches
and reveal that they are superior only on specific neural networks.
In particular, we have found that the claimed tighter approximation
actually produces smaller certified lower bounds according to the
tightness defined and observed frequent occurrences of such cases.

Motivated by these observations, we introduce the notion of
network-wise tightness as a unified tightness definition to charac-
terize linear approximations of Sigmoid-like activation functions.
This new definition ensures that a tighter approximation can al-
ways compute larger certified lower bounds (i.e., larger safe radius).
However, we show that it unfortunately implies that computing the
tightest approximation is essentially a network-wise non-convex
optimization problem [28], which is hard to solve in practice [31].

We bypass the complex optimization problem from two different
perspectives, depending on the neural network architecture. For the
networks with only one hidden layer, we leverage a gradient-based
searching algorithm for computing the tightest approximations.
Regarding the networks with multiple hidden layers, based on our
empirically study of the state-of-the-art tools, we have gained an
insight that a larger robust bound can be computed when the intervals
keep to be tighter during the layer-by-layer propagation. Based on
this insight, we propose a neuron-wise tightest approximation and
prove that it guarantees the network-wise tightest approximation
when the networks are of non-negative weights. Such networks
have been demonstrated suitable in a wide range of applications
such as effective defense for adversarial attacks in malware and
spam detection [8, 15, 19] and balancing accuracy and robustness
in autoencoding [1, 29].

We have implemented a prototype of our approach calledNeWise1
and extensively compared it to three state-of-the-art tools, namely
DeepCert [51], VeriNet [18], and RobustVerifier [26]. Our ex-
perimental results show that NeWise (i) achieves up to 251.28%
improvement to certified lower robustness bounds in the provably
tightest cases and (ii) exhibits up to 122.22% improvement to certi-
fied lower robustness bounds on convolutional networks.

To summarize, this paper makes three major contributions:
(1) We have introduced a novel unified definition of network-

wise tightness to characterize the tightness of linear approxi-
mations for neural network robustness verification.

(2) We have identified two caseswherewe can efficiently achieve
provably tightest approximations; the corresponding ap-
proaches have been proposed.

(3) We have implemented a verification tool and conducted com-
prehensive evaluation on its effectiveness and efficiency over
three state-of-the-art verifiers.

1Our code is available at https://github.com/FormalAIze/NeWise.git.

layer

Hidden
Output

Dog

Automobile

Original

ε = 0.05

Perturbed
image image

Input layers
layer

0.16

0.62

σ, b σ, b′
w1 w2

w3

Figure 1: A perturbed image of a dog is misclassified to an

automobile with 62% probability in 0.05 perturbation radius.

The remainder of this paper proceeds as follows: Section 2 gives
preliminaries on robustness verification of neural networks. Section
3 shows the tightness measurements of linear approximations and
introduce our notion of network-wise tightness. Sections 4 and 5
present our provably tightest approximations from two different
perspectives, respectively. Section 6 describes our evaluation results.
We discuss related work in Section 7 and conclude in Section 8.

2 PRELIMINARIES

2.1 Robustness Verification of Neural Networks

2.1.1 Deep Neural Network. A deep neural network is a directed
network, where the nodes are called neurons and arranged layer
by layer. Each neuron is associated with an activation function
𝜎 (𝑥) and a bias 𝑏. Except for the first layer, the neurons on a layer
are connected to those on the preceding layer, as shown in Figure
1. Every edge is associated with a weight, which is computed by
training. The first and last layers are called input and output layers,
respectively. The others between them are called hidden layers.

The execution of a neural network follows the style of layer-
by-layer propagation. Each neuron on the input layer admits a
number. The number is multiplied by the weights on the edges
and then passed to the successor neurons on the next layer. All
the incoming numbers are summed. The summation is fed to the
activation function 𝜎 and the output of 𝜎 is added with the bias 𝑏.
The result is then propagated to the next layer until reaching the
output layer.

Formally, a 𝑘-layer neural network is a function 𝑓 : R𝑛 → R𝑚
of the form 𝑓 𝑘 ◦ 𝜎𝑘−1 ◦ . . . ◦ 𝜎1 ◦ 𝑓 1, with 𝜎𝑡 being a non-linear
and differentiable activation function for 𝑡-th layer. The function
𝑓 𝑡 is either an affine transformation or a convolutional operation:

𝑓 (𝑥) =𝑊𝑥 + 𝑏, (Affine Transformation)
𝑓 (𝑥) =𝑊 ∗ 𝑥 + 𝑏, (Convolutional Operation)

where𝑊 ,𝑏, and ∗ refer to the weight matrix, the bias vector, and the
convolutional product, respectively. In this work, we focus on the
networks with the Sigmoid-like activation functions i.e., Sigmoid,
Tanh, and Arctan, which are defined as follows, respectively.

𝜎 (𝑥) = 1
1 + 𝑒−𝑥 , 𝜎 (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 , 𝜎 (𝑥) = 𝑡𝑎𝑛−1 (𝑥)

The output of a neural network 𝑓 is a vector of𝑚 floating num-
bers between 0 and 1, denoting the probabilities of classifying an
input to the𝑚 labels. Let 𝑆 be the set of𝑚 classification labels for
the network 𝑓 . We use L(𝑓 (𝑥)) to represent the output label for

https://github.com/FormalAIze/NeWise.git

Provably Tightest Linear Approximation for Robustness Verification of Sigmoid-like Neural Networks ASE ’22, October 10–14, 2022, Rochester, MI, USA

the input 𝑥 with

L(𝑓 (𝑥)) = argmax
𝑠∈𝑆

𝑓 (𝑥) [𝑠] .

Intuitively, L(𝑓 (𝑥)) returns a label 𝑠 in 𝑆 such that 𝑓 (𝑥) [𝑠] is max-
imal among the numbers in the output vector.

2.1.2 Robustness and Robustness Verification. Neural networks are
essentially “programs” composed by computers by fine-tuning the
weights in the networks from training data. Unlike the handcrafted
programs developed by programmers, neural networks lack formal
requirements and are almost inexplicable, making it very challeng-
ing to formalize and verify their properties.

A neural network is called robust if reasonable perturbations to
its inputs do not alter the classification result. A perturbation is
typically measured by the distance between the perturbed input 𝑥 ′
and the original one 𝑥 by using ℓ𝑝 -norm, denoted by | |𝑥 − 𝑥 ′ | |𝑝 ≜
𝑝

√︃
|𝑥1 − 𝑥 ′1 |𝑝 + . . . + |𝑥𝑛 − 𝑥

′
𝑛 |𝑝 , where 𝑝 can be 1, 2 or ∞, and 𝑛 is

the length of the vectors 𝑥 . In this work, we consider the most
general case when 𝑝 = ∞.
Example 1. We consider an example to explain how a perturbed
image is misclassified. As shown in Figure 1, a normal image of
a dog can be correctly classified by a neural network. We assume
that the image can be perturbed within a 0.05 distance under ℓ∞-
norm. There exists a perturbed image such that when it is fed into
the network, the outputs of the two neurons labeled by dog and
automobile are 0.16 and 0.62, respectively. It indicates that the image
is classified to a dog (resp. automobile) with the probability of 16%
(reps. 62%). Therefore, it is classified to be an automobile, although
it still represents a dog to human eyes, apparently.

The robustness of a neural network can be quantitively measured
by a lower bound 𝜖 , which refers to a safe perturbation distance
such that any perturbations below 𝜖 have the same classification
result as the original input to the neural network.

Definition 1 (Local Robustness). Given a neural network 𝑓 ,
an input 𝑥0, and a bound 𝜖 under ℓ𝑝 -norm, 𝑓 is called robust w.r.t. 𝑥0
iff L(𝑓 (𝑥)) = L(𝑓 (𝑥0)) holds for each 𝑥 such that | |𝑥 − 𝑥0 | |𝑝 ≤ 𝜖 .
Such 𝜖 is called a certified lower bound.

The twin problems of verifying 𝑓 ’s robustness are: (i) to prove
that, for each 𝑥 satisfying | |𝑥 − 𝑥0 | |𝑝 ≤ 𝜖 ,

𝑓𝑠0 (𝑥) − 𝑓𝑠 (𝑥) > 0 (1)

holds for each 𝑠 ∈ 𝑆 − {𝑠0}, where 𝑠0 = L(𝑓 (𝑥0)) and 𝑓𝑠 (𝑥) returns
the probability, i.e., 𝑃 (L(𝑓 (𝑥)) = 𝑠), of classifying 𝑥 to the label 𝑠
by 𝑓 ; and (ii) to compute a certified lower bound — a larger certified
lower bound implies a more precise robustness verification result.
As directly computing 𝜖 is difficult due to the non-linearity of the
constraint (1), most of the state-of-the-art approaches [5, 51, 55]
adopt the efficient binary search algorithm to first determine a
candidate 𝜖 and then check whether (1) is true or false on 𝜖 .

2.2 Approximation-based Robustness

Verification

A neural network 𝑓 is highly non-linear due to the inclusion of
activation functions. Proving Formula (1) is computationally ex-
pensive, e.g., NP-complete even for the simplest fully connected
ReLU networks [20, 37]. Many approaches have been investigated to

x1

[−1, 1]

[−1, 1]
1

−1
1

1

x2

x3

x4

x5

xU,3 = 0.104(x1 + x2) + 0.670
xL,3 = 0.104(x1 + x2) + 0.329
xL,3 ≤ x3 ≤ xU,3

xU,4 = 0.104(x1 − x2) + 0.670
xL,4 = 0.104(x1 − x2) + 0.329
xL,4 ≤ x4 ≤ xU,4

x6

2

−5
2

3

x5 = 2x3 + 2x4

x6 = 3x3 − 5x4

x7

−1

1

x7 = x5 − x6
[0.177, 5.817]

x3 = Sigmoid(x1 + x2)

x4 = Sigmoid(x1 − x2)

Figure 2: An example of approximation-based verification.

improve the verification efficiency while sacrificing completeness.
Representative methods include interval analysis [46], abstract in-
terpretation [16, 40], and output range estimation [13, 52], etc. The
technique underlying these approaches is to over-approximate the
non-linear activation functions using linear constraints, which can
be more efficiently solved than the original ones.

Instead of directly proving Formula (1), the approximation-based
approaches over-approximate both 𝑓𝑠0 (𝑥) and 𝑓𝑠 (𝑥) by two linear
constraints and prove that the lower linear bound 𝑓𝐿,𝑠0 (𝑥) of 𝑓𝑠0 (𝑥)
is greater than the upper linear bound 𝑓𝑈 ,𝑠 (𝑥) of 𝑓𝑠 (𝑥). Apparently,
𝑓𝐿,𝑠0 (𝑥) − 𝑓𝑈 ,𝑠 (𝑥) > 0 is a sufficient condition of Formula (1), and
it is significantly more efficient to prove or disprove. Therefore,
it is widely adopted in neural network verification [5, 18, 26, 51],
although it may produce false positives when it is disproved.

Definition 2 (Upper/Lower linear bounds). Let 𝜎 (𝑥) be a
non-linear function with 𝑥 ∈ [𝑙, 𝑢], 𝛼𝐿, 𝛼𝑈 , 𝛽𝐿, 𝛽𝑈 ∈ R, and

ℎ𝑈 (𝑥) = 𝛼𝑈 𝑥 + 𝛽𝑈 , ℎ𝐿 (𝑥) = 𝛼𝐿𝑥 + 𝛽𝐿 . (2)

ℎ𝑈 (𝑥) and ℎ𝐿 (𝑥) are called upper and lower linear bounds of 𝜎 (𝑥) if
the following condition holds:

∀𝑥 ∈ [𝑙, 𝑢], ℎ𝐿 (𝑥) ≤ 𝜎 (𝑥) ≤ ℎ𝑈 (𝑥) . (3)

Over-approximating the non-linear activation functions using
linear lower and upper bounds is the key to the approximation of a
neural network. For each activation function 𝜎 on a domain [𝑙, 𝑢],
we define an upper linear bound ℎ𝑈 and a lower one ℎ𝐿 to ensure
that for all 𝑥 in [𝑙, 𝑢], 𝜎 (𝑥) is enclosed in [ℎ𝐿 (𝑥), ℎ𝑈 (𝑥)].

