|
10 访问 |
个人资料
教育经历08/2014-06/2020 博士:美国迈阿密大学,化学系 09/2011-06/2014 硕士:中国科学院大学,过程工程研究所 09/2007-06/2011 本科:中国石油大学(北京),化学工程学院 工作经历10/2020-10/2022 博士后:上海科技大学,免疫化学研究所 11/2022-至今 副研究员:华东师范大学,药学院、人工智能新药创智中心 个人简介本人具备量子化学、人工智能、计算生物学、和药物设计等方面的交叉学科学习与研究经历。针对药物研发上游环节中存在的科学问题及技术难点,重点开展药物设计方法和酶促反应机理等的相关基础研究,并通过进一步的应用研究工作带动方法发展,验证方法的可靠性和实用性。在Nat. Commun.、ACS Catal.、J. Chem. Inf. Model.、WIREs Comput. Mol. Sci.等国际知名期刊上共发表学术论文20余篇,参与申请专利一项(专利申请号202111043888.3),作为核心骨干参与并撰写科技部“国家重点研发计划”子课题一项(课题批准号2022YFC3400501)和上海市科技委“科技创新行动计划”一项(项目批准号22ZR1441400),参与撰写国内首本《人工智能与药物设计》专著,获得2021年上海市“超级博士后”激励计划资助。 社会兼职研究方向1. 基于深度学习的PROTACs分子设计: 针对靶标降解剂新模态分子PROTACs理性药物设计方法几乎空白的瓶颈问题,我们利用深度学习的方法开发了首个能够预测PROTACs降解靶蛋白效率的分类器DeepPROTACs,并以在线服务器形式对外免费公开使用,上线3个月以来,已有超过10个国家的400多名用户提交任务使用,包括Relay和罗氏等知名国际医药公司。该模型预测准确率达到77.46%,AUROC达到0.8531。相关的研究成果已申请发明专利并发表在Nat. Commun., 2022, 13, 7133。综合采用深度学习技术与基于片段的药物设计方法,发展了基于蛋白质靶标位点的全自动分子生成工具AutoFBDD,并进一步拓展开发了了第一个PROTAC分子从头生成工具AutoPROTACs。利用此程序针对肿瘤等疾病的关键靶标(WDR5和KRASG12D)开展了小分子抑制剂和PROTACs的设计,完成了初步实验验证,以100%命中率获得了有活性的小分子和PROTACs。 2.基于人工智能的小分子药物设计: 针对分子三维构象预测任务,我们基于图数据增强混合策略构建了ConforMix模型。该模型将图内数据混合和图间数据混合策略相结合,不仅丰富了每个分子图的细节层次,还产生了数据集中未曾出现过的虚拟分子构象,起到了数据增强的作用。测试结果表明该模型在覆盖分数和匹配分数等关键指标上,均达到了SOTA水平。另外,我们采用扩散模型构建了基于靶标三维结构的分子生成模型DiffGui。该模型以分子的结合亲和力、可合成性、成药性等关键性质作为引导,确保生成的分子不仅具有优异的生物活性,还具备实际应用的可行性。为了提升分子结构的可靠性,我们将原子扩散和化学键扩散相结合,从而实现了对分子结构的精准操控和高效生成。针对新冠病毒主蛋白酶3CLpro,利用上述程序设计了多个非拟肽类的噻二唑共价抑制剂。实验表明它们对靶标3CLpro的IC50处于118~582nM之间,经过计算提出抑制机理为化合物开环后与反应性的Cys145共价连接,占据了3CLpro结合位点,阻断了主蛋白酶对病毒的复制和转录。相关研究成果发表于Eur. J. Med. Chem. 2023, 249, 115129。 3. 基于量子化学和分子力学的金属酶催化机理研究: 针对金属酶中金属离子的作用和相关反应机理不明确的问题,利用量子力学(QM)、量子力学/分子力学(QM/MM)和分子动力学模拟(MD)等多种计算化学手段研究了金属酶水解多肽和磷酸脂的反应机理。结果表明相比于不包含金属的蛋白酶,单金属酶活化了底物,因而具有更高的反应活性;而多金属酶由于不同金属离子之间的协同效应,对底物的反应活性进一步提高。相关的研究成果发表在多篇SCI论文上(ACS Catal. 2020, 10(6), 3684-3696、J. Chem. Inf. Model.2021, 61(2), 764-776、WIREs Comput. Mol. Sci. 2020, 10 (4), e1466、Phys. Chem. Chem. Phys. 2019, 21 (10), 5499-5509、ACS Omega2021, 6(49), 33354-33369等)。 4. 基于量子化学和分子力学的金属酶衍生物设计: 针对目前金属酶衍生物的活性不如金属酶的问题,利用量子力学(QM)、量子力学/分子力学(QM/MM)和分子动力学模拟(MD)等多种计算化学手段研究了多个不同的金属酶人工合成衍生物对多肽和磷酸脂的水解反应机理,并以此指导衍生物的设计。研究表明金属离子的选择对反应的机理和活性有重大的影响,并且双金属离子的衍生物具有比单金属离子衍生物更高的反应活性。相关的研究成果发表在多篇SCI论文上(ACS Catal. 2023, 13, 3131-3147、J. Comput. Chem. 2019, 40 (1), 51-61、Front. Chem. 2019, 7, 195等)。 招生与培养开授课程科研项目参与科研项目: 1. 科技部“国家重点研发计划”子课题一项(课题批准号2022YFC3400501) 2. 上海市科技委“科技创新行动计划”一项(项目批准号22ZR1441400) 学术成果代表性论文和专利: 1. Qiaoyu Hu, Hari Paudyal, Junmei Zhao, Fang Huo, Katsutoshi Inoue, Huizhou Liu. Adsorptive recovery of vanadium(V) from chromium(VI) - containing effluent by Zr(IV)-loaded orange juice residue, Chemical Engineering Journal, 2014, 248, 79-88. 