头像

方俊锋

物理与电子科学学院      

个人资料

  • 部门: 物理与电子科学学院
  • 毕业院校:
  • 学位:
  • 学历:
  • 邮编:
  • 联系电话: 021-54836489
  • 传真:
  • 电子邮箱: jffang@phy.ecnu.edu.cn
  • 办公地址: 物理楼435室
  • 通讯地址: 上海市闵行区东川路500号物理楼435室,200241

教育经历

工作经历

个人简介

社会兼职

中国激光杂志社青年编委

研究方向

有机太阳能电池界面材料与器件,钙钛矿太阳能电池界面材料与器件性能调控,钙钛矿太阳能电池稳定性与机制

开授课程

科研项目

学术成果

学习研究经历:

1997.09-2001.07,武汉大学化学与分子科学学院,学士学位
2001.09-2006.07,中科院长春应化所高分子物理与化学国家重点实验室,博士学位
2006.09-2008.09,瑞典Umea大学物理系,博士后
2008.12-2010.12,英国剑桥大学化学系,博士后
2011.01-2019.04,中国科学院宁波材料技术与工程研究所,中科院百人计划研究员
2019.05-至今,     华东师范大学物理与材料科学学院,教授


获得荣誉: 

Ø2019年华东师范大学紫江优秀青年学者

Ø2015年中科院特聘研究员计划

Ø2015年宁波市领军与拔尖人才第一层次

Ø2015年浙江省九三学社优秀社员

Ø2015年中科院上海分院杰出青年科技创新人才提名奖

Ø2014年浙江省杰出青年基金获得者

Ø2013年获得浙江省“千人计划”特聘专家

Ø2013年获得宁波市“3315计划”

Ø2012年中科院“百人计划”A类择优支持

Ø2004年中科院院长奖优秀奖



部分研究项目:


1.国家自然科学基金面上项目,61974150,自交联添加剂提高钙钛矿太阳能电池稳定性及其机理研究,2020.01-2023.1259万元,在研,主持

2.华东师范大学紫江优秀青年学者启动基金,2019/05-2025/07, 300万,主持

3.国家万人计划青年拔尖人才,组厅字(201548号,有机光电界面材料与器件,2015/01-2017/12200万元,主持

4.中科院前沿科学重点研究计划,太阳能电池界面调控与器件性能研究, 250万,主持

5.国家自然科学基金面上项目,51773213,含羧酸类极性基团的有机电荷传输材料及其钙钛矿太阳能电池性能研究,2018/01-2021/1258万元,主持

6.浙江省重点研发计划,2018C0104,柔性太阳能电池关键材料与器件研发及应用柔性太阳能电池关键材料与高效率器件的研究,2018/01-2020/1285/250万元),项目骨干

7.国家自然科学基金面上项目,61474125,电场对含有机小分子离子型材料的光伏器件性能影响研究,2015/01-2018/1279万元,主持

8.浙江省杰出青年基金, LR14E030002,离子型有机小分子和中性前体合成及其光电器件界面性能研究, 2014/01-2017/1230万元,主持

9.国家自然科学基金面上项目,51273208,有机两性离子界面修饰材料合成及其光电器件性能研究,2013/01-2016/1280万元,主持

10.中科院百人计划” A类(引进国外杰出人才)择优支持项目, 有机光电材料与器件,2013/01-2015/12260万元,主持


部分论文:


1. Xiaodong Li, Sheng Fu, Shiyu Liu, Yulei Wu, Wenxiao Zhanb, Weijie Song, Junfeng Fang*Suppressing the ions-induced degradation for operationally stable perovskite solar cellsNano Energy, 2019, 64, 103962. (IF: 15.5)

2.Sheng Fu, Xiaodong Li, Li Wan, Yulei Wu, Wenxiao Zhang, Yueming Wang,Qinye Bao, Junfeng Fang*Efficient Passivation with Lead Pyridine-2-Carboxylic for High-Performance and Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 1901852. (IF: 24.8)

3. Yulei wu, Xiaodong Li, Sheng Fu, Li Wan & Junfeng Fang*. Efficient Methylammonium Lead Trihalide Perovskite Solar Cells with Chloroformamidinium Chloride (Cl-FACl) as Additive. Journal of Materials Chemistry A 2019. (HOT Papers, IF: 10.7)