Given an input range as in Definition 1, the output ranges of a
network are computed by propagating the output interval of each
neuron as in Definition 2 to the output layer.

Example 2. We consider an example of verifying a simple neural
network based on approximation, as shown in Figure 2. The original
verification problem is to prove that for any input (𝑥1, 𝑥2) with 𝑥1 ∈
[−1, 1] and 𝑥2 ∈ [−1, 1], it is always classified to the label of neuron
𝑥5. That is equivalent to proving that the output of the auxiliary
neuron 𝑥7 = (𝑥5 −𝑥6) is always greater than 0. We define the linear
upper/lower bounds 𝑥𝑈 ,3, 𝑥𝐿,3 and 𝑥𝑈 ,4, 𝑥𝐿,4 to over-approximate 𝑥3
and 𝑥4, respectively. It suffices to prove that 𝑥𝐿,5−𝑥𝑈 ,6 > 0 is always
true. We can over-estimate the output interval of 𝑥𝐿,5 − 𝑥𝑈 ,6 is
[0.177, 5.817] using 𝑥𝑈 ,3, 𝑥𝐿,3 and 𝑥𝑈 ,4, 𝑥𝐿,4 and consequently prove
the robustness of the network for all the inputs in [−1, 1] × [−1, 1].

Note that it is not necessary to approximate an activation func-
tion using only one linear upper or lower bound. One may consider

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang

−3 −2 −1 0 1 2 3

0.5

1

σ(x)

xU,h

xL,h
l u

(a) Minimal area and parallel lines.

xU,h

xL,h

−3 −2 −1 0 1 2 3

0.5

1

σ(x)

l u

(b) Endpoints (our work).

−3 −2 −1 0 1 2 3

0.5

1
𝜎(𝑥)

𝑥𝑈,ℎ

𝑥𝐿,ℎ

𝑙+𝑢
2

𝑙 𝑢

(c) Minimal area [18].

−3 −2 −1 0 1 2 3

0.5

1
𝜎(𝑥)

𝑥𝑈,ℎ

𝑥𝐿,ℎ

𝑙 𝑢

(d) Parallel lines [51].

Figure 3: Different approximations according to the domain of 𝜎 (𝑥) and their tightness definitions.

piece-wise linear bounds made up of a sequence of linear segments
to approximate the function more tightly by being closer to it. How-
ever, the piece-wise way causes the number of constraints to blow
up exponentially when propagated layer by layer [40]. It would dras-
tically reduce the verification scalability. Thus, over-approximating
an activation function using one upper linear bound and one lower
linear bound is the most efficient and widely-adopted choice for
the approximation-based robustness verification approaches.

3 LINEAR APPROXIMATION APPROACHES

In this section, we analyze the tightness issue of existing approx-
imation approaches and formally define a unified network-wise
tightness to characterize the approximations. The network-wise
tightness guarantees that output neurons can produce precise out-
put ranges.

3.1 The Tightness Issue of Approximations

As approximation inevitably introduces overestimation, defining
the tightest possible approximation is crucial to obtaining precise
verification results. Several approximation approaches have been
proposed under different strategies.

Henriksen et al. [18] proposed to measure the tightness of ap-
proximations using the enclosed area between the bound and the
approximated function. An approximation is tighter if the corre-
sponding area is smaller than another. By this definition, the ap-
proximations to 𝑥3, 𝑥4 should be the following linear bounds:

𝑥 ′𝑈 ,3 = 0.204(𝑥1 + 𝑥2) + 0.527, (4)

𝑥 ′𝐿,3 = 0.204(𝑥1 + 𝑥2) + 0.472, (5)

𝑥 ′𝑈 ,4 = 0.204(𝑥1 − 𝑥2) + 0.527, (6)

𝑥 ′𝐿,4 = 0.204(𝑥1 − 𝑥2) + 0.472. (7)

Figure 3a shows the bounds graphically. Apparently, they are closer
to the activation function on the interval [−2, 2]. Surprisingly, using
the tighter linear bounds the output range of 𝑥7 is [−0.079, 6.073], by
which we cannot prove and disprove the robustness. Wu and Zhang
adopted the same strategy for this case in their recent work [51].
In Example 2, we adopt a new strategy by taking the tangent lines
at the two endpoints as its upper and lower bounds, as shown
in Figure 3b. We obtain a smaller output range by these bounds,
although they are far less tight than the one in Figure 3a.

In another case shown in Figure 3c, Henriksen et al. [18] proved
that the tangent line at the middle point when 𝑥 = 𝑙+𝑢

2 is the

Table 1: Tightness evaluation of state of the art: Deep-

Cert[51], VeriNet[28], and RobustVerifier[26]. CNN𝑡−𝑐
denotes a CNN with 𝑡 layers and 𝑐 filters of size 3×3. The
models are pre-trained [2, 40, 51] by, e.g., DeepPoly [40].

Dataset Model #Neurons
Certified Lower Bound (Average)

DeepCert VeriNet Rob.Ver.

MNIST

3x50 160 0.0076 0.0077 0.0065
3x100 310 0.0086 0.0087 0.0074
3x200 610 0.0091 0.0092 0.0079
5x100 510 0.0061 0.0062 0.0052
6x500 3,010 0.0778 0.0776 0.0665
CNN3−2 2,514 0.0579 0.0580 0.0569
CNN3−4 5,018 0.0473 0.0472 0.0464
CNN4−5 8,680 0.0539 0.0543 0.0522
CNN5−5 10,680 0.0548 0.0550 0.0513
CNN6−5 12,300 0.0590 0.0588 0.0541
CNN8−5 14,570 0.0878 0.0882 0.0685

Fashion
MNIST

3x50 160 0.0101 0.0102 0.0086
5x100 510 0.0078 0.0079 0.0066
CNN4−5 8,680 0.0721 0.0720 0.0666
CNN5−5 10,680 0.0676 0.0677 0.0605
CNN6−5 12,300 0.0695 0.0691 0.0627

CIFAR10

3x50 160 0.0045 0.0046 0.0042
5x100 510 0.0038 0.0037 0.0033
CNN3−2 3,378 0.0312 0.0313 0.0311
CNN6−5 17,110 0.0224 0.0223 0.0212

tight upper bound because the enclosed area between it and the
activation function is minimal. In Wu and Zhang’s approach, they
adopted the tangent line that is parallel to the lower bound as its
upper bound, as shown in Figure 3d. Some other approaches such
as [5, 26, 55] adopt similar approximation strategies, but they have
been experimentally proved not as tight as the ones in [18, 51].

Lyu et al. [28] proposed a gradient-based searching approach
for computing a tighter approximation if the approximation can
produce tighter input intervals for the following neurons. However,
the experimental results in the work [51] show that this approach
neither guarantees it always produces larger certified lower robust
bound than other approaches and its scalability is rather limited
due to the complexity of the searching algorithm for each neuron.

Table 1 shows the comparison results, where, surprisingly, none
of these approaches surpass the others for all the networks. We
also observe that VeriNet won the competition on 13 out of 20
networks, while DeepCert on the remaining ones. This indicates
that the performances of these so-called tight approaches vary case
by case. In this paper we do not intend to judge which approach is
better experimentally but focus on seeking theoretical foundations
for the tightness of approximations. The comparison result showed
that existing tightness definitions do not rigorously guarantee that

Provably Tightest Linear Approximation for Robustness Verification of Sigmoid-like Neural Networks ASE ’22, October 10–14, 2022, Rochester, MI, USA

0 50 100 150 200

5

0

5

10

(a) Layer 2 of 𝑁1

0 50 100 150 200
1.6

1.2

0.8

0.4

0.0

(b) Layer 3 of 𝑁1

0 50 100 150 200
0.4

0.2

0.0

0.2

(c) Layer 4 of 𝑁1

0 50 100 150 200
0.3

0.0

0.3

(d) Layer 5 of 𝑁1

0 50 100 150 200

0.1

0.0

0.1

0.2

(e) Layer 6 of 𝑁1

2 4 6 8 10

0.1

0.0

0.1

0.2

(f) Output layer of 𝑁1

0 100 200 300 400 500
0.05

0.00

0.05

0.10

0.15

(g) Layer 2 of 𝑁2

0 100 200 300 400 500
6

4

2

0

(h) Layer 3 of 𝑁2

0 100 200 300 400 500

0.0

0.5

1.0

(i) Layer 4 of 𝑁2

0 100 200 300 400 500
0.04

0.02

0.00

0.02

(j) Layer 5 of 𝑁2

0 100 200 300 400 500

0.00

0.05

0.10

0.15

(k) Layer 6 of 𝑁2

2 4 6 8 10

0.00

0.02

0.04

(l) Output layer of 𝑁2

Figure 4: Visualization of intermediate intervals during layer-by-layer propagation under different approximations (Red dot:

(𝑢−𝑙)−(𝑢′−𝑙 ′)
𝑢′−𝑙 ′ ; blue dot:

𝑙−𝑙 ′
𝑙 ′ ; green dot:

𝑢−𝑢′
𝑢′ ; [𝑙, 𝑢]: interval computed by VeriNet, [𝑙 ′, 𝑢′]: interval computed by DeepCert).

a tighter approximation can always produce a larger robust bound.
This motivates us to seek a unified definition to characterize the
tightness of approximations for robustness verification of neural
networks.

3.2 Empirical Analysis

To validate our observation on the tightness issue and investigate
its generality, we have performed empirical analysis of three state-
of-the-art approximation approaches, i.e., DeepCert [51], VeriNet
[18], and RobustVerifier [26], on 20 sigmoid neural networks
collected from the public benchmarks. We evaluate the tightness of
these approaches by computing the lower robust bound for each
network using the tools, respectively. We randomly selected 100
images for each network, computed their lower robust bounds, and
took the average value. Computing averaged lower bounds is a
widely-adopted approach to reduce the affect of floating-point er-
rors [28, 47, 51]. Thus, even a small difference in the averaged value
reflects a big difference in individual input. In general, the larger
bound indicates the corresponding tool has a better performance.

We empirically analyzed the layer-by-layer propagation in the
verification process of the best two tools VeriNet and DeepCert
and identified the missing factor that influences verification results.
We tracked the computation of the intermediate intervals of the neu-
rons on hidden layers during their layer-by-layer propagation and
compared their tightness under different approximation strategies.

Figure 4 shows the layer-by-layer comparison of the interme-
diate intervals on the hidden neurons and output neurons. These
intervals are computed during verification using the approxima-
tion approaches in [18, 51], respectively. The figures from Figure
4a to 4f show one 5-hidden-layer network named 𝑁1 on which
VeriNet computes a larger bound than DeepCert, while those
from Figure 4g to 4l show another 5-hidden-layer network named
𝑁2 on which DeepCert computes a larger bound than VeriNet.
For each neuron, we use [𝑙, 𝑢] and [𝑙 ′, 𝑢′] to represent the intervals
computed by VeriNet and DeepCert, respectively. We introduce
three dots in red, blue and green to represent (𝑢−𝑙)−(𝑢

′−𝑙 ′)
𝑢′−𝑙 ′ , 𝑙−𝑙

′

𝑙 ′

and 𝑢−𝑢′
𝑢′ , respectively. The 𝑥-axis represents the neurons on the

corresponding layer, and the𝑦-axis represents the differences of the
interval length, lower bounds, and upper bounds of the intervals.

