头像

马慧娟

  • 个人资料
    • 部门: 经济与管理学部
    • 性别:
    • 专业技术职务: 副教授
    • 毕业院校: 中国科学技术大学
    • 学位: 博士
    • 学历: 博士
    • 联系电话:
    • 电子邮箱: hjma@fem.ecnu.edu.cn
    • 办公地址: 理科大楼A座1512a室
    • 通讯地址: 上海市中山北路3663号
    • 邮编: 200062
    • 传真:

    工作经历

    2022.01—至今,   华东师范大学,副教授

    2018.10—2021.12, 华东师范大学,助理教授

    2015.08—2018.08, 美国 Emory University, 博士后 

    2014.02—2014.05, 香港大学, 研究助理


    教育经历

    2015年在中国科学技术大学获得博士学位.


    个人简介

    马慧娟,华东师范大学统计学院与统计交叉科学研究院副教授。2015年在中国科学技术大学获得统计学博士学位,2015-2018年在美国埃默里大学生物统计与生物信息系做博士后,2018年加入华东师范大学。主要研究方向包括生存分析,分位数回归,因果推断等。在统计学期刊 Biometrika, Biometrics, Journal of Business & Economic Statistics, Statistica Sinica等期刊发表论文二十余篇。曾主持国家自然科学基金青年项目一项和上海市浦江人才项目一项。现主持国家自然科学基金重点项目子项目一项,参与国家自然科学基金重点项目及科技部重点研发项目等。

    社会兼职

    全国工业统计学教学研究会理事(2018-2022),中国现场统计研究会生存分析分会理事(2023-)等

    Biometrics, American Journal of Epidemiology, Computational Statistics and Data Analysis, Lifetime Data Analysis, Journal of Nonparametric Statistics, Journal of Applied Statistics, Statistics and Its interface等杂志审稿人

    研究方向

    生存分析(Survival Analysis)

    分位数回归(Quantile Regression)

    因果推断(Causal Inference)

    大数据分析(Big Data Analysis)


    招生与培养

    开授课程

    本科生课程:《统计软件》

    研究生课程:《统计软件与计算》(专硕)

            《科技论文写作与LaTeX》(学硕)

            《复杂数据统计分析》(学硕)


    科研项目

    5. 国家自然科学基金重点项目,“大数据背景下不完全数据的统计分析方法、理论和应用”,2024.01-2028.12,165万,子课题负责人

    4. 国家重点研发计划数学和应用研究专项,“油气管网安全运维的大数据分析理论、算法及应用”,2021.12-2026.11,1370万,参与

    3. 国家自然科学基金重点项目,“经济管理中复杂数据和复杂行为的分析方法及其应用”,2020.01-2024.12,230万,参与

    2. 国家自然科学基金青年项目,“带有缺失类型的多类型复发事件数据的半参数回归模型及应用”2020.01-2022.12,24万元,项目主持人

    1. 上海市浦江人才项目A类,“纵向数据轨迹中潜在变量的分位数回归及其应用”,2019.10-2021.10, 30万元,项目主持人

    学术成果

    期刊论文(*代表通讯作者):

    22. Cheng, M., Liu, Y., Ma, H.*, and Qin, J. (2023+). Maximum full likelihood approach to randomly truncated data. Journal of Systems Science & Complexity. Accepted.

    21. Ma, H., Qin, J. and Zhou, Y. (2023). From conditional quantile regression to marginal quantile estimation with applications in missing data and causal inference. Journal of Business & Economic Statistics. 41(4): 1377-1390.

    20. Li, W., Ma, H.*, Faraggi, D, and Dinse, G. (2023). Generalized mean residual life models for survival data with missing censoring indicators. Statistics in Medicine. 42(3): 264-280.

    19. Ma, H.*, Qin, J., Chen, F., and Zhou, Y. (2023). A novel nonparametric mixture model for the infection pattern of COVID-19 on Diamond Princess cruise. Statistical Theory and Related Fields7:1, 85-96.

    18. Ma, H., Zheng, Q., Zhang, Z., Lai, H-C., and Peng, L. (2023). Globally adaptive longitudinal quantile regression with high dimensional compositional covariates. Statistica Sinica. 33, 1295-1318.  