4.Changjian Song, Xiaodong Li, Yueming Wang, Sheng Fu, Li Wan, Shiyu Liu, Wenjun Zhang* Weijie Song and Junfeng Fang*. Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A 2019 DOI: 10.1039/C9TA06439G. (IF: 10.7)

5.Wenxiao Zhang, Li Wan, Xiaodong Li, Yulei Wu, Sheng Fu and Junfeng Fang*A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. Journal of Materials Chemistry A 2019, 7, 18898-18905. (IF: 10.7)

6. Wulei Wu, Li Wan, Sheng Fu, Wenxiao Zhang, Xiaodong Li and Junfeng Fang*. Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells. Journal of Materials Chemistry A 2019, 7, 14136-1414 (IF: 10.7)

7.Li, X. D.; Zhang, W. X.; Wang, Y. C.Zhang, W. J.; Wang, H. Q.; Fang, J. *In-Situ Cross-linking Strategy for Efficient and Operationally Stable Methylammoniun Lead Iodide Solar Cells.Nat Commun2018, 9, 3806.

8.Li, X. D.; Zhang, W.J.; Usman, K.; Fang, J. *Small Molecule Interlayers in Organic Solar Cells.Adv Energy Mater 2018, 8, 1702730.

9. Li, D.; Xiao, Z.; Wang, S.Z.; Geng, X.J.; Yang, S. F.*;Fang, J. *Yang, H.* and Ding, L. M.*. A Thieno[3,2-c]Isoquinolin-5(4H)-One Building Block for Effcient Thick-Film Solar Cells.Adv. Energy Mater. 2018, 1800397.

10.Wang, Y. C.; Chang,J.W.; Zhu,L.P.;Li, X. D.;Song, C.J.; Fang, J.Electron Transport Layer Assisted Crystallization of Perovskite Films for High Efficiency Planar Heterojunction Solar Cells. Adv Funct Mater 2017, 28, 1706317.

11.Wang, Y; Li, X.; Zhu, L.; Liu, X.; Zhang, W.; Fang, J*.: Efficient and Hysteresis-Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer.Advanced Energy Materials 2017, 7. 1701144.

12.X. Liu, X. Li, Y. Li, C. Song, L. Zhu, W. Zhang, H. Q*. Wang, J. Fang*, High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode InterlayerAdv Mater 2016, 28, 7405-7412.

13.C. Kuang, G. Tang, T. Jiu*, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F. Lu, J. Fang*, Y. Li*, Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar CellsNano Letters 2015, 15, 2756-2762.

14.W. Zhang, Y. Wu, Q. Bao, F. Gao*, J. Fang*, Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer MaterialsAdvanced Energy Materials 2014, 4, 1400359.

15.C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen*, D. Ma, J. Fang*, A Small-Molecule Zwitterionic Electrolyte without a π-Delocalized Unit as a Charge-Injection Layer for High-Performance PLEDsAngewandte Chemie International Edition 2013, 52, 3417–3420.

16.J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Müller, G. Pace, R. H. Friend*, W. T. S. Huck*, Conjugated Zwitterionic Polyelectrolyte as the Charge Injection Layer for High-Performance Polymer Light-Emitting DiodesJournal of the American Chemical Society 2011, 133, 683-685.

17.J. Fang, P. Matyba, L. Edman*, The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical CellsAdvanced Functional Materials 2009, 19, 2671-2676.

18.J. Fang, P. Matyba, N. D. Robinson, L. Edman*, Identifying and Alleviating Electrochemical Side-Reactions in Light-Emitting Electrochemical CellsJournal of the American Chemical Society 2008, 130, 4562-4568.

19.Li, X. D.; Liu, X. H.; Zhang, W. J.; Wang, H. Q.; Fang, J*..:Fullerene-Free Organic Solar Cells with Efficiency Over 12% Based on EDTA–ZnO Hybrid Cathode Interlayer.Chemistry of Materials 2017, 29 , 4176–4180.