Horizontally on 𝑁1, most of the red dots are below 0 from layer
2 to the output layer, except layer 6. That indicates the intervals
computed by VeriNet usually have smaller (tighter) sizes than
those by DeepCert. The blue dots gradually move up above 0,
indicating that the lower bounds of the intervals computed by
VeriNet become greater than the those by DeepCert. Similarly,
the green dots gradually move down below 0, indicating that the
upper bounds computed by VeriNet become smaller. The trends
of the three values reflect that the intermediate intervals computed
by VeriNet are statistically tighter than those by DeepCert on
network 𝑁1.

The trend of intermediate intervals on network 𝑁2 is an opposite
of the one on 𝑁1. The red dots move up above 0 layer by layer,
indicating that the interval sizes computed by VeriNet become
larger than those byDeepCert. The blue dots gradually move down
below 0 and the green ones move up above 0.

The analysis result from Figure 4 reveals that the intermedi-
ate intervals are statistically tighter than other tools when a tool
produces larger certified lower bounds.

3.3 The Network-Wise Tightest Approximation

Existing characterizations of tightness are individually heuristic
under a presumption that a tighter approximation gives rise to a
more precise verification result. Unfortunately, the above examples
show that this presumption does not always hold. It means that
defining the tightness on each individual neuron is neither sufficient
nor necessary for achieving tight approximations. That is because
the tightness on neurons cannot guarantee the output intervals of
neural networks are always precise. However, the output intervals
are the basis for judging whether a network is robust or not.

To characterize the tightness of approximations to the activa-
tion functions in a neural network, we introduce the notion of
network-wise tightness. We ensure that, by a network-wise tighter
approximation of the activation functions, the approximated neural
network must produce more precise output intervals and conse-
quently more precise verification results.

Definition 3 (Network-wise tightness). Given a neural net-
work 𝑓 : R𝑛 → R𝑚 and 𝑥 ∈ B𝑝 (𝑥0, 𝜖), let (𝑓𝐿, 𝑓𝑈) be a linear

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang

approximation of 𝑓 with 𝑓𝑈 and 𝑓𝐿 the upper and lower bounds, re-
spectively. (𝑓𝐿, 𝑓𝑈) is network-wise tightest if, for any different linear
approximation (𝑓𝐿, 𝑓𝑈),

∀𝑠 ∈ 𝑆, min
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝐿,𝑠 (𝑥) ≥ min
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝐿,𝑠 (𝑥),

max
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝑈 ,𝑠 (𝑥) ≤ max
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝑈 ,𝑠 (𝑥),

where 𝑓𝐿,𝑠 (𝑥), 𝑓𝑈 ,𝑠 (𝑥) denote 𝑠-th item of 𝑓𝐿 (𝑥), 𝑓𝑈 (𝑥), respectively.

Intuitively, (𝑓𝐿, 𝑓𝑈) is tighter than (𝑓𝐿, ˆ𝑓𝑈) in that for all output
neurons 𝑠 , 𝑓𝐿 (resp. 𝑓𝑈) always computes a lower (resp. an upper)
bound that is greater (resp. less) than the one 𝑓𝐿 (resp. ˆ𝑓𝑈) does.
Note that Definition 3 is universal in that it is applicable to (i) all
activation functions and (ii) all ℓ𝑝 norms.

Example 3. ByDefinition 3, the approximations𝑥𝑈 ,3, 𝑥𝐿,3, 𝑥𝑈 ,4, 𝑥𝐿,4
to the activation functions on 𝑥3 and 𝑥4 in Example 2 are tighter
than 𝑥 ′

𝑈 ,3, 𝑥
′
𝐿,3, 𝑥

′
𝑈 ,4, 𝑥

′
𝐿,4. This is consistent to the verification re-

sults. Using the former approximations, we can compute tighter
output ranges for both 𝑥5 and 𝑥6 than those by the latter. However,
the former approximation can be proved to be less tight than the
latter if we take the tightness definition with respect to the minimal
area defined in [18].

Next, we give an important property of the network-wise tight-
ness. That is, a network-wise tighter approximation always leads
to more precise verification results.

Theorem 1. The approximation (𝑓𝐿, 𝑓𝑈) of a neural network al-
ways produces more precise robustness verification result than (𝑓𝐿, ˆ𝑓𝑈)
if (𝑓𝐿, 𝑓𝑈) is tighter than (𝑓𝐿, ˆ𝑓𝑈) by Definition 3.

Proof sketch. Let 𝑠0 = L(𝑓 (𝑥0)) with fixed 𝜖 . We check for all
𝑠 other than 𝑠0 whether the following condition:

min
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝐿,𝑠0 (𝑥) > max
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝑈 ,𝑠 (𝑥) (8)

holds. By Definition 3, if (𝑓𝐿, ˆ𝑓𝑈) satisfies (8), then we have:

min
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝐿,𝑠0 (𝑥) ≥ min
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝐿,𝑠0 (𝑥) >

max
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝑈 ,𝑠 (𝑥) ≥ max
𝑥∈B𝑝 (𝑥0,𝜖)

𝑓𝑈 ,𝑠 (𝑥),

for all 𝑠 other than 𝑠0. Thus, (𝑓𝐿, 𝑓𝑈) certainly satisfies (8) as well.
Namely, the result verified by (𝑓𝐿, ˆ𝑓𝑈) can also be deduced by
(𝑓𝐿, 𝑓𝑈). On the contrary, the result verified by (𝑓𝐿, 𝑓𝑈) may not be
verified by (𝑓𝐿, ˆ𝑓𝑈). Consequently, (𝑓𝐿, 𝑓𝑈) always produce more
precise verification result than (𝑓𝐿, ˆ𝑓𝑈). □

Next, we show that computing the network-wise tightest ap-
proximation is essentially an optimization problem. Given a 𝑘-layer
neural network 𝑓 : R𝑛 → R𝑚 , we use 𝜙𝑡 to denote the compound
function of 𝑓 ’s layers before 𝑡-th activation function is applied, i.e.,

𝜙𝑡 = 𝑓 𝑡 ◦ 𝜎𝑡−1 ◦ 𝑓 𝑡−1 ◦ . . . ◦ 𝜎1 ◦ 𝑓 1 .
For layer 𝑡 with 𝑛𝑡 neurons, let 𝜙𝑡𝑟 (𝑥) indicate 𝑟 -th item of its output
(with 𝑟 ∈ Z and 1 ≤ 𝑟 ≤ 𝑛𝑡). For each activation function 𝜎 (𝑥)
with 𝑥 ∈ [𝑙, 𝑢], we denote the upper (resp. lower) bound of 𝜎 (𝑥)
by ℎ𝑈 (𝑥) = 𝛼𝑈 𝑥 + 𝛽𝑈 (resp. ℎ𝐿 (𝑥) = 𝛼𝐿𝑥 + 𝛽𝐿), with variables
𝛼𝐿, 𝛼𝑈 , 𝛽𝐿, 𝛽𝑈 ∈ R. The problem of computing the network-wise

tightest approximation can then be formalized as the following
optimization problems:

max(min
𝑥∈B∞ (𝑥0,𝜖)

(𝐴𝑘
𝐿,𝑠𝑥 + 𝐵

𝑘
𝐿,𝑠)), and (9)

min(max
𝑥∈B∞ (𝑥0,𝜖)

(𝐴𝑘
𝑈 ,𝑠𝑥 + 𝐵

𝑘
𝑈 ,𝑠)) (10)

𝑠 .𝑡 . ∀𝑟 ∈ Z, 1 ≤ 𝑟 ≤ 𝑛𝑡 ,∀𝑡 ∈ Z, 1 ≤ 𝑡 < 𝑘,{
𝛼𝑡
𝐿,𝑟

𝑧𝑡𝑟 + 𝛽𝑡𝐿,𝑟 ≤ 𝜎 (𝑧𝑡𝑟) ≤ 𝛼𝑡
𝑈 ,𝑟

𝑧𝑡𝑟 + 𝛽𝑡𝑈 ,𝑟
;

min
𝑥∈B∞ (𝑥0,𝜖)

𝐴𝑡
𝐿,𝑟

𝑥 + 𝐵𝑡
𝐿,𝑟
≤ 𝑧𝑡𝑟 ≤ max

𝑥∈B∞ (𝑥0,𝜖)
𝐴𝑡
𝑈 ,𝑟

𝑥 + 𝐵𝑡
𝑈 ,𝑟

.

Here, 𝐴𝑡
𝐿,𝑟

𝑥 + 𝐵𝑡
𝐿,𝑟

and 𝐴𝑡
𝑈 ,𝑟

𝑥 + 𝐵𝑡
𝑈 ,𝑟

are the lower and upper linear
bounds of 𝜙𝑡𝑟 (𝑥), respectively.𝐴𝑡

𝐿,𝑟
, 𝐴𝑡

𝑈 ,𝑟
, 𝐵𝑡

𝐿,𝑟
and 𝐵𝑡

𝑈 ,𝑟
are constant

tensors defined on𝑊 𝑡 , 𝑏𝑡 , where𝑊 𝑡 , 𝑏𝑡 are the weights and biases
of the 𝑡-th layer. 𝜙𝑡𝑟 is the compound function of 𝑓 ’s first 𝑡 layers.
𝜙𝑡𝑟 (𝑥) can be approximated by a lower linear bound 𝐴𝑡

𝐿,𝑟
𝑥 + 𝐵𝑡

𝐿,𝑟

and an upper linear bound 𝐴𝑡
𝑈 ,𝑟

𝑥 + 𝐵𝑡
𝑈 ,𝑟

with:

𝐴𝑡
𝐿,𝑟 =

{
𝑊 𝑡

𝑟 , 𝑡 = 1

𝑊 𝑡
≥0,𝑟𝛼

𝑡−1
𝐿 ⊙ 𝐴𝑡−1

𝐿 +𝑊 𝑡
<0,𝑟𝛼

𝑡−1
𝑈 ⊙ 𝐴𝑡−1

𝐿 , 𝑡 ≥ 2

𝐵𝑡
𝐿,𝑟 =

𝑏𝑡𝑟 , 𝑡 = 1

𝑊 𝑡
≥0,𝑟 (𝛼𝑡−1

𝐿 ⊙ 𝐵𝑡−1
𝐿 + 𝛽𝑡−1𝐿)+

𝑊 𝑡
<0,𝑟 (𝛼𝑡−1

𝑈 ⊙ 𝐵𝑡−1
𝐿 + 𝛽𝑡−1𝐿) + 𝑏𝑡𝑟 , 𝑡 ≥ 2

𝐴𝑡
𝑈 ,𝑟 =

{
𝑊 𝑡

𝑟 , 𝑡 = 1

𝑊 𝑡
≥0,𝑟𝛼

𝑡−1
𝑈 ⊙ 𝐴𝑡−1

𝑈 +𝑊 𝑡
<0,𝑟𝛼

𝑡−1
𝐿 ⊙ 𝐴𝑡−1

𝑈 , 𝑡 ≥ 2

𝐵𝑡
𝑈 ,𝑟 =

𝑏𝑡𝑟 , 𝑡 = 1

𝑊 𝑡
≥0,𝑟 (𝛼𝑡−1

𝑈 ⊙ 𝐵𝑡−1
𝑈 + 𝛽𝑡−1𝑈)+

𝑊 𝑡
<0,𝑟 (𝛼𝑡−1

𝐿 ⊙ 𝐵𝑡−1
𝑈 + 𝛽𝑡−1𝑈) + 𝑏𝑡𝑟 , 𝑡 ≥ 2

where ⊙ denotes Hadamard production.
The solutions to all 𝛼𝐿, 𝛼𝑈 , 𝛽𝐿, 𝛽𝑈 are the linear bounds to all the

activation functions in the network, and their composition is the
network-wise tightest approximation. Note that the solutions may
not guarantee that the approximation to an individual activation
function is the tightest with respect to existing tightness definitions.

