开发的工具:https://github.com/XingjieShi
(#并列一作,*通讯作者,s指导的学生)
1. Chen, X., Ran, Q., Tang, J., Chen, Z., Huang, S., Shi, X.* and Xi, R.* (2025) Benchmarking algorithms for spatially variable gene identification in spatial transcriptomics. Bioinformatics, p.btaf131.
2. Dong, Q., Yang, Y., Luo, Z., Shen, H., Shi, X.* and Liu, J.* (2025) Robust Spatial Cell‐Type Deconvolution with Qualitative Reference for Spatial Transcriptomics. Small Methods, p.2401145.
3. Gu, Z., Liu, S., Ma, H., Long, Y.S, Jiao, X., Gao, X., Du, B., Bi, X. and Shi, X.*(2025) Estimation of Machine Learning–Based Models to Predict Dementia Risk in Patients With Atherosclerotic Cardiovascular Diseases: UK Biobank Study. JMIR aging, 8, p.e64148.
4. Shi, X.*,#; Yang, Y.#; Ma X.S; Zhou Y.; Guo Z.; Wang C.; Liu J.* (2023) Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno, Nucleic Acids Research, 51(22),gkad1023
5. Zhang, X.; Liu, X.; Shi, X.* (2023) Model Selection for Varying Coefficient Nonparametric Transformation Model, Econometric Journal, 26(3), 492-512
6. Zhang, X.; Shi, X.*; Liu, Y.; Liu, X.; Ma, S. (2023) A General Framework for Identifying Hierarchical Interactions and Its Application to Genomics Data, Journal of Computational and Graphical Statistics, 32(3), 873-883
7. Liu W.; Liao X; Luo Z.; Yang Y.; Lau M.; Jiao Y.; Shi X.; Zhai W.; Ji H.; Yeong J.; Liu J. (2023) Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST, Nature Communications, 14(1), 296
8. Liu, W.; Liao, X.; Yang, Y.; Lin, H.; Yeong , J.; Zhou, X.*; Shi,X. *; Liu J.* (2022) Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data, Nucleic Acids Research, 50(12), gkac219
9. Yang, Y.#; Shi, X.#; Zhou, Q.; Sun, L.; Yeong, J.∗, Liu, J.∗ (2022) SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes, Briefing in Bioinformatics, 23(1): bbab466
10. Cheng, Q.; Qiu, T.; Chai, X.; Sun, B.; Xia, Y.; Shi, X.*; Liu, J.* (2022) MR-Corr2: A two-sample Mendelian randomization method that accounts for correlated horizontal pleiotropy using correlated instrumental variants, Bioinformatics, 38(2): 303-310
11. Shi, X. and Chai, X. and Yang, Y. and Cheng, Q. and Jiao, Y. and Chen, H. and Huang, J. and Yang, C. and Liu, J. (2020) A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies. Nucleic Acids Research, 48(19): e109 [SCI, Impact Factor: 17]
12. Cheng Q., Yang Y., Shi X., Yeung K., Yang C., Peng H., Liu J. (2020). MR-LDP: a two-sample Mendelian randomization for GWAS summary statistics accounting for linkage disequilibrium and horizontal pleiotropy. NAR Genomics and Bioinformatics, 2(2):lqaa028
13. Shi, X. and Ma, S. and Huang, Y. (2020). Promoting sign consistency in the Cox proportional hazards curemodel selection.Statistical Methods in Medical Research,29(1):15-28. [SCI]
14. Yang Y., Shi X., Jiao Y., Huang J., Chen M., Zhou X., Sun L., Lin X., Yang C. and Liu J. (2020) CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Bioinformatics, 36(7): 2009-16[SCI]
15. Liao X., Chai X., Shi X., Chen L., Liu J.(2020) The statistical practice of the GTEx Project: from single to multiple tissues. Quantitative Biology [SCI]
16. 史兴杰,王赛旎,李扬. (2020). 高维数据的稳健二分类方法. 统计研究.37(9):95-105
17. 张晶,方匡南*,张喆,史兴杰,郑陈璐. (2020). 基于稀疏结构连续比率模型的消费金融风控研究. 统计研究. 37(11):57-67
18. Shi, X. and Yang Y. and Jiao Y. and Cheng C. and Yang C. and Lin X. and Liu J. (2019). VIMCO: variational inference for multiple correlated outcomes in genome-wide association studies. Bioinformatics, 35(19), 3693-3700. [SCI]
19. S. Wang, X. Shi, M. Wu, and S. Ma (2019) Horizontal and vertical integrative analysis methods for mental disorders omics data. Scientific Report, 9(1):13430 [SCI]
20. 孙怡凡,吴梦云,史兴杰. (2019).高维大数据基因网络中的社区发现——以NC方法为例. 统计研究, 36(3), 124-128.