20.Liu, X; Wang, H-Q*;Li, Y; Gui, Z; Ming, S; Usman, K; Zhang, W;Fang, J*Regular Organic Solar Cells with Efficiency over 10% and Promoted Stability by Ligand- and Thermal Annealing-Free Al-Doped ZnO Cathode InterlayerAdvanced Science 2017,  1700053

21.Zhang, W.;Wang, Y. C.; Chang,Li, X. D.;Song, C.J.; Wan, L.; Usman. L.; Fang, J.Recent Advance in Solution-Processed Organic Interlayers for High Performance Planar Perovskite Solar Cells Advanced Science 2018,  1800159

22.Li, X. D.; Wang, Y. C.; Zhu, L. P.; Zhang, W. J.; Wang, H. Q.; Fang, J. *Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer.ACS Appl Mater Inter 2017, 9, 31357-31361.

23.Zhang, W. J.; Li, Y. R.; Zhu, L. P.; Liu, X. H.; Song, C. J.; Li, X. D.; Sun, X. H.; Fang, J* : A PTB7-based narrow band-gap conjugated polyelectrolyte as an efficient cathode interlayer in PTB7-based polymer solar cells.Chemical Communications 2017, 53, 2005-2008.

24.Li, Y. R.; Liu, X. H.; Li, X. D.; Zhang, W. J.; Xing, F. F.; Fang, J*..Electrolytes as Cathode Interlayers in Inverted Organic Solar Cells: Influence of the Cations on Bias-Dependent Performance.ACS Applied Materials & Interfaces 2017, 9, 8426-8431.

25.Zhu, L.; Li, X.; Song, C.; Liu, X.; Wang, Y.; Fang, J*.Cathode modification in planar hetero-junction perovskite solar cells through a small-molecule zwitterionic carboxylate.Organic Electronics 2017, 48 204-210.

26.Zhu, L. P.; Song, C. J.; Li, X. D.; Wang, Y. C.; Zhang, W. X.; Sun, X. H.; Zhang, W. J. *; Fang, J. *A benzobis(thiadiazole)-based small molecule as a solution-processing electron extraction material in planar perovskite solar cells.J Mater Chem C 2017, 5, 10777-10784.

27.W. Zhang, C. Song, X. Liu, J. Fang*, Realizing Highly Efficient Inverted Photovoltaic Cells by Combination of Nonconjugated Small-Molecule Zwitterions with Polyethylene GlycolACS Applied Materials & Interfaces 2016, 8, 18593-18599.

28.Y. Wu, X. Liu, X. Li, W. Zhang, H.-Q. Wang*, J. Fang*, High-Performance Polymer Solar Cells with Zinc Sulfide-Phenanthroline Derivatives as the Hybrid Cathode InterlayersACS Applied Materials & Interfaces 2016, 8, 2688-2693.

29.X. Liu, Y. Wu, X. Li, W. Zhang, L. Zhao, H.-Q. Wang*, J. Fang*, CdS-phenanthroline derivative hybrid cathode interlayers for high performance inverted organic solar cellsJournal of Materials Chemistry A 2016, 4, 297-302.

30.J. Li, T. Jiu*, B. Li, C. Kuang, Q. Chen, S. Ma, J. Shu, J. Fang*, Inverted polymer solar cells with enhanced fill factor by inserting the potassium stearate interfacial modification layerApplied Physics Letters 2016, 108, 181602.

31.L. Zhao, X. Wang, X. Li, W. Zhang, X. Liu, Y. Zhu, H.-Q. Wang, J. Fang*, Improving performance and reducing hysteresis in perovskite solar cells by using F8BT as electron transporting layerSolar Energy Materials and Solar Cells 2016, 157, 79-84.

32.B. Li, T. Jiu*, C. Kuang, S. Ma, Q. Chen, X. Li, J. Fang*, Chlorobenzene vapor assistant annealing method for fabricating high quality perovskite filmsOrganic Electronics 2016, 34, 97-103.