4 APPROACH FOR 1-HIDDEN-LAYER

NETWORKS

Given a neural network, we can compute the network-wise tightest
approximation by instantiating and solving the optimization prob-
lems (9) and (10). For a one-hidden-layer network, the optimization
problems can be simplified as follows:

max(min
𝑥∈B∞ (𝑥0,𝜖)

(𝐴𝐿,𝑠𝑥 + 𝐵𝐿,𝑠)), (11)

min(max
𝑥∈B∞ (𝑥0,𝜖)

(𝐴𝑈 ,𝑠𝑥 + 𝐵𝑈 ,𝑠)), (12)

𝑠 .𝑡 . ∀𝑟 ∈ Z, 1 ≤ 𝑟 ≤ 𝑛,{
𝛼𝐿,𝑟𝑧𝑟 + 𝛽𝐿,𝑟 ≤ 𝜎 (𝑧𝑟) ≤ 𝛼𝑈 ,𝑟𝑧𝑟 + 𝛽𝑈 ,𝑟 ;

min
𝑥∈B∞ (𝑥0,𝜖)

𝑊 1𝑥 + 𝑏1 ≤ 𝑧𝑟 ≤ max
𝑥∈B∞ (𝑥0,𝜖)

𝑊 1𝑥 + 𝑏1 .

where𝐴𝐿,𝑠 =𝑊 2
≥0,𝑠 (𝛼𝐿⊙𝑊

1)+𝑊 2
<0,𝑠 (𝛼𝑈 ⊙𝑊

1), 𝐵𝐿,𝑠 =𝑊 2
≥0,𝑠 (𝛼𝐿⊙

𝑏1 + 𝛽𝐿) +𝑊 2
<0,𝑠 (𝛼𝑈 ⊙ 𝑏1 + 𝛽𝑈) + 𝑏2𝑠 , 𝑛 denotes the amount of

neurons in the hidden layer. The above optimization problems are
the instances of the problems (9) and (10).

Provably Tightest Linear Approximation for Robustness Verification of Sigmoid-like Neural Networks ASE ’22, October 10–14, 2022, Rochester, MI, USA

Algorithm 1: A gradient descent-based searching algorithm
for the tightest approximations of 1-hidden-layer networks.
Input :𝑁 : a network; 𝑥0: an input to 𝑁 ; 𝜖 : a ℓ∞-norm radius
Output :𝛼𝐿,𝑟 , 𝛽𝐿,𝑟 , 𝛼𝑈 ,𝑟 , 𝛽𝑈 ,𝑟 for each hidden neuron 𝑟

1 for each neuron 𝑟 do
2 Evaluate input range [𝑙𝑟 , 𝑢𝑟] for 𝑟 ;
3 Let 𝜔 denote the line connecting (𝑙𝑟 , 𝜎 (𝑙𝑟)) and (𝑢𝑟 , 𝜎 (𝑢𝑟));
4 𝑅𝐿 ← ∅, 𝑅𝑈 ← ∅; // Empty the sets of optimizable neurons.
5 if 𝜔 can be an upper bound of 𝜎 then

6 Let 𝛼𝑈 ,𝑟 , 𝛽𝑈 ,𝑟 be the slope and intercept of 𝜔 ;
7 Add (𝑟, [𝑙𝑟 , 𝑢𝑟]) to 𝑅𝐿 ; // 𝑟 ’s lower bound is optimizable.
8 else if 𝜔 can be a lower bound of 𝜎 then

9 Let 𝛼𝐿,𝑟 , 𝛽𝐿,𝑟 be the slope and intercept of 𝜔 ;
10 Add (𝑟, [𝑙𝑟 , 𝑢𝑟]) to 𝑅𝑈 ; // 𝑟 ’s upper bound is optimizable.
11 else

12 Let 𝑧𝑈 ,𝑟 , 𝑧𝐿,𝑟 be the cut-off points of the tangent lines
of 𝜎 crossing (𝑙𝑟 , 𝜎 (𝑙𝑟)) and (𝑢𝑟 , 𝜎 (𝑢𝑟));

13 Add (𝑟, [𝑧𝑈 ,𝑟 , 𝑢𝑟]) to 𝑅𝑈 , and (𝑟, [𝑙𝑟 , 𝑧𝐿,𝑟]) to 𝑅𝐿 ;
14 Randomize the cut-off points for optimizable bounds of 𝑟 ;
15 Let 𝛼𝐿,𝑟 , 𝛽𝐿,𝑟 , 𝛼𝑈 ,𝑟 , 𝛽𝑈 ,𝑟 be the slope and intercept of

tangent line of 𝜎 at chosen cut-off points;
16 for 1, . . . , 𝑘 do // 𝑘 is the preset optimization round
17 Compute 𝐴𝐿,𝑠 , 𝐵𝐿,𝑠 of the lower bound of output neuron 𝑠 ;
18 Let 𝐺 := min

𝑥∈B∞ (𝑥0,𝜖)
(𝐴𝐿,𝑠𝑥 + 𝐵𝐿,𝑠);

19 Update the cut-off points for 𝑟 ’s bound through −∇(𝐺);
20 Update 𝛼𝐿,𝑟 , 𝛽𝐿,𝑟 , 𝛼𝑈 ,𝑟 , 𝛽𝑈 ,𝑟 at chosen cut-off points;

The optimization problem is a convex variant and thus efficiently
solvable by leveraging the gradient descent-based searching algo-
rithm [28]. Algorithm 1 shows the pseudo code of the algorithm for
calculating the optimal solution for the optimization problem with
objective function (11). A solution represents a network-wise tight-
est lower bound to the 1-hidden-layer networks. For each activation
function on a hidden neuron, it first determines whether the line
𝜔 crossing the two endpoints can be an upper (Lines 5-7) or lower
bound (Lines 8-10). If those are the cases, the tangent line of the
activation function is chosen to be lower bound (resp. upper bound),
and its cut-off point can be an optimization variable. Otherwise
(Lines 11-13), the lower and upper bounds can both be optimized.
The optimizing ranges for those cases are calculated.

Let𝐺 := min
𝑥∈B∞ (𝑥0,𝜖)

(𝐴𝐿,𝑠𝑥+𝐵𝐿,𝑠) and𝐴𝑁𝑆 = max
𝛼𝐿,𝛼𝑈 ,𝛽𝐿,𝛽𝑈

(𝐺). We

use gradient descent steps (Lines 16-20) to optimize the target𝐴𝑁𝑆 .
We conduct gradient descent and modify the value of 𝛼𝐿, 𝛼𝑈 , 𝛽𝐿, 𝛽𝑈
if the 𝐴𝑁𝑆 achieves a larger result under the new bounds.

The optimization problem with objective function (12) can be
solved by the same algorithm, with 𝐴𝑁𝑆 replaced by (12).

Example 4. Let us revisit Example 2. With Algorithm 1, we com-
pute the network-wise tightest approximations for the network in
Figure 2. Figure 5 shows the upper (resp. lower) bounds, denoted
by 𝑥 ′′

𝑈 ,3, 𝑥
′′
𝑈 ,4 (resp. 𝑥

′′
𝐿,3, 𝑥

′′
𝐿,4). By Definition 3, 𝑥 ′′

𝑈 ,3, 𝑥
′′
𝑈 ,4 are tighter

than the other two approximations. The resulting output range
of neuron 𝑥7 is [0.307, 5.693], which is more precise than both
[−0.079, 6.073] and [0.177, 5.817] in Figure 3a and 3b, respectively.

−3 −2 −1 0 1 2 3

0.5

1

𝜎(𝑥)

𝑥′′
𝑈,3

𝑥′′
𝐿,3

−3 −2 −1 0 1 2 3

0.5

1

𝜎(𝑥)

𝑥′′
𝑈,4

𝑥′′
𝐿,4

Figure 5: The network-wise tightest approximation to the

activation functions on 𝑥3 (left) and 𝑥4 (right) in Example 2.

Note that the network-wise tightest approximations in the above
example are a hybrid of both kinds of approximations in Figure
3a and 3b, which cannot be the tightest under a single tightness
criterion in [18, 51]. This echoes our advocation that solely pursuing
neuron-wise tightness under existing tightness definitions may not
guarantee that they are the network-wise tightest, and consequently
cannot achieve precise robust verification results.

5 APPROACH FOR MULTI-HIDDEN-LAYER

NETWORKS

For the networks with two or more hidden layers, solving the op-
timization problems (9) and (10) becomes impractical due to its
non-convexity. In [28], Lyu et al. proved that it is even non-convex
to separately compute the tightest approximation for each neuron.
The intractability lies in the accumulated constraints throughout
the network: for any hidden layer, the input intervals of the ac-
tivation functions are constrained by the approximations to the
activation functions for the previous hidden layer. Neither can the
optimization problems be solved on a layer basis because the ob-
jective function are network-wise. To our knowledge, no efficient
algorithms or tools exist for such optimization problems. In this sec-
tion, we propose computable neuron-wise tightest approximations
and identify the condition when all the weights in a neural network
are non-negative, the neuron-wise tightest approximations lead to
being network-wise tightest.

5.1 The Neuron-Wise Tightest Approximation

Our empirical analysis in Section 3.1 reveals an insight that preserv-
ing tighter intermediate intervals during layer-by-layer propagation
usually produces larger certified lower robust bounds. In the same
spirit, we heuristically define the tightness of an approximation
to an individual activation function in terms of the overestima-
tion caused by the approximation. Smaller overestimation implies a
tighter approximation. Particularly, an approximation is the neuron-
wise tightest if it results in no overestimation of the output range
of the activation function.

Definition 4 (Neuron-wise Tightness). Let 𝜎 (𝑥) be an ac-
tivation function with 𝑥 ∈ [𝑙, 𝑢], and ℎ𝑈 (𝑥), ℎ𝐿 (𝑥) be its upper
and lower bounds, with 𝛼𝑈 , 𝛼𝐿 their slopes. ℎ𝑈 (𝑥) (resp. ℎ𝐿 (𝑥)) is
the neuron-wise tightest if ℎ𝑈 (𝑢) = 𝜎 (𝑢) (resp. ℎ𝐿 (𝑙) = 𝜎 (𝑙)) and∫ 𝑢

𝑙
ℎ𝑈 (𝑥) − 𝜎 (𝑥)𝑑𝑥 (resp.

∫ 𝑢

𝑙
𝜎 (𝑥) − ℎ𝐿 (𝑥)𝑑𝑥) is minimal.

By Definition 4, we identify three cases of defining the neuron-
wise tightest approximation for each individual activation function.
The three cases are defined according to the relation between the
slopes of activation function at two endpoints and the slope of

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang

(c) 𝑘 > 𝜎′(𝑙) ∧ 𝑘 > 𝜎′(𝑢)(a) 𝜎′(𝑙) < 𝑘 < 𝜎′(𝑢) (b) 𝜎′(𝑙) > 𝑘 > 𝜎′(𝑢)

0.5

1

𝜎(𝑥)

ℎ𝑈 (𝑥)

ℎ𝐿 (𝑥)

0.5

1

𝜎(𝑥)

𝑢𝑙𝑢𝑙

ℎ𝑈 (𝑥)
ℎ𝐿 (𝑥)

0.5

1

𝜎(𝑥) ℎ𝑈 (𝑥)

ℎ𝐿 (𝑥)

𝑢𝑙

𝜎′(𝑢)

𝜎′(𝑙)

𝜎′(𝑢)

𝑘

𝑘

𝜎′(𝑙)

𝑘

𝜎′(𝑢)

𝜎′(𝑙)

Figure 6: The neuron-wise tightest linear approximation.

the line crossing the two endpoints, as classified in [18, 51]. Given
an input interval [𝑙, 𝑢] for 𝜎 (𝑥), the slopes of 𝜎 (𝑥) at (𝑙, 𝜎 (𝑙)) and
(𝑢, 𝜎 (𝑢)) are represented by 𝜎′ (𝑙) and 𝜎′ (𝑢), respectively; the slope
of the line crossing (𝑙, 𝜎 (𝑙)) and (𝑢, 𝜎 (𝑢)) is 𝑘 =

𝜎 (𝑢)−𝜎 (𝑙)
𝑢−𝑙 . Figure

6 depicts the neuron-wise tightest approximations in the following
three different cases:

Case 1. When 𝜎′ (𝑙) < 𝑘 < 𝜎′ (𝑢) (Figure 6a), the line that
connects the two endpoints is chosen as the upper bound, while
the tangent line of 𝜎 (𝑥) at (𝑙, 𝜎 (𝑙)) as the lower bound. We then
have ℎ𝑈 (𝑥) = 𝑘 (𝑥 − 𝑙) + 𝜎 (𝑙) and ℎ𝐿 (𝑥) = 𝜎′ (𝑙) (𝑥 − 𝑙) + 𝜎 (𝑙).