21. Shi, X., Huang, Y. and Huang, J and Ma, S. (2018). A forward and backward stagewise algorithm for nonconvex loss functions and adaptive lasso. Computational Statistics and Data Analysis, 124, 235-251.
22. Chai, H*. and Shi, X.* and Zhang, Q and Zhao, Q and Huang, Y and Ma, S. (2017). Analysis of cancer gene expression data with an assisted robust marker identification approach. Genetic Epidemiology,41, 779– 789. [SCI]
23. Liu, J. and Yang, C. and Shi, X. and Li, C. and Huang, J. and Zhao, H. and Ma, S. (2016). Analyzing Association Mapping in Pedigree‐Based GWAS Using a Penalized Multitrait Mixed Model. Genetic Epidemiology, 40(5), 382-393. [SCI]
24. Jiang, Y*. andShi, X. * and Zhao, Q. and M. Krauthammer and BE Rothberg and Ma, S. (2016). Integrated analysis ofmultidimensional omics data on cutaneous melanoma prognosis. Genomics,107(6), 223-30.
25. Shi, X. and Zhao, Q. and Huang, J. and Xie, Y. and Ma, S. (2015). Deciphering the association between gene expression and copy number alteration using a sparse double Laplacian shrinkage approach. Bioinformatics, 31(24), 3977-3983. [SCI]
26. Shi, X. * and Yi, H* and Ma, S. (2015). Measures for the degree of overlap of gene signatures and applications to TCGA. Briefings in Bioinformatics,16(5), 735-744. [SCI]
27. Wu, C. and Shi, X. and Cui, Y. and Ma, S. (2015). A penalized robust semiparametric approach for gene–environment interactions. Statistics in Medicine, 34(30), 4016-30. [SCI]
28. Zhao, Q.* and Shi, X.* and Xie, Y. and Huang, J. and Ben-Chang Shia and Ma, S. (2015). Combining Multidimensional Genomic Measurements for Predicting Cancer Prognosis: Observations from TCGA. Briefing in Bioinformatics, 16(2), 291-303. [SCI]
29. Zhao, Q. and Shi, X. and Huang, J. and Liu, J. and Li, Y. and Ma, S. (2015). Integrative analysis of -omics data using penalty functions. WIREs Computational Statistics,7(1), 99-108.
30. Shi, X. and Liu, J. and Huang, J. and Zhou, Y. and Ben-Chang Shia and Ma, S. (2014). Integrative Analysis of Cancer Prognosis Data with Contrasted Group Bridge Penalization. Genetic Epidemiology, 38(2), 141-151. [SCI]
31. Shi,X. and Liu, J. and Huang, J. and Zhou, Y. and Xie, Y. and Ma, S. (2014). A Penalized Robust Method for Identifying Gene-Environment Interactions. Genetic Epidemiology, 38(3), 220-230. [SCI]
32. Shi, X. and Shen, S. and Liu, J. and Huang, J. and Zhou, Y. and Ma, S.(2014). Similarity of Markers Identified from Cancer Gene Expression Studies: Observations from GEO. Briefing in Bioinformatics, 15(5), 671-684. [SCI]