33.Y. Li, X. Li, X. Liu, L. Zhu, W. Zhang, J. Fang*, Realizing High Performance Inverted Organic Solar Cells Via a Non-Conjugated Electrolyte Cathode InterlayerThe Journal of Physical Chemistry C 2016. DOI: 10.1021/acs.jpcc.6b10558

34.B. Li, T. Jiu*, C. Kuang, Q. Chen, S. Ma, J. Li, X. L. Hou, J. Fang*, Improving the efficiency of inverted organic solar cells by introducing ferrocenedicarboxylic acid between an ITO/ZnO interlayerRsc Advances 2016, 6, 32000-32006.

35.C. Song, X. Liu, X. Li, W. Zhang, Y. Bai, J. Fang*, Sulfonate anionic small molecule as a cathode interfacial material for highly efficient polymer solar cellsRSC Advances 2016, 6, 33523-33528.

36.J. Sheng, D. Wang, S. Wu, X. Yang, L. Ding, J. Zhu, J. Fang, P. Gao, J. Ye, Ideal rear contact formed via employing a conjugated polymer for Si/PEDOT:PSS hybrid solar cellsRsc Advances 2016, 6, 16010-16017.

37.Y. Liu, W. Zhang, Y. Zou, G. Xie, J. Fang*, C. Yang*, Improved performance of inverted polymer solar cells by utilizing alcohol-soluble oligofluorenes as efficient cathode interlayersOrganic Electronics 2016, 30, 182-190.

38.Y. Zhou, N. Qiu, R. Li, Z. Guo, J. Zhang, J. Fang, A. Huang, J. He, X. Zha, K. Luo, J. Yin, Q. Li, X. Bai, Q. Huang, S. Du*, Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p–n devicePhysics Letters A 2016, 380, 1049-1055.

39.Q. Zhang, D. Zhang, X. Li, X. Liu, W. Zhang, L. Han, J. Fang*g, Neutral amine based alcohol-soluble interface materials for inverted polymer solar cells: realizing high performance and overcoming solvent erosionChemical Communications 2015, 51, 10182-10185.

40.W. Luo, T. Jiu*, C. Kuang, B. Li, F. Lu, J. Fang*, Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorodsNano Res. 2015, 8, 3045-3053.

41.X. Li, W. Zhang, X. Wang, Y. Wu, F. Gao, J. Fang*, Critical role of the external bias in improving the performance of polymer solar cells with a small molecule electrolyte interlayerJournal of Materials Chemistry A 2015, 3, 504-508.

42.X. Li, X. Wang, W. Zhang, Y. Wu, F. Gao, J. Fang*, The effect of external electric field on the performance of perovskite solar cellsOrganic Electronics 2015, 18, 107-112.

43.X. Li, X. Liu, X. Wang, L. Zhao, T. Jiu, J. Fang*, Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cellsJournal of Materials Chemistry A 2015, 3, 15024-15029.

44.X. Wang, X. Li, G. Tang, L. Zhao, W. Zhang, T. Jiu*, J. Fang*, Improving efficiency of planar hybrid CH3NH3PbI3−xClx perovskite solar cells by isopropanol solvent treatmentOrganic Electronics 2015, 24, 205-211.

45.X. Liu, C. Liu, R. Sun, K. Liu, Y. Zhang, H.-Q. Wang, J. Fang*, C. Yang*, Improved Device Performance of Polymer Solar Cells by Using a Thin Light-harvesting-Complex Modified ZnO Film as the Cathode InterlayerACS Applied Materials & Interfaces 2015, 7, 18904-18908.

46.M. Qian, R. Zhang, J. Hao, W. Zhang, Q. Zhang, J. Wang, Y. Tao, S. Chen, J. Fang, W. Huang, Dramatic Enhancement of Power Conversion Efficiency in Polymer Solar Cells by Conjugating Very Low Ratio of Triplet Iridium Complexes to PTB7Advanced Materials 2015, 27, 3546-3552.

47.M. Hao, X. Li, K. Shi, D. Xie, X. Zeng, J. Fang*, G. Yu, C. Yang*, Highly efficient photovoltaics and field-effect transistors based on copolymers of mono-fluorinated benzothiadiazole and quaterthiophene: synthesis and effect of the molecular weight on device performancePolymer Chemistry 2015, 6, 6050-6057.

48.Q. Bao, X. Liu, E. Wang, J. Fang, F. Gao, S. Braun, M. Fahlman, Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their Implications on Design RulesAdvanced Materials Interfaces 2015, 2, 1500204.

