徐方军 |
相关教师 |
个人资料
教育经历2007.8-2010.8 University of Connecticut 数学系 博士 2004.9-2007.6 南开大学 数学科学学院 硕士 2000.9-2004.6 南开大学 数学科学学院 本科 工作经历2010.8-2013.5 University of Kansas 数学系 Robert Adams Visiting Assistant Professor 2013.7-至今 华东师范大学统计学院 个人简介华东师范大学统计学院教授,本科和硕士毕业于南开大学,博士毕业于美国康涅狄格大学,研究方向包括概率极限理论、随机分析及其应用。 社会兼职中国现场统计研究会数据科学与人工智能分会理事 研究方向概率极限理论、随机分析及其应用 招生与培养开授课程现开设课程 本科: 高等代数I. 曾开设课程 本科: 微分方程,概率论与数理统计,数学分析I、II,高等代数I、II; 学硕: 高等概率论; 博士: 随机分析上、下. 科研项目国家自然科学基金面上项目(2024.1-2027.12). 国家自然科学基金面上项目(2019.1-2022.12). 国家自然科学基金青年科学基金项目(2015.1-2017.12). 学术成果部分论文 10. (with M. Hong and H. Liu) Limit theorems for additive functionals of some self-similar Gaussian processes. Annals of Applied Probability, accepted, 2024. 9. (with H. Liu and Y. Xiong) Limit theorems for functionals of long memory linear processes with infinite variance, Stochastic Process. Appl., 167, 104237, 2024. 8. (with J. Song and X. Song) Fractional stochastic wave equation driven by a Gaussian noise rough in space. Bernoulli, 26(4), 2699-2726, 2020. 7. (with J. Song and Q. Yu) Limit theorems for functionals of two independent Gaussian processes, Stochastic Process. Appl., 129(11), 4791-4836, 2019. 6. (with D. Nualart) Asymptotic behavior for an additive functional of two independent self-similar Gaussian processes, Stochastic Process. Appl., 129(10), 3981-4008, 2019. 5. (with H. Sang and Y. Sang) Kernel estropy estimation for linear processes, J. Time Series Anal., 39(4), 563-591, 2018. 4. (with Y. Hu, D. Nualart, and S. Tindel) Density convergence in the Breuer-Major theorem for Gaussian stationary sequences, Bernoulli, 21(4), 2336-2350, 2015. 3. (with D. Nualart) Central limit theorem for functionals of two independent fractional Brownian motions, Stochastic Process. Appl., 124(11), 3782-3806, 2014. 2. (with Y. Hu and D. Nualart) Central limit theorem for an additive functional of the fractional Brownian motion, Ann. Probab., 42(1), 168-203, 2014. 1. A class of singular symmetric Markov processes, Potential Anal., 38(1), 207-232, 2013. 近期预印本 3. (with H. Liu, H. Sang and Y. Sang) On the wavelet quadratic entropy estimation for linear processes, submitted, 2023. 2. A limit theorem for some linear processes with innovations in the domain of attraction of a stable law, arXiv:2306.10893, 2023. 1. (with H. Liu) Kernel entropy estimation for long memory linear processes with infinite variance, arXiv:2210.03644, 2022. 荣誉及奖励2022年 华东师范大学优秀博士学位论文指导老师 2021年 华东师范大学优秀博士学位论文指导老师 2018年 华东师范大学教学成果奖一等奖 (团队成员) 2017年 上海市教学成果奖一等奖(团队成员) |