2. Qiaoyu Hu, Junmei Zhao, Fuchun Wang, Na Sui, Xiaoqin Wang, Fang Huo, Huizhou Liu. Selective extraction of vanadium from chromium by pure [C8mim][PF6]: an anion exchange process, Separation and Purification Technology, 2014, 131, 94-101. 3. Junmei Zhao, Qiaoyu Hu, Yingbo Li, Huizhou Liu. Efficient separation of vanadium and chromium by a novel ionic liquid-based synergistic extraction strategy, Chemical Engineering Journal, 2015, 264, 487-496. 4. Fuchun Wang, Junmei Zhao, Xuetuan Wei, Fang Huo, Wensong Li, Qiaoyu Hu, Huizhou Liu. Adsorption of rare earths (III) by calcium alginate - poly glumatic acid hybrid gels, Journal of Chemical Technology and Biotechnology,2014, 89, 969-977. 5. Qiaoyu Hu, Vindi M. Jayasinghe-Arachchige, Joshua Zuchniarz, Rajeev Prabhakar. Effects of the Metal Ion on the Mechanism of Phosphodiester Hydrolysis Catalyzed by Metal-Cyclen Complexes. Frontiers in Chemistry, 2019, 7, 195. 6. Qiaoyu Hu, Vindi M. Jayasinghe-Arachchige, Gaurav Sharma, Leonardo F. Serafim, Thomas J. Paul and Rajeev Prabhakar. Mechanisms of Peptide and Phosphoester Hydrolysis Catalyzed by Two Promiscuous Metalloenzymes (Insulin Degrading Enzyme and Glycerophosphodiesterase) and Their Synthetic Analogues. WIREs Computational Molecular Science, 2020, 10, e1466. 7. Qiaoyu Hu, Vindi M. Jayasinghe-Arachchige, Rajeev Prabhakar. Degradation of a Main Plastic Pollutant Polyethylene Terephthalate by Two Distinct Proteases (Neprilysin and Cutinase-like Enzyme). Journal of Chemical Information and Modeling, 2021, 61, 764-776. 8. Qiaoyu Hu, Kevin Padron, Daiki Hara, Junwei Shi, Alan Pollack, Rajeev Prabhakar, Wensi Tao. Interactions of Urea-Based Inhibitors with Prostate-Specific Membrane Antigen for Boron Neutron Capture Therapy. ACS Omega, 2021, 6, 33354-33369. 9. Vindi M. Jayasinghe-Arachchige, Qiaoyu Hu, Gaurav Sharma, Thomas J. Paul, Marcus Lundberg, David Quiñonero, Tatjana N. Parac-Vogt and Rajeev Prabhakar. Hydrolysis of Chemically Distinct Sites of Human Serum Albumin (HSA) by Polyoxometalate (POM): A Hybrid QM/MM (ONIOM) Study. Journal of Computational Chemistry, 2019, 40, 51-61. 10. Gaurav Sharma, Qiaoyu Hu, Vindi M. Jayasinghe-Arachchige, Thomas Paul, Gerhard Schenk and Rajeev Prabhakar. Investigating Coordination Flexibility of Glycerophosphodiesterase (GpdQ) Through Interactions with Mono-, Di-, and Triphosphoester (NPP, BNPP, GPE, and Paraoxon) Substrates. Physical Chemistry Chemical Physics, 2019, 21, 5499-5509. 