49.G. Wang, T. Jiu*, C. Sun, J. Li, P. Li, F. Lu, J. Fang*, Highly Efficient Organic Photovoltaics via Incorporation of Solution-Processed Cesium Stearate as the Cathode Interfacial LayerACS Applied Materials & Interfaces 2014, 6, 833-838.

50.C. Sun, Y. Wu, W. Zhang, N. Jiang, T. Jiu*, J. Fang*, Improving Efficiency by Hybrid TiO2 Nanorods with 1,10-Phenanthroline as A Cathode Buffer Layer for Inverted Organic Solar CellsACS Applied Materials & Interfaces 2014, 6, 739–744.

51.X. Li, W. Zhang, X. Wang, F. Gao*,J. Fang*, Disodium Edetate As a Promising Interfacial Material for Inverted Organic Solar Cells and the Device Performance OptimizationACS Applied Materials & Interfaces 2014, 6, 20569-20573.

52.P. Li, C. Sun, T. Jiu*, G. Wang, J. Li, X. Li, J. Fang*, High-Performance Inverted Solar Cells Based on Blend Films of ZnO Naoparticles and TiO2 Nanorods as a Cathode Buffer LayerACS Applied Materials & Interfaces 2014, 6, 4074-4080.

53.P. Li, T. Jiu*, G. Tang, G. Wang, J. Li, X. Li, J. Fang*, Solvents Induced ZnO Nanoparticles Aggregation Associated with Their Interfacial Effect on Organic Solar CellsACS Applied Materials & Interfaces 2014,6, 18172-18179.

54.G. Wang, T. Jiu*, P. Li, J. Li, C. Sun, F. Lu, J. Fang*, Preparation and characterization of MoO3 hole-injection layer for organic solar cell fabrication and optimizationSolar Energy Materials and Solar Cells 2014, 120, 603-609.

55.P. Li, X. Li, C. Sun, G. Wang, J. Li, T. Jiu*, J. Fang*, Performance enhancement of inverted polymer solar cells with fullerene ester derivant-modified ZnO film as cathode buffer layerSolar Energy Materials and Solar Cells 2014, 126, 36-41.

56.G. Wang, T. Jiu*, G. Tang, J. Li, P. Li, X. Song, F. Lu, J. Fang*, Interface Modification of ZnO-Based Inverted PTB7:PC71BM Organic Solar Cells by Cesium Stearate and Simultaneous Enhancement of Device ParametersACS Sustainable Chemistry & Engineering 2014, 2, 1331-1337.

57.W. Zhang, C. Min, Q. Zhang, X. Li, J. Fang*, Zwitterionic ammonium and neutral amino molecules as cathode interlayer for inverted polymer solar cellsOrganic Electronics 2014, 15, 3632-3638.

58.G. Wang, T. Jiu*, P. Li, J. Li, C. Sun, F. Lu*, J. Fang*, In situ growth of columnar MoO3 buffer layer for organic photovoltaic applicationsOrganic Electronics 2014, 15, 29-34.

59.Z. Hu, X.-d. Li, W. Zhang, A. Liang, D. Ye, Z. Liu*, J. Liu, Y. Liu, J. Fang*, Synthesis and photovoltaic properties of solution-processable star-shaped small molecules with triphenylamine as the core and alkyl cyanoacetate or 3-ethylrhodanine as the end-groupRsc Advances 2014, 4, 5591-5597.

60.C. Sun, X. Li, G. Wang, P. Li, W. Zhang, T. Jiu, N. Jiang*, J. Fang*, Highly efficient inverted polymer solar cells using fullerene derivative modified TiO2 nanorods as the buffer layerRsc Advances 2014, 4, 19529-19532.

61.J. Li, T. Jiu*, G.-H. Tao, G. Wang, C. Sun, P. Li, J. Fang*, L. He, Manipulating surface ligands of Copper Sulfide nanocrystals: Synthesis, characterization, and application to organic solar cellsJournal of Colloid and Interface Science 2014, 419, 142-147.