Case 2. When 𝜎′ (𝑢) < 𝑘 < 𝜎′ (𝑙) (Figure 6b), the tangent line of
𝜎 (𝑥) at (𝑢, 𝜎 (𝑢)) and the line crossing two endpoints are considered
as the upper and lower bounds, respectively. We then have ℎ𝑈 (𝑥) =
𝜎′ (𝑢) (𝑥 − 𝑢) + 𝜎 (𝑢) and ℎ𝐿 (𝑥) = 𝑘 (𝑥 − 𝑢) + 𝜎 (𝑢).

Case 3. When 𝜎′ (𝑙) < 𝑘 and 𝜎′ (𝑢) < 𝑘 (Figure 6c), the tangent
line of 𝜎 (𝑥) at (𝑢, 𝜎 (𝑢)) is taken as the upper bound, while the
tangent line of 𝜎 (𝑥) at (𝑙, 𝜎 (𝑙)) as the lower bound. We then have
ℎ𝑈 (𝑥) = 𝜎′ (𝑢) (𝑥 − 𝑢) + 𝜎 (𝑢) and ℎ𝐿 (𝑥) = 𝜎′ (𝑙) (𝑥 − 𝑙) + 𝜎 (𝑙).

Note that, Definition 4 also considers the tightness characteri-
zations in [18, 28]. It is easy to prove that any other linear bound
crossing the endpoints is less tight than the one defined in the above
three cases according to the tightness definitions in [18, 28].

5.2 Neuron-Wise vs. Network-Wise

In this section, we study the relation between neuron-wise tightness
and network-wise tightness. Although the neuron-wise tightest
approximation does not overestimate the output range of a single
neuron, it cannot guarantee that the composition for all the neurons
is the network-wise tightest because the monotonicity of a neuron
cannot be preserved by the next layer. The monotonicity may be
altered by the weights between layers because the input function
of each neuron in any hidden layer is compounded by the output
functions in the previous layer multiplied by the weights. Hence, a
sufficient condition of passing neuron-wise tightness to the network
is to avoid breaking monotonicity during the propagation.

Definition 5 (Network-wise monotonous). Given a 𝑘-layer
neural network 𝑓 : R𝑛 → R𝑚 and its input 𝑥 = [𝑥1, ..., 𝑥𝑛], f is called
network-wise monotonous if the following three conditions hold:

(1) ∀𝑡1, 𝑡2 ∈ Z, 1 ≤ 𝑡1 ≤ 𝑘 ∧ 1 ≤ 𝑡2 ≤ 𝑘 ,
(2) ∀𝑟1, 𝑟2 ∈ Z, 1 ≤ 𝑟1 ≤ 𝑛𝑡1 ∧ 1 ≤ 𝑟2 ≤ 𝑛𝑡2 ,
(3) ∀𝑖 ∈ Z, 1 ≤ 𝑖 ≤ 𝑛, 𝜙

𝑡1
𝑟1 (𝑥𝑖), 𝜙

𝑡2
𝑟2 (𝑥𝑖) are both either monotoni-

cally increasing or decreasing.

Intuitively, a monotonous network requires all the neurons to share
the same monotonicity w.r.t. the input so that they can achieve the
maximum or minimum on the same input.

Lemma 1. A neural network is network-wise monotonous if the
network satisfies the following two conditions:

(1) For the first layer, for any selected 𝑖 ∈ Z, 1 ≤ 𝑖 ≤ 𝑛, items in
the 𝑖-th column of𝑊 1 are all positive or all negative;

(2) Every item in weights from the second layer to the last layer is
non-negative.

Next, we formulate the most important property of our neuron-
wise approximation approach as the following theorem, stating
that the composition of all neuron-wise tightest approximations is
the network-wise tightest if the network is monotonous.

Theorem 2. The composition of the neuron-wise tightest approxi-
mations is the network-wise tightest if the network satisfies the fol-
lowing two conditions:

(1) For the first layer, the items in each column of the weight
matrix are all positive or negative;

(2) Every item in weights between remained layers is non-negative.

Theorem 2 holds as both conditions guarantee the monotonicity
of the network. If a neural network is monotonous, then the compo-
sition of the neuron-wise tightest approximations is a network-wise
tightest approximation with respect to the robustness verification.
In particular, starting from the second layer, the neuron-wise tight-
ness is preserved with only non-negative weights during the layer-
wise propagation (the second condition). See [56, Appendix B] for
the complete proof.

Example 5. Assume that we replace the three negative weights of
the neural network in Figure 2 with 1, 5, and 1, respectively. The
tightest approximations to 𝑥3 and 𝑥4, returned by Algorithm 1, are
exactly the same as those returned by the neuron-wise tightest
approximations in Section 5.1 (i.e., [1.430, 10.570]).

6 EXPERIMENTS

We evaluate our approximation method concerning both precision
and efficiency in the robustness verification of Sigmoid-like neural
networks. Our goal is threefold:

(1) To validate our mathematical proof of Theorem 2 via exten-
sive experimental results (i.e., always returning the largest
certified lower bounds for non-negative networks);

(2) To demonstrate that Algorithm 1 can always compute tighter
lower bounds for 1-hidden-layer networks;

(3) To explore our approach’s effectiveness under general neural
networks with mixed weights.

6.1 Benchmarks and Experimental Setup

Competitors. We consider three representative approximations in
the literature: DeepCert [51], VeriNet [18], and RobustVerifier
[26]. For a fair comparison, we implemented in Python all the
competing approaches including our new algorithm called NeWise.

Datasets and Networks. We have conducted three sets of ex-
periments on fully connected (FNNs) and convolutional (CNNs)
networks: We focus on CNNs due to their effectiveness in a wide

Provably Tightest Linear Approximation for Robustness Verification of Sigmoid-like Neural Networks ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 2: Performance comparison on non-negative Sigmoid networks between NeWise (NW) and existing tools, DeepCert

(DC), VeriNet (VN), and RobustVerifier (RV). 𝑡 × 𝑛 refers to an FNN with 𝑡 layers and 𝑛 neurons per layer. CNN𝑡−𝑐 denotes a

CNN with 𝑡 layers and 𝑐 filters of size 3×3.

Dataset Model #Neur.

Certified Lower Bound

Time (s)Average Standard Deviation

NW DC Impr. (%) VN Impr. (%) RV Impr. (%) NW DC Impr. (%) VN Impr. (%) RV Impr. (%)

MNIST

5x100 510 0.0091 0.0071 28.15 ↑ 0.0071 27.25 ↑ 0.0064 40.90 ↑ 0.0057 0.0042 37.11 ↑ 0.0042 35.48 ↑ 0.0034 69.35 ↑ 4.30 ±0.02
3x700 2,110 0.0037 0.0030 24.92 ↑ 0.0030 22.85 ↑ 0.0029 27.05 ↑ 0.0018 0.0013 41.86 ↑ 0.0014 34.56 ↑ 0.0013 41.86 ↑ 117.94 ±0.31

CNN6−5 12,300 0.0968 0.0788 22.82 ↑ 0.0778 24.37 ↑ 0.0699 38.50 ↑ 0.0372 0.0280 32.92 ↑ 0.0276 35.09 ↑ 0.0212 75.86 ↑ 5.70 ±0.42
3x50 160 0.0105 0.0088 19.23 ↑ 0.0088 19.50 ↑ 0.0080 31.42 ↑ 0.0051 0.0038 32.72 ↑ 0.0038 32.72 ↑ 0.0029 71.86 ↑ 0.14 ±0.00
3x100 310 0.0139 0.0120 15.46 ↑ 0.0120 15.56 ↑ 0.0111 25.47 ↑ 0.0071 0.0057 24.82 ↑ 0.0057 23.30 ↑ 0.0046 53.46 ↑ 2.22 ±0.02

CNN5−5 10,680 0.0801 0.0708 13.14 ↑ 0.0704 13.75 ↑ 0.0683 17.30 ↑ 0.0238 0.0200 18.87 ↑ 0.0198 20.50 ↑ 0.0180 32.20 ↑ 2.88 ±0.32
CNN3−2 2,514 0.0521 0.0483 7.82 ↑ 0.0483 7.94 ↑ 0.0478 8.88 ↑ 0.0180 0.0161 12.13 ↑ 0.0160 12.41 ↑ 0.0156 15.44 ↑ 0.17 ±0.04
CNN4−5 8,680 0.0505 0.0473 6.68 ↑ 0.0471 7.26 ↑ 0.0464 8.81 ↑ 0.0207 0.0186 11.26 ↑ 0.0183 12.84 ↑ 0.0175 17.87 ↑ 1.17 ±0.20
CNN3−4 5,018 0.0448 0.0422 6.09 ↑ 0.0421 6.24 ↑ 0.0418 6.98 ↑ 0.0156 0.0142 9.71 ↑ 0.0141 10.18 ↑ 0.0138 12.56 ↑ 0.30 ±0.08

Fashion
MNIST

4x100 410 0.0312 0.0188 65.48 ↑ 0.0194 60.62 ↑ 0.0159 96.22 ↑ 0.0403 0.0210 92.28 ↑ 0.0220 83.20 ↑ 0.0176 129.47 ↑ 3.31 ±0.04
3x100 310 0.0326 0.0263 24.02 ↑ 0.0270 21.03 ↑ 0.0238 36.81 ↑ 0.0335 0.0262 27.67 ↑ 0.0282 18.92 ↑ 0.0234 43.22 ↑ 2.22 ±0.01

CNN5−5 10,680 0.1303 0.1155 12.81 ↑ 0.1151 13.22 ↑ 0.1088 19.72 ↑ 0.0830 0.0714 16.23 ↑ 0.0721 15.10 ↑ 0.0636 30.51 ↑ 2.89 ±0.33
CNN3−2 2,514 0.0790 0.0713 10.79 ↑ 0.0713 10.74 ↑ 0.0695 13.68 ↑ 0.0497 0.0416 19.55 ↑ 0.0418 19.06 ↑ 0.0386 28.98 ↑ 0.17 ±0.04
CNN4−5 8,680 0.0959 0.0868 10.40 ↑ 0.0864 10.90 ↑ 0.0839 14.19 ↑ 0.0561 0.0486 15.51 ↑ 0.0482 16.52 ↑ 0.0453 24.03 ↑ 1.18 ±0.21
CNN3−4 5,018 0.0747 0.0694 7.52 ↑ 0.0693 7.72 ↑ 0.0681 9.70 ↑ 0.0465 0.0410 13.32 ↑ 0.0409 13.59 ↑ 0.0391 18.85 ↑ 0.30 ±0.09