11. Thomas M. Carlino, Qiaoyu Hu, Amy M. Scott. Aggregate Induced Self-Assembly and Ultrafast Dynamics of Light-Harvesting D-A-A Polymorphs. Macromolecular Rapid Communications, 2018, 39, 1800391. 12. Gaurav Sharma, Vindi M. Jayasinghe-Arachchige, Qiaoyu Hu, Gerhard Schenk and Rajeev Prabhakar. The Effect of Chemically Distinct Substrates on the Mechanism and Reactivity of a Highly Promiscuous Metallohydrolase. ACS Catalysis, 2020, 10, 3684-3696. 13. Mercedes M. A. Mazza, Shiori Yamazaki, Dieu X. Mai, Suyog Padgaon- kar, Samuel Peurifoy, Ariane Goncalves, Yi-Lin Wu, Qiaoyu Hu, Amy M. Scott. Photoinduced charge recombination in dipolar D-A-A photonic liquid crystal polymorphs. Physical Chemistry Chemical Physics, 2017, 19, 4588-4596. 14. Fenglei Li, Qiaoyu Hu, Ruofan Xiong, and Fang Bai. Computational drug design methods by deep learning algorithms. Chinese Journal of Nature, 2021, 43(5): 383-390. 15. Fenglei Li1, Qiaoyu Hu1, Xianglei Zhang1, Renhong Sun1, Zhuanghua Liu1, Sanan Wu, Siyuan Tian, Xinyue Ma, Zhizhuo Dai, Xiaobao Yang, Shenghua Gao, and Fang Bai. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nature Communications, 2022, 13, 7133. 16. Zhongneng Zhou, Zijing Chen, Xiu-Wen Kang, Yalin Zhou, Bingyao Wang, Siwei Tang, Shuhua Zou, Yifei Zhang, Qiaoyu Hu, Fang Bai, Bei Ding, and Dongping Zhong. The nature of proton-coupled electron transfer in a blue light using flavin domain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(26), e2203996119. 17. Pengxuan Ren1, Changyue Yu1, Ruxue Zhang1, Tianqing Nie1, Qiaoyu Hu1, Hui Li, Xianglei Zhang, Xueyuan Zhang, Shiwei Li, Lu Liu, Wenhao Dai, Jian Li, Yechun Xu, Haixia Su, Leike Zhang, Hong Liu, Fang Bai. Discovery, synthesis and mechanism study of 2, 3, 5-substituted [1, 2, 4]-thiadiazoles as covalent inhibitors targeting 3C-Like protease of SARS-CoV-2. European Journal of Medicinal Chemistry, 2023, 249, 115129. 18. Vindi M. Jayasinghe-Arachchige, Leonardo F. Serafim, Qiaoyu Hu, Cihan Ozen, Sreerag N. Moorkkannur, Gerhard Schenk, Rajeev Prabhakar. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catalysis, 2023, 13, 3131-3147. 19. Yanyan Diao, Dandan Liu, Huan Ge, Rongrong Zhang, Kexin Jiang, Kai Zhang, Rui Wang, Lili Zhu, Zhenjiang Zhao, Qiaoyu Hu, and Hongling Li. Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery. Nature Communications, 2023, 14, 4552. 20. 白芳,高盛华,蒋华良,李风雷,胡乔宇,刘壮华;基于神经网络的PROTAC分子降解率的预测系统及其构建方法,2021-9-07,中国,202111043888.3。 荣誉及奖励1. 07/2008 国家奖学金, 中华人民共和国教育部 2. 07/2009 中国海洋石油奖学金, 中国石油大学(北京) 3. 06/2014 中国环境科学奖学金, 中国科学院大学 4. 09/2018 Sam&Clara暑期研究奖学金,美国迈阿密大学 5. 12/2021 上海市“超级博士后”激励计划,上海市人力资源和社会保障局 |