62.J. Sheng, K. Fan, D. Wang, C. Han, J. Fang, P. Gao, J. Ye*, Improvement of the SiOx Passivation Layer for High-Efficiency Si/PEDOT:PSS Heterojunction Solar CellsACS Applied Materials & Interfaces 2014, 6, 16027-16034.

63.X. Xu, Y. Wu, J. Fang*, Z. Li, Z. Wang, Y. Li, Q. Peng*, Side-Chain Engineering of Benzodithiophene-Fluorinated Quinoxaline Low-Band-Gap Co-polymers for High-Performance Polymer Solar CellsChemistry – A European Journal 2014, 20, 13259–13271.

64.Y. Liu, J. Li, L. Zhang, J. Fang, W. Zhang*, Z. Liu*, Non-fullerene Organic Small Molecule Electron-AcceptorsChin. J. Org. Chem. 2014, 34, 1021-1033.

65.Y. Wu, W. Zhang, X. Li, C. Min, T. Jiu, Y. Zhu, N. Dai*, J. Fang*, Solution-Processed Hybrid Cathode Interlayer for Inverted Organic Solar CellsACS Applied Materials & Interfaces 2013, 5, 10428-10432.

66.X. Li, W. Zhang, Y. Wu, C. Min, J. Fang*, Solution-Processed MoSx as an Efficient Anode Buffer Layer in Organic Solar CellsACS Applied Materials & Interfaces 2013, 5, 8823-8827.

67.X. Li, W. Zhang, Y. Wu, C. Min, J. Fang*, High performance polymer solar cells with a polar fullerene derivative as the cathode buffer layerJournal of Materials Chemistry A 2013, 1, 12413-12416.

68.D. Ye, X. Li, L. Yan, W. Zhang, Z. Hu, Y. Liang, J. Fang*, W.-Y. Wong*, X. Wang*, Dithienosilole-bridged small molecules with different alkyl group substituents for organic solar cells exhibiting high open-circuit voltageJournal of Materials Chemistry A 2013, 1, 7622-7629.

69.A. Kumar, G. Pace, A. A. Bakulin, J. Fang, P. K. H. Ho, W. T. S. Huck, R. H. Friend, N. C. Greenham, Donor-acceptor interface modification by zwitterionic conjugated polyelectrolytes in polymer photovoltaicsEnergy & Environmental Science 2013, 6, 1589-1596.

70.G. Grancini, R. S. S. Kumar, M. Maiuri, J. Fang, W. T. S. Huck, M. J. P. Alcocer, G. Lanzani, G. Cerullo, A. Petrozza, H. J. Snaith, Panchromatic "Dye-Doped" Polymer Solar Cells: From Femtosecond Energy Relays to Enhanced Photo-ResponseJournal of Physical Chemistry Letters 2013, 4, 442-447.

71.S. Yu, L. Ju, F. Li, Y. Liu, J. Fang*, A highly selective solid-contact electrode for Ag+ based on a monoazathiacrown ether ionophoreChinese Chemical Letters 2012, 23, 488-491.

72.S. Tang, A. Sandström, J. Fang, L. Edman, A Solution-Processed Trilayer Electrochemical Device: Localizing the Light Emission for Optimized PerformanceJournal of the American Chemical Society 2012, 134, 14050-14055.

73.J. E. Slota, E. Elmalem, G. Tu, B. Watts, J. Fang, P. M. Oberhumer, R. H. Friend, W. T. S. Huck, Oligomeric Compatibilizers for Control of phase Separation in Conjugated Polymer Blend FilmsMacromolecules 2012,45, 1468-1475.

74.Z. Chen, J. Fang(co-first), F. Gao, T. J. K. Brenner, K. K. Banger, X. Wang, W. T. S. Huck, H. Sirringhaus, Enhanced charge transport by incorporating additional thiophene units in the poly(fluorene-thienyl-benzothiadiazole) polymerOrganic Electronics 2011, 12, 461-471.

75.K. Driscoll, J. Fang, N. Humphry-Baker, T. Torres, W. T. S. Huck, H. J. Snaith, R. H. Friend, Enhanced Photoresponse in Solid-State Excitonic Solar Cells via Resonant Energy Transfer and Cascaded Charge Transfer from a Secondary AbsorberNano Letters 2010, 10, 4981-4988.