CIFAR10

9x100 910 0.0315 0.0211 49.03 ↑ 0.0214 46.94 ↑ 0.0192 63.58 ↑ 0.0280 0.0183 52.70 ↑ 0.0186 50.32 ↑ 0.0133 110.07 ↑ 4.92 ±0.01
6x100 610 0.0221 0.0174 27.08 ↑ 0.0176 26.14 ↑ 0.0170 30.22 ↑ 0.0165 0.0118 40.05 ↑ 0.0120 37.82 ↑ 0.0111 48.24 ↑ 3.04 ±0.02
5x100 510 0.0200 0.0167 19.76 ↑ 0.0167 19.47 ↑ 0.0163 22.40 ↑ 0.0137 0.0104 31.80 ↑ 0.0104 31.42 ↑ 0.0099 38.45 ↑ 2.44 ±0.01
3x50 160 0.0206 0.0178 15.43 ↑ 0.0179 14.66 ↑ 0.0176 16.88 ↑ 0.0144 0.0113 27.57 ↑ 0.0115 25.24 ↑ 0.0110 31.30 ↑ 0.43 ±0.00
4x100 410 0.0161 0.0140 15.23 ↑ 0.0140 14.81 ↑ 0.0138 16.56 ↑ 0.0111 0.0089 24.61 ↑ 0.0090 23.63 ↑ 0.0087 27.62 ↑ 1.85 ±0.01

CNN3−4 6,746 0.0187 0.0181 3.38 ↑ 0.0181 3.32 ↑ 0.0181 3.43 ↑ 0.0109 0.0103 5.93 ↑ 0.0103 5.83 ↑ 0.0103 6.13 ↑ 0.56 ±0.08
CNN3−2 3,378 0.0185 0.0180 2.49 ↑ 0.0180 2.55 ↑ 0.0180 2.67 ↑ 0.0125 0.0120 4.34 ↑ 0.0120 4.34 ↑ 0.0120 4.60 ↑ 0.30 ±0.06

range of visual recognition applications [22, 27, 30, 34, 43]; we also
consider FNNs to expand the architecture variety. We trained all the
networks on the image databases MNIST [23], Fashion MNIST [53],
and CIFAR10 [21]. We chose the first 100 images from the test set of
each dataset as in [5, 51, 55], among which only correctly-classified
images by the neural network are considered in our experiments.

For each network architecture, we trained three variant neural
networks using the Sigmoid, Tanh, and Arctan activation func-
tions, respectively. In Experiment I the networks contain only non-
negative weights. We used Adam or SGD optimizer with at least 50
epochs of batch size 128. The test set accuracy of networks trained
on MNIST, Fashion MNIST, and CIFAR10 is around 0.9, 0.85, and 0.4,
respectively. In Experiment II and III we trained 1-hidden-layer
networks and used pre-trained models [2, 40, 51] (as in Table 1, Sec-
tion 3.2) with no constraint on the weights. Note that the number of
neurons in FNNs can be considerably fewer than that in CNNs [24],
while the networks can still achieve up to 0.99 test accuracy.

Metrics.We use certified lower bound to assess effectiveness, and
(𝜖′ − 𝜖)/𝜖 to quantify the precision improvement, where 𝜖′ and 𝜖
denote the lower bounds certified by NeWise and each competing
approach, respectively. We consider both average and standard de-
viation (SD) of certified lower bounds; in particular, SD is a suitable
measure of sensitivity of the approximations to input images: A
larger SD implies a better sensitivity [51]. For efficiency, we record
the average computation time over the (correctly-classified) images.
Experimental Setup. All the experiments were conducted on a
workstation running Ubuntu 18.04 with a 2.35GHz 32-core AMD
EPYC 7452 CPU and 128 GB memory.

6.2 Experimental Results

Experiment I. Table 2 shows the comparison results for 22 Sig-
moid models with non-negative weights. Regarding the precision
of verification results, our NeWise computes significantly larger
certified lower bounds than the competitors for all the models. In
particular, for average, NeWise achieves up to 96.22% improvement,
i.e., FNNs with 4 hidden layers trained on Fashion MNIST. NeWise
improves the precision even more with standard deviation (up to
129.33%). This indicates that our approach is more sensitive to input
images compared to the other approaches: The more the certified
lower bound is improved, the larger deviation the network exhibits.

Regarding efficiency, all the approaches incur similar overhead
as expected (they share the same complexity, i.e., 𝑂 (1) on each
neuron). We use 𝑝 ± 𝑞 to denote their average time cost 𝑝 and the
size of the interval 2𝑞. Table 3 presents the results on the Tanh
models. NeWise computes even larger certified lower bounds, e.g.,
with up to 251.28%. We omit the similar time overheads in Table 3.
See [56, Appendix C] for the complete results, including those on
the Arctan models.

All these experimental results provide strong independent vali-
dation of our mathematical proof of Theorem 2.

Experiment II.We evaluate the performance of Algorithm 1 on
1-hidden-layer networks. Table 4 shows the comparison results
with the other three tools. We only show the metric of standard
deviation due to space limit. As shown in the table, Algorithm 1 can
compute larger bounds with up to 160.66% improvement. Complete
results are available in the [56, Appendix C].

Regarding efficiency, the searching algorithm needs more time
because it is in polynomial time, unlike the constant-time approach

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang

Table 3: Performance comparison of NeWise (NW) with

DeepCert (DC), VeriNet (VN), and RobustVerifier (RV)

on non-negative Tanh networks. 𝑡 ×𝑛 refers to an FNN with 𝑡

layers and 𝑛 neurons per layer. CNN𝑡−𝑐 denotes a CNN with

𝑡 layers and 𝑐 filters of size 3×3.

Dataset Model
Certified Lower Bound (Standard Deviation)

NW DC Impr. (%) VN Impr. (%) RV Impr. (%)

MNIST

5x100 0.0018 0.0005 233.96 ↑ 0.0006 195.00 ↑ 0.0006 216.07 ↑
3x700 0.0027 0.0008 251.28 ↑ 0.0009 191.49 ↑ 0.0009 191.49 ↑
3x400 0.0018 0.0007 166.67 ↑ 0.0008 128.57 ↑ 0.0007 137.84 ↑
CNN6−5 0.0243 0.0115 111.84 ↑ 0.0131 85.94 ↑ 0.0087 179.13 ↑
3x50 0.0012 0.0009 29.79 ↑ 0.0010 27.08 ↑ 0.0008 45.24 ↑
CNN3−4 0.0067 0.0055 21.05 ↑ 0.0058 14.80 ↑ 0.0055 20.83 ↑
CNN5−5 0.0108 0.0090 20.24 ↑ 0.0092 17.50 ↑ 0.0087 24.54 ↑
CNN4−5 0.0074 0.0061 21.21 ↑ 0.0063 17.19 ↑ 0.0060 23.63 ↑

Fashion
MNIST

3x100 0.0156 0.0105 48.81 ↑ 0.0110 42.04 ↑ 0.0091 70.79 ↑
CNN4−5 0.0188 0.0134 41.12 ↑ 0.0139 35.83 ↑ 0.0129 45.82 ↑
CNN6−5 0.0329 0.0237 38.83 ↑ 0.0242 35.67 ↑ 0.0180 82.66 ↑
2x100 0.0109 0.0081 35.27 ↑ 0.0085 28.59 ↑ 0.0077 41.95 ↑
2x200 0.0102 0.0076 33.38 ↑ 0.0080 27.06 ↑ 0.0076 33.55 ↑
CNN5−5 0.0201 0.0153 31.52 ↑ 0.0158 27.03 ↑ 0.0125 60.69 ↑

CIFAR10

3x200 0.0176 0.0083 113.30 ↑ 0.0092 90.91 ↑ 0.0080 119.40 ↑
3x50 0.0111 0.0073 53.52 ↑ 0.0077 44.73 ↑ 0.0071 56.32 ↑
3x100 0.0435 0.0243 78.79 ↑ 0.0270 61.35 ↑ 0.0256 69.66 ↑
3x400 0.0441 0.0245 79.67 ↑ 0.0291 51.58 ↑ 0.0253 74.69 ↑
CNN3−2 0.0106 0.0102 4.01 ↑ 0.0102 4.01 ↑ 0.0102 4.21 ↑
CNN3−4 0.0062 0.0061 1.80 ↑ 0.0061 1.80 ↑ 0.0061 1.96 ↑
CNN3−5 0.0066 0.0065 1.86 ↑ 0.0065 1.86 ↑ 0.0065 2.02 ↑

for the non-negative models. Nevertheless, the gradient-decent-
based approach has been proven an efficient and practical solution
to such convex optimization problems [17]. When the size of a
network is reasonably small, such overhead is acceptable, compared
with the improvement of the verification results.

Experiment III. Despite the infeasibility of network-wise tightest
approximations in the general case (Section 3.3), we have explored
the performance of our approximation method and the competitors
on the networks of mixed weights. Table 5 shows the certified lower
bounds returned by each approach for 11 CNNs and 9 FNNs.

First, the performance of each approach as compared with the
others varies under different mixed-weight models. This coincides
with our analysis in Section 3.3: Pure neuron-wise tightness does
not imply a network-wise tightness. Moreover, we observe that
our NeWise performs surprisingly better than other approaches on
all the experimented CNNs, while DeepCert and VeriNet return
larger certified lower bounds on the FNNs. The results evidenced
network architecture is another factor influencing the verification.
One possible reason is that a convolutional neural network is more
possible to bemonotonic based on the fact that the neurons’ weights
on the same layer are constrained to be identical [24].

Finally, we observe that average and standard deviation share
the same increase/decrease trends. This indicates that a tighter ap-
proximation is more sensitive to the input images, which conforms
to our conclusion in Experiment I.

6.3 Threats to Validity

We discuss potential threats to the validity of our approach in terms
of its application domains.
Neural Networks with ReLU Activation Functions. Despite
the focus on the Sigmoid-like activation functions, our approach is
also applicable to the ReLU activation functions. A ReLU function
𝜎 (𝑥) =𝑚𝑎𝑥 (𝑥, 0), with 𝑥 ∈ [𝑙, 𝑢], only needs approximation when

Table 4: Performance comparison of Algorithm 1 with Deep-

Cert (DC), VeriNet (VN), and RobustVerifier (RV) on

1-hidden-layer Sigmoid networks. 𝑡 ×𝑛 refers to an FNN with

𝑡 layers and 𝑛 neurons per layer. CNN𝑡−𝑐−𝑓 denotes a CNN

with 𝑡 layers and 𝑐 filters of size 𝑓 × 𝑓 . ∗ and +mark themodels

trained on MNIST and Fashion MNIST, respectively.

Arch. Model
Certified Lower Bound (Standard Deviation)

Alg.1 DC Impr. (%) VN Impr. (%) RV Impr. (%)

CNN

CNN2−1−5∗ 0.0358 0.0145 146.32 ↑ 0.0143 150.98 ↑ 0.0137 160.66↑
CNN2−2−5∗ 0.0308 0.0208 47.82 ↑ 0.0207 48.96 ↑ 0.0187 64.23↑
CNN2−3−5∗ 0.0305 0.0197 54.80 ↑ 0.0196 55.28 ↑ 0.0176 73.57↑
CNN2−4−5∗ 0.0419 0.0233 79.70 ↑ 0.0232 80.56 ↑ 0.0210 99.40↑
CNN2−5−3∗ 0.0319 0.0182 75.22 ↑ 0.0182 75.89 ↑ 0.0176 81.59↑
CNN2−1−5+ 0.0497 0.0385 29.08 ↑ 0.0386 28.74 ↑ 0.0348 42.52↑
CNN2−2−5+ 0.0547 0.0353 54.77 ↑ 0.0355 53.94 ↑ 0.0311 75.66↑
CNN2−3−5+ 0.0541 0.0371 45.76 ↑ 0.0374 44.71 ↑ 0.0344 57.28↑
CNN2−4−5+ 0.0540 0.0366 47.48 ↑ 0.0367 47.00 ↑ 0.0336 60.41↑
CNN2−5−3+ 0.0598 0.0340 75.97 ↑ 0.0340 75.71 ↑ 0.0312 91.34↑

FNN

1x50 ∗ 0.0122 0.0082 49.16 ↑ 0.0085 43.89 ↑ 0.0062 96.32 ↑
1x100∗ 0.0107 0.0064 67.67 ↑ 0.0066 61.10 ↑ 0.0050 114.80 ↑
1x150∗ 0.0124 0.0083 50.17 ↑ 0.0085 45.59 ↑ 0.0064 93.75 ↑
1x200∗ 0.0127 0.0074 71.99 ↑ 0.0076 68.35 ↑ 0.0058 120.58 ↑
1x250∗ 0.0120 0.0075 60.93 ↑ 0.0076 58.37 ↑ 0.0060 100.82 ↑
1x50 + 0.0184 0.0117 56.83 ↑ 0.0122 51.04 ↑ 0.0089 107.35 ↑
1x100+ 0.0149 0.0119 25.06 ↑ 0.0123 21.89 ↑ 0.0088 70.46 ↑
1x150+ 0.0183 0.0120 52.83 ↑ 0.0123 49.35 ↑ 0.0090 103.61 ↑
1x200+ 0.0216 0.0129 67.41 ↑ 0.0132 63.74 ↑ 0.0096 125.31 ↑
1x250+ 0.0170 0.0126 34.67 ↑ 0.0128 32.88 ↑ 0.0095 77.96 ↑

𝑙 < 0 and 𝑢 > 0; the upper, resp. lower, linear bound would be then
𝑦 = 𝑢

𝑢−𝑙 (𝑥 − 𝑙), resp. 𝑦 = 0. Hence, the approximation is the tightest
for non-negative neural networks. However, linear approximation
is not a necessity for ReLU due to its piece-wise linearity. There are
more precise (both sound and complete) verification approaches (by
using, e.g., SMT [20] and Mixed Integer Linear Programming [6])
which could compute larger certified lower bounds.

FNNs with Mixed Weights. For such networks, it is generally
unpredictable which approach would compute the most precise ver-
ification result (despite a 10% decrease on average in our approach).
To the best of our knowledge, the only feasible way to examine a
proposed approximation under non-trivial FNNs is by empirical
analysis. Tackling this fundamentally and efficiently remains to be
an open research problem.

7 RELATEDWORK

This work is a sequel to many pioneering efforts, which we classify
into the following three categories.
Linear Approximations of Sigmoid-like activation functions.

NeVer [33] uses piece-wise linear constraints for approximation
and is therefore unscalable. Both CROWN [55] and CNN-Cert [5]
consider the tangent line at the midpoint of [𝑙, 𝑢] as one of the
linear bounds. DeepCert [51] defines a fine-grained approximation
strategy by calculating the slopes of the two linear constraints ac-
cording to 𝑙 and𝑢. RobustVerifier [26] leverages Taylor expansion
at the midpoint of [𝑙, 𝑢]. These approximations are intuitive but
lack rigorous justifications or proofs for their better performance.

Lyu et al. [28] characterized the tightness of approximations in
terms of the overestimation of output range of each hidden neuron.
But they observed and admitted that by their definition tighter
bounding lines do not ensure more precise results. By our definition,
we show that in the case of one hidden layer, their definition also

Provably Tightest Linear Approximation for Robustness Verification of Sigmoid-like Neural Networks ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 5: Performance comparison with DeepCert (DC), VeriNet (VN), and RobustVerifier (RV) on mixed-weights Sigmoid

networks. ∗, +, and # mark the models trained on MNIST, Fashion MNIST, and CIFAR10, respectively.

Arch. Model #Neur.

Certified Lower Bound

Time (s)Average Standard Deviation

NW DC Impr. (%) VN Impr. (%) RV Impr. (%) NW DC Impr. (%) VN Impr. (%) RV Impr. (%)

CNN

CNN3_2
∗ 2,514 0.0607 0.0579 4.92 ↑ 0.0580 4.67 ↑ 0.0569 6.82 ↑ 0.0219 0.0202 8.06 ↑ 0.0204 7.37 ↑ 0.0192 13.79 ↑ 0.17 ±0.04

CNN3_4
∗ 5,018 0.0478 0.0472 1.17 ↑ 0.0472 1.29 ↑ 0.0464 2.95 ↑ 0.0155 0.0153 1.11 ↑ 0.0153 1.44 ↑ 0.0146 5.87 ↑ 0.31 ±0.08

CNN4_5
∗ 8,680 0.0570 0.0539 5.64 ↑ 0.0543 5.03 ↑ 0.0522 9.16 ↑ 0.0157 0.0145 8.64 ↑ 0.0146 7.52 ↑ 0.0132 19.45 ↑ 1.18 ±0.20

CNN5_5
∗ 10,680 0.0581 0.0548 6.06 ↑ 0.0550 5.63 ↑ 0.0512 13.42 ↑ 0.0157 0.0142 10.48 ↑ 0.0144 8.80 ↑ 0.0120 30.81 ↑ 2.99 ±0.38

CNN6_5
∗ 12,300 0.0624 0.0590 5.71 ↑ 0.0588 6.00 ↑ 0.0541 15.27 ↑ 0.0171 0.0153 12.03 ↑ 0.0153 11.96 ↑ 0.0123 39.72 ↑ 5.72 ±0.46

CNN8_5
∗ 14,570 0.1191 0.0878 35.58 ↑ 0.0882 35.02 ↑ 0.0685 73.75 ↑ 0.0361 0.0248 45.60 ↑ 0.0255 41.66 ↑ 0.0163 122.22 ↑ 15.27 ±0.78

CNN4_5
+ 8,680 0.0747 0.0720 3.73 ↑ 0.0720 3.79 ↑ 0.0666 12.16 ↑ 0.0413 0.0376 9.85 ↑ 0.0378 9.12 ↑ 0.0313 31.73 ↑ 1.19 ±0.21

CNN5_5
+ 10,680 0.0704 0.0676 4.14 ↑ 0.0676 4.14 ↑ 0.0605 16.51 ↑ 0.0347 0.0318 9.03 ↑ 0.0320 8.41 ↑ 0.0244 41.82 ↑ 2.99 ±0.40

CNN6_5
+ 12,300 0.0735 0.0695 5.77 ↑ 0.0691 6.37 ↑ 0.0626 17.32 ↑ 0.0368 0.0341 7.97 ↑ 0.0340 8.35 ↑ 0.0278 32.57 ↑ 5.81 ±0.55

CNN3_2
3,378 0.0314 0.0312 0.58 ↑ 0.0312 0.61 ↑ 0.0311 1.06 ↑ 0.0172 0.0169 1.65 ↑ 0.0169 1.84 ↑ 0.0168 2.69 ↑ 0.31 ±0.06

CNN6_5
17,110 0.0229 0.0224 2.19 ↑ 0.0223 2.46 ↑ 0.0212 7.77 ↑ 0.0158 0.0153 3.20 ↑ 0.0153 3.20 ↑ 0.0141 12.13 ↑ 10.31 ±0.68

FNN

3x50 ∗ 160 0.0069 0.0076 -8.82 ↓ 0.0077 -9.77 ↓ 0.0065 6.62 ↑ 0.0025 0.0027 -6.37 ↓ 0.0028 -9.42 ↓ 0.0021 18.48 ↑ 0.14 ±0.00
3x100∗ 310 0.0078 0.0086 -9.44 ↓ 0.0087 -10.79↓ 0.0074 4.44 ↑ 0.0026 0.0029 -10.14 ↓ 0.0029 -12.88 ↓ 0.0023 10.30 ↑ 2.14 ±0.03
3x200∗ 610 0.0080 0.0091 -11.69↓ 0.0091 -12.36↓ 0.0079 1.01 ↑ 0.0026 0.0030 -14.14 ↓ 0.0031 -16.39 ↓ 0.0024 5.37 ↑ 10.77 ±0.01
5x100∗ 510 0.0057 0.0061 -5.27 ↓ 0.0062 -6.66 ↓ 0.0052 10.79 ↑ 0.0024 0.0025 -5.98 ↓ 0.0026 -8.88 ↓ 0.0021 12.38 ↑ 4.38 ±0.03
6x500∗ 3,010 0.0685 0.0778 -11.95↓ 0.0776 -11.73↓ 0.0665 3.05 ↑ 0.0186 0.0210 -11.56 ↓ 0.0210 -11.69 ↓ 0.0152 21.98 ↑ 154.39 ±0.36
3x50 + 160 0.0092 0.0101 -9.67 ↓ 0.0102 -10.29↓ 0.0086 6.64 ↑ 0.0035 0.0037 -6.74 ↓ 0.0038 -9.90 ↓ 0.0030 15.72 ↑ 0.14 ±0.00
5x100+ 510 0.0071 0.0078 -8.51 ↓ 0.0079 -10.01↓ 0.0066 8.23 ↑ 0.0036 0.0040 -8.79 ↓ 0.0041 -11.68 ↓ 0.0033 11.35 ↑ 4.44 ±0.03
3x50 # 160 0.0041 0.0045 -10.57↓ 0.0045 -10.18↓ 0.0042 -2.17 ↓ 0.0018 0.0021 -14.90 ↓ 0.0021 -14.49 ↓ 0.0017 2.91 ↑ 0.43 ±0.00
5x100# 510 0.0033 0.0037 -10.60↓ 0.0037 -10.60↓ 0.0033 -0.60 ↓ 0.0014 0.0017 -15.06 ↓ 0.0016 -14.55 ↓ 0.0013 5.22 ↑ 2.45 ±0.01

guarantees to be network-wise tightest. They proposed a gradient-
based searching algorithm for near-tightest approximations under
their definition. However, the algorithm has been shown difficult to
scale up to large-size networks because it needs to perform on every
neuron, comparedwith other existing constant-time approaches [18,
51]. Our work is, to the best of our knowledge, the first provably
tightest, constant-time linear approximation.
Defining Tightness for LinearApproximations. There has been
a shift of focus from individual neurons to multiple neurons w.r.t.
defining tightness for linear approximations, but most of the work
only concerns about the ReLU networks. Tjandraatmadja et al. [41]
experimentally show that the success of approximations hinges
on how closely they approximate the object that they are relaxing.
Salman et al. [36] reveal an inherent barrier of the approximation-
based approaches for the ReLU networks and require for the tight-
est pre-activation upper and lower bounds of all the neurons in
networks. Singh et al. [38] approximate multiple neurons simul-
taneously to obtain the tighter bounds. In contrast to this line of
research, we have defined both neuron-wise and network-wise
tightness to characterize linear approximations of Sigmoid-like
activation functions.
Other Robustness Verification Approaches. In addition to ap-
proximation, other techniques have also been used for the robust-
ness verification of neural networks. Abstract interpretation [11], a
technique that was originally proposed for program verification, has
been proven both effective and efficient in neural network verifica-
tion [16, 39, 40]. These approaches also rely on over-approximation
but to transform the original verification problem into dedicated
abstract domains. We believe that our approximation approach
is also applicable to produce more precise verification results for
non-negative neural networks. Other verification methods leverage
the Lipschitz continuity feature of neural networks to estimate the
output ranges [10, 25, 35]. Although the approximation to an activa-
tion function can be bypassed using the Lipschitz constant, it would
still be helpful to compute tighter Lipschitz constants by estimating
the input range of the activation function via the approximation.

8 CONCLUDING REMARKS

We have presented network-wise tightness, a novel and unified char-
acterization of the tightness of linear approximations in robustness
verification of Sigmoid-like neural networks. We have shown that
(i) to achieve precise verification results, activation functions in a
network should not be approximated with the same existing neuron-
wise tightness criterion; (ii) computing the network-wise tightest
approximation is computationally expensive and impractical due
to its non-convexity; and (iii) how to bypass the complexity bar-
rier via a neuron-wise tightest approximation. The experimental
results demonstrate that our approximation approach outperforms
state-of-the-art approaches under three scenarios, i.e., non-negative
networks, 1-hidden-layer networks, and convolutional networks.

Our work sheds light on the pursuit of robust neural networks
via tightening linear approximations. The ineffectiveness of neuron-
wise tightness on general networks calls for new, potentially hybrid,
approximation strategies. The intrinsic high complexity in com-
puting the network-wise tightest approximation motivates us to
rethink of both fundamental and the heuristic trade-offs between
precision and efficiency in neural network verification. For mixed-
weight neural networks, there may be latent factors that could
influence the tightness of approximations. One promising direction
is to explore possible combinations of existing tightness characteri-
zations to achieve network-wise tightness while taking into account
the features of weight distributions and network architectures.

ACKNOWLEDGMENTS

The authors thank the reviewers for their constructive comments.
This work was supported in part by the National Key Research and
Development (2019YFA0706404), the National Nature Science Foun-
dation of China (61972150), the NSFC-ISF Joint Program (62161146001,
3420/21), the Fundamental Research Funds for Central Universities,
and the Opening Project of Shanghai Trusted Industrial Control
Platform. Jing Liu and Min Zhang are the corresponding authors.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang

REFERENCES

[1] Afan Ali and Fan Yangyu. 2017. Automatic modulation classification using deep
learning based on sparse autoencoders with nonnegativity constraints. IEEE
signal processing letters 24, 11 (2017), 1626–1630.

[2] aptx4869tjx. 2021. Pretrained Models. https://github.com/aptx4869tjx/train_
network.

[3] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
press.

[4] Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, and Prateek Saxena. 2021.
Scalable Quantitative Verification For Deep Neural Networks. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 312–323.

[5] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2019.
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional
Neural Networks. InAAAI Conference on Artificial Intelligence (AAAI). 3240–3247.

[6] Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth
Misener. 2020. Efficient Verification of ReLU-Based Neural Networks via Depen-
dency Analysis. In AAAI Conference on Artificial Intelligence (AAAI). AAAI Press,
3291–3299.

[7] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In IEEE symposium on security and privacy (S&P). IEEE, 39–57.

[8] Fabrício Ceschin, Marcus Botacin, Heitor Murilo Gomes, Luiz S Oliveira, and
André Grégio. 2019. Shallow security: On the creation of adversarial variants
to evade machine learning-based malware detectors. In Proceedings of the 3rd
Reversing and Offensive-oriented Trends Symposium. 1–9.

[9] Edmund M Clarke. 1997. Model checking. In International Conference on Founda-
tions of Software Technology and Theoretical Computer Science. Springer, 54–56.

[10] Patrick L Combettes and Jean-Christophe Pesquet. 2020. Lipschitz certificates
for layered network structures driven by averaged activation operators. SIAM
Journal on Mathematics of Data Science 2, 2 (2020), 529–557.

[11] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approximation of
fixpoints. In ACM Symposium on Principles of Programming Languages (POPL).
238–252.

[12] Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham. 2021. Exposing
previously undetectable faults in deep neural networks. In 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). ACM, 56–66.

[13] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output Range Analysis for Deep Feedforward Neural Networks. In NASA Formal
Methods Symposium (NFM). Springer, 121–138.

[14] Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neu-
ral networks. In International Symposium on Automated Technology for Verification
and Analysis. Springer, 269–286.

[15] William Fleshman, Edward Raff, Jared Sylvester, et al. 2018. Non-Negative
Networks Against Adversarial Attacks. CoRR abs/1806.06108 (2018). http:
//arxiv.org/abs/1806.06108

[16] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. AI2: Safety and Robustness Certification of
Neural Networks with Abstract Interpretation. In IEEE Symposium on Security
and Privacy (S&P). IEEE, 3–18.

[17] Saad Hikmat Haji and Adnan Mohsin Abdulazeez. 2021. Comparison of opti-
mization techniques based on gradient descent algorithm: A review. PalArch’s
Journal of Archaeology of Egypt/Egyptology 18, 4 (2021), 2715–2743.

[18] Patrick Henriksen and Alessio R. Lomuscio. 2020. Efficient Neural Network Veri-
fication via Adaptive Refinement and Adversarial Search. In European Conference
on Artificial Intelligence (ECAI). IOS Press, 2513–2520.

[19] Omid Kargarnovin, Amir Mahdi Sadeghzadeh, and Rasool Jalili. 2021. Mal2GCN:
A Robust Malware Detection Approach Using Deep Graph Convolutional Net-
works With Non-Negative Weights. arXiv preprint arXiv:2108.12473 (2021).

[20] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
International Conference on Computer Aided Verification (CAV). Springer, 97–117.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning Multiple Layers of
Features from Tiny Images. (2009).

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (2017),
84–90.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
Based Learning Applied to Document Recognition. Proc. IEEE 86, 11 (1998),
2278–2324.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[25] Sungyoon Lee, Jaewook Lee, and Saerom Park. 2020. Lipschitz-certifiable training
with a tight outer bound. Annual Conference on Neural Information Processing
Systems (NeurIPS) 33 (2020), 16891–16902.

[26] Wang Lin, Zhengfeng Yang, Xin Chen, Qingye Zhao, Xiangkun Li, Zhiming
Liu, and Jifeng He. 2019. Robustness Verification of Classification Deep Neural
Networks via Linear Programming. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 11418–11427.

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, 3431–3440.

[28] Zhaoyang Lyu, Ching-Yun Ko, Zhifeng Kong, Ngai Wong, Dahua Lin, and Luca
Daniel. 2020. Fastened CROWN: Tightened Neural Network Robustness Certifi-
cates. In AAAI Conference on Artificial Intelligence (AAAI). 5037–5044.

[29] Ana Neacsu, Jean-Christophe Pesquet, and Corneliu Burileanu. 2020. Accuracy-
Robustness Trade-Off for Positively Weighted Neural Networks. In International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8389–8393.

[30] Tianxiang Pan, Bin Wang, Guiguang Ding, and Jun-Hai Yong. 2017. Fully Convo-
lutional Neural Networks with Full-Scale-Features for Semantic Segmentation.
In AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, 4240–4246.

[31] Harsh Nilesh Pathak and Randy Clinton Paffenroth. 2020. Non-convex Optimiza-
tion Using Parameter Continuation Methods for Deep Neural Networks. Deep
Learning Applications, Volume 2 1232 (2020), 273–298.

[32] Brandon Paulsen, Jingbo Wang, Jiawei Wang, and Chao Wang. 2020. NEUROD-
IFF: Scalable Differential Verification of Neural Networks using Fine-Grained
Approximation. In International Conference on Automated Software Engineering
(ASE). IEEE, 784–796.

[33] Luca Pulina and Armando Tacchella. 2010. An Abstraction-Refinement Approach
to Verification of Artificial Neural Networks. In International Conference on
Computer Aided Verification (CAV). Springer, 243–257.

[34] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2017. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39, 6 (2017), 1137–1149.

[35] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2018. Reachability
analysis of deep neural networks with provable guarantees. In International Joint
Conference on Artificial Intelligence(IJCAI). 2651–2659.

[36] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang.
2019. A Convex Relaxation Barrier to Tight Robustness Verification of Neu-
ral Networks. In Annual Conference on Neural Information Processing Systems
(NeurIPS). 9832–9842.

[37] Marco Sälzer and Martin Lange. 2021. Reachability Is NP-Complete Even for the
Simplest Neural Networks. CoRR abs/2108.13179 (2021).

[38] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. 2019.
Beyond the Single Neuron Convex Barrier for Neural Network Certification. In
Annual Conference on Neural Information Processing Systems (NeurIPS). 15072–
15083.

[39] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T
Vechev. 2018. Fast and Effective Robustness Certification.. In Advances in Neural
Information Processing Systems (NeurIPS). 10825–10836.

[40] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An
Abstract Domain for Certifying Neural Networks. Proceedings of the ACM on
Programming Languages (POPL) (2019), 1–30.

[41] Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Patel,
and Juan Pablo Vielma. 2020. The Convex Relaxation Barrier, Revisited: Tightened
Single-Neuron Relaxations for Neural Network Verification. In Annual Conference
on Neural Information Processing Systems (NeurIPS).

[42] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2019. Evaluating Robustness of
Neural Networks with Mixed Integer Programming. In International Conference
on Learning Representations (ICLR).

[43] Alexander Toshev and Christian Szegedy. 2014. DeepPose: Human Pose Estima-
tion via Deep Neural Networks. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE Computer Society, 1653–1660.

[44] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T Johnson. 2020.
NNV: the neural network verification tool for deep neural networks and learning-
enabled cyber-physical systems. In International Conference on Computer Aided
Verification(CAV). Springer, 3–17.

[45] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Efficient formal safety analysis of neural networks. In Annual Conference on
Neural Information Processing Systems (NeurIPS). 6369–6379.

[46] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal Security Analysis of Neural Networks using Symbolic Intervals. InUSENIX
Security Symposium (USENIX Security). 1599–1614.

[47] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and
J Zico Kolter. 2021. Beta-crown: Efficient bound propagation with per-neuron
split constraints for neural network robustness verification. Annual Conference
on Neural Information Processing Systems (NeurIPS) 34 (2021).

[48] LilyWeng, Huan Zhang, Hongge Chen, Zhao Song, et al. 2018. Towards Fast Com-
putation of Certified Robustness for ReLU Networks. In International Conference
on Machine Learning (ICML). PMLR, 5276–5285.

[49] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, et al. 2018. Towards
Fast Computation of Certified Robustness for ReLU Networks. In International

https://github.com/aptx4869tjx/train_network
https://github.com/aptx4869tjx/train_network
http://arxiv.org/abs/1806.06108
http://arxiv.org/abs/1806.06108

Provably Tightest Linear Approximation for Robustness Verification of Sigmoid-like Neural Networks ASE ’22, October 10–14, 2022, Rochester, MI, USA

Conference on Machine LearningICML, Vol. 80. PMLR, 5273–5282.
[50] Jeannette M Wing. 2021. Trustworthy AI. Commun. ACM 64, 10 (2021), 64–71.
[51] Yiting Wu and Min Zhang. 2021. Tightening Robustness Verification of Convo-

lutional Neural Networks with Fine-Grained Linear Approximation. In AAAI
Conference on Artificial Intelligence (AAAI). 11674–11681.

[52] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2018. Output reachable
set estimation and verification for multilayer neural networks. IEEE transactions
on neural networks and learning systems 29, 11 (2018), 5777–5783.

[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747
(2017).

[54] Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang.
2021. Exposing numerical bugs in deep learning via gradient back-propagation.
In 29th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 627–638.

[55] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018.
Efficient Neural Network Robustness Certification with General Activation Func-
tions. In Annual Conference on Neural Information Processing Systems (NeurIPS).
4944–4953.

[56] Zhaodi Zhang, YitinhWu, Si Liu, Jing Liu, and Min Zhang. 2022. Provably Tightest
Linear Approximation for Robustness Verification of Sigmoid-like Neural Networks.
Technical Report. https://arxiv.org/abs/2208.09872

https://arxiv.org/abs/2208.09872

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Robustness Verification of Neural Networks
	2.2 Approximation-based Robustness Verification

	3 Linear Approximation Approaches
	3.1 The Tightness Issue of Approximations
	3.2 Empirical Analysis
	3.3 The Network-Wise Tightest Approximation

	4 Approach for 1-Hidden-Layer Networks
	5 Approach for Multi-Hidden-Layer Networks
	5.1 The Neuron-Wise Tightest Approximation
	5.2 Neuron-Wise vs. Network-Wise

	6 Experiments
	6.1 Benchmarks and Experimental Setup
	6.2 Experimental Results
	6.3 Threats to Validity

	7 Related Work
	8 Concluding Remarks
	Acknowledgments
	References