    17. Ma, H.*, Pang, W., Sun, L., and Xu, W. (2022). Augmented weighting estimators for the additive rates model under multivariate recurrent event data with missing event type. Statistics in Medicine41(22): 4285–4298.

    16. Qiu, Z., Ma, H.*, and Shi, J. (2022). Reweighting estimators for the transformation models with length-biased sampling data and missing covariates, Communications in Statistics-Theory and Methods, 51(13): 4252--4275.

    15. Qiu, Z., Ma, H.*, Chen, J., and Dinse, G. (2021). Quantile regression models for survival data with missing censoring indicators. Statistical Methods in Medical Research. 30(5): 1320–1331. 

    14. Ma, H., Peng, L., Huang, C-Y. and Fu, H. (2021). Heterogeneous individual risk modelling of recurrent events. Biometrika. 108(1): 183–198.

    13. Ma, H., Zhao, W. and Zhou, Y. (2020). Semiparametric model of mean residual life with biased  sampling data. Computational Statistics and Data Analysis. 142: 106826.

    12. Ma, H., Peng, L. and Fu, H. (2019). Quantile regression modeling of latent trajectory features with longitudinal data. Journal of Applied Statistics. 46: 2884-2904.

    11. Ma, H., Shi, J. and Zhou, Y. (2019). Proportional mean residual life model with censored survival data under case-cohort design. Statistics and Its Interface. 12: 21-33.

    10. Ma, H., Peng, L., Zhang, Z. and Lai, H-C. (2018). Generalized accelerated recurrence time models for multivariate recurrent events data with missing event type. Biometrics. 74: 954-965.

    9. Fan, C., Ma, H.* and Zhou, Y. (2018). Quantile regression for competing risks analysis under case-cohort design. Journal of Statistical Computation and Simulation. 88: 1060-1080. 

    8. Shi, J., Ma, H. and Zhou, Y. (2018). The nonparametric quantile estimation for length-biased and right censored data. Statistics and Probability Letters. 134: 150-158.

    7. Li, Y., Ma, H., Wang, D. and Zhou, Y. (2017). Analyzing the general biased data by additive risk model. Science China Mathematics. 60: 685-700.

    6. Ma, H.* and Zhou, Y. (2017). Pseudo likelihood for case-cohort studies under length-biased sampling. Communications in Statistics-Theory and Methods. 46: 28-48.

    5. Ma, H.*, Qiu, Z. and Zhou, Y. (2016). Semiparametric analysis of transformation models with length-biased data under case-cohort design. Statistics and Its Interface. 9: 213-222.

    4. Tian, G., Ma, H.*, Zhou, Y. and Deng, D. (2015). Generalised endpoint-inflated binomial model. Computational Statistics and Data Analysis. 89: 97-114. 

    3. Ma, H.*, Zhang, F. and Zhou, Y. (2015). Composite estimating equation approach for the additive risk model with length-biased and right-censored data. Statistics and Probability Letters,  96: 45-53.

    2. 马慧娟, 范彩云和周勇(2015).长度偏差右删失数据下分位数回归的估计方程方法. 中国科学:数学45:1981-2000.

    1. 肖鸿民, 马慧娟(2011).负相依重尾索赔条件下损失过程的精细大偏差. 兰州大学学报(自然科学版)3: 101-146.


    摘要:

    4. Zhang, Z., Ma, H., Peng, L., Lai, H-C., and the FIRST Study Group. (2018). Different lung disease presentations in infants with Cystic Fibrosis. Pediatric Pulmonology. 53(S2): S329-S329.

    3. Ma, H., Peng, L., Zhang, Z., Lai, H-C., and the FIRST Study Group. (2017). Investigating the dynamic heterogeneity of weight growth in infants with Cystic Fibrosis through a novel statistical analysis. Pediatric Pulmonology. 52(S47): S408-S409.

    2. Yang, J., Peng, L., Zhang, Z., Rahman, F, Ma, H., Lai, H-C, and the FIRST Study Group. (2016). Joint profile of respiratory infections and their association with breastfeeding in infants with Cystic Fibrosis. Pediatric Pulmonology. 51(S45): S327-S327.

    1. Zhang, Z., Ma, H., Peng, L, Lai, H-C, and the FIRST Study Group.(2016). Gut microbiota in early childhood in Cystic Fibrosis. Pediatric Pulmonology. 51(S45): S325-S325.


    荣誉及奖励