76.J. Fang, Y. Yang, L. Edman*Understanding the operation of light-emitting electrochemical cellsApplied Physics Letters 2008, 93, 063503.

77.B. Wang, J. Fang, B. Li*, H. You, D. Ma*, Z. Hong, W. Li, Z. Su, Soluble dendrimers europium(III) beta-diketonate complex for organic memory devicesThin Solid Films 2008, 516, 3123-3127.

78.N. D. Robinson, J. Fang, P. Matyba, L. Edman*Electrochemical doping during light emission in polymer light-emitting electrochemical cellsPhysical Review B 2008, 78, 245202.

79.J. Fang, H. You, J. Gao, W. Lu, D. Ma*Ligand effect on the performance of organic light-emitting diodes based on europium complexesJournal of Luminescence 2007, 124, 157-161.

80.H. You, H. Li, J. Fang, Q. Wang, L. Wang, D. Ma, Improved efficiency by doping blue iridium (III) complex in europium complex-based light-emitting diodesJournal of Physics D-Applied Physics 2007, 40, 1363-1367.

81.H. You, J. Fang, L. Wang, X. Zhu, W. Huang, D. Ma*Efficient red organic light-emitting diodes based on a dinuclear europium complexOptical Materials 2007, 29, 1514-1517.

82.H. You, J. Fang, J. Gao, D. Ma*Improved efficiency of organic light-emitting diodes based on a europium complex by fluorescent dyeJournal of Luminescence 2007, 122, 687-689.

83.Y. Wang, L. Wang, X. Zhu, J. Ru, W. Huang, J. Fang, D. Ma*Efficient electroluminescent tertiary europium(III) beta-diketonate complex with functional 2,2 '-bipyridine ligandSynthetic Metals 2007, 157, 165-169.

84.W. Lu, H. You, J. Fang, D. Ma*Improvement of amplified spontaneous emission performance by doping tris(8-hydroxyquinoline) aluminum (Alq3) in dye-doped polymer thin filmsApplied Optics 2007, 46, 2320-2324.

85.J. Fang, H. You, J. Chen, J. Lin, D. Ma*Memory devices based on lanthanide (SM3+, EU3+, Gd3+) complexesInorganic Chemistry 2006, 45, 3701-3704.

86.J. Fang, C. C. Choy, D. Ma*, E. C. W. Ou*High-efficiency spin-coated organic light-emitting diodes based on a europium complexThin Solid Films 2006, 515, 2419-2422.

87.H. You, J. Fang, Y. Xuan, D. Ma*Highly efficient red electroluminescence from stacked organic light-emitting devices based on a europium complexMaterials Science and Engineering B-Solid State Materials for Advanced Technology 2006, 131, 252-255.

88.W. Wang, J. Shi*, C. Liang, H. Zhang, M. Liu, B. Quan, S. Guo, J. Fang, D. Ma*Ambipolar thin-film field-effect transistor based on pentaceneChinese Physics Letters 2005, 22, 496-498.

89. J. Gao, H. You, Z. Qin, J. Fang, D. Ma*, X. Zhu, W. Huang*High efficiency polymer electrophosphorescent light-eimitting diodesSemiconductor Science and Technology 2005, 20, 805-808.

90. J. Gao, H. You, J. Fang, D. Ma*, L. Wang*, X. Jing, F. Wang, Pure red electrophosphorescent organic light-emitting diodes based on a new iridium complexSynthetic Metals 2005, 155, 168-171.

91. J. Fang, H. You, J. Gao, D. Ma*Improved efficiency by a fluorescent dye in red organic light-emitting devices based on a europium complexChemical Physics Letters 2004, 392, 11-16.

92. X. Zhu, L. Wang, J. Ru, W. Huang, J. Fang, D. Ma*An efficient electroluminescent (2,2 '-bipyridine mono N-oxide) europium(III) beta-diketonate complexJournal of Materials Chemistry 2004, 14, 2732-2734.

93. J. Fang, D. Ma*Efficient red organic light-emitting devices based on a europium complexApplied Physics Letters 2003, 83, 4041-4043.


荣誉及奖励

招生信息

10 访问